Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-4031-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4031-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Alisée A. Chaigneau
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Mercator Ocean International, Toulouse, France
now at: IHCantabria – Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
Angélique Melet
Mercator Ocean International, Toulouse, France
Aurore Voldoire
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Maialen Irazoqui Apecechea
Mercator Ocean International, Toulouse, France
Guillaume Reffray
Mercator Ocean International, Toulouse, France
Stéphane Law-Chune
Mercator Ocean International, Toulouse, France
Lotfi Aouf
Météo-France, Toulouse, France
Related authors
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Maialen Irazoqui Apecechea, Angélique Melet, Melisa Menendez, Hector Lobeto, and Jonathan B. Valle-Rodriguez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3558, https://doi.org/10.5194/egusphere-2025-3558, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We applied a fast statistical model to estimate future extreme storm surges in Europe using data from 17 climate models – about twice as many as in past studies. Results show robust regional patterns – decreases in the Mediterranean and Moroccan coast, increases in the Irish Sea and Gulf of Finland – with high uncertainty in other areas. Out results increase our knowledge on future storm surge uncertainties, needed for informed coastal planning.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet, 5-opsr, 11, https://doi.org/10.5194/sp-5-opsr-11-2025, https://doi.org/10.5194/sp-5-opsr-11-2025, 2025
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to mitigate climate change impacts. We provide here an overview on models commonly used for sea level forecasting, which can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Fabrice Hernandez, Marcos Garcia Sotillo, and Angélique Melet
State Planet, 5-opsr, 17, https://doi.org/10.5194/sp-5-opsr-17-2025, https://doi.org/10.5194/sp-5-opsr-17-2025, 2025
Short summary
Short summary
An historical review over the last 3 decades on intercomparison projects of ocean numerical reanalysis or forecast is first proposed. From this, main issues and lessons learned are discussed in order to propose an overview of best practices and key considerations to facilitate intercomparison activities in operational oceanography.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Thibault Guinaldo, Aurore Voldoire, Robin Waldman, Stéphane Saux Picart, and Hervé Roquet
Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, https://doi.org/10.5194/os-19-629-2023, 2023
Short summary
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Alisée A. Chaigneau, Guillaume Reffray, Aurore Voldoire, and Angélique Melet
Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, https://doi.org/10.5194/gmd-15-2035-2022, 2022
Short summary
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209, https://doi.org/10.5194/essd-13-1189-2021, https://doi.org/10.5194/essd-13-1189-2021, 2021
Short summary
Short summary
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface. The scarcity of observations in this remote region hampers the comprehension of fundamental physics, the accuracy of satellite sensors, and the capabilities of prediction models. To fill this gap, a unique data set of simultaneous observations of winds, surface currents, and ocean waves in the Southern Ocean is presented.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Aarnes, O. J., Reistad, M., Breivik, Ø., Bitner-Gregersen, E., Ingolf Eide, L., Gramstad, O., Magnusson, A. K., Natvig, B., and Vanem, E.: Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic, J. Geophys. Res.-Oceans, 122, 3394–3403, https://doi.org/10.1002/2016JC012521, 2017.
Almar, R., Ranasinghe, R., Bergsma, E. W. J., Diaz, H., Melet, A., Papa, F., Vousdoukas, M., Athanasiou, P., Dada, O., Almeida, L. P., and Kestenare, E.: A global analysis of extreme coastal water levels with implications for potential coastal overtopping, Nat. Commun., 12, 3775, https://doi.org/10.1038/s41467-021-24008-9, 2021.
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection design heights, Sci. Rep., 7, 40171, https://doi.org/10.1038/srep40171, 2017.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P., Niehüser, S., and Jensen, J.: Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts, Nat. Commun., 11, 1918, https://doi.org/10.1038/s41467-020-15752-5, 2020.
Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M., Gaytan-Aguilar, S., and Ranasinghe, R.: Global distribution of nearshore slopes with implications for coastal retreat, Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, 2019.
Bergsma, E. W. J., Almar, R., Anthony, E. J., Garlan, T., and Kestenare, E.: Wave variability along the world's continental shelves and coasts: Monitoring opportunities from satellite Earth observation, Adv. Space Res., 69, 3236–3244, https://doi.org/10.1016/j.asr.2022.02.047, 2022.
Bonaduce, A., Staneva, J., Grayek, S., Bidlot, J.-R., and Breivik, Ø.: Sea-state contributions to sea-level variability in the European Seas, Ocean Dynam., 70, 1547–1569, https://doi.org/10.1007/s10236-020-01404-1, 2020.
Bruciaferri, D., Tonani, M., Lewis, H. W., Siddorn, J. R., Saulter, A., Castillo Sanchez, J. M., Valiente, N. G., Conley, D., Sykes, P., Ascione, I., and McConnell, N.: The Impact of Ocean-Wave Coupling on the Upper Ocean Circulation During Storm Events, J. Geophys. Res.-Oceans, 126, e2021JC017343, https://doi.org/10.1029/2021JC017343, 2021.
Caires, S.: EXTREME VALUE ANALYSIS: WAVE DATA, JCOMM Technical Report No. 57, https://www.jodc.go.jp/info/ioc_doc/JCOMM_Tech/JCOMM-TR-057.pdf (last access: 18 November 2024), 2011.
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022.
Caldwell, P. C., Merrifield M. A., Thompson P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5V40S7W, 2015.
Chaigneau, A. A., Reffray, G., Voldoire, A., and Melet, A.: IBI-CCS: a regional high-resolution model to simulate sea level in western Europe, Geosci. Model Dev., 15, 2035–2062, https://doi.org/10.5194/gmd-15-2035-2022, 2022.
Chaigneau, A. A., Law-Chune, S., Melet, A., Voldoire, A., Reffray, G., and Aouf, L.: Impact of sea level changes on future wave conditions along the coasts of western Europe, Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, 2023.
Chen, G., Chapron, B., Ezraty, R., and Vandemark, D.: A Global View of Swell and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer, J. Atmos. Ocean. Tech., 19, 1849–1859, https://doi.org/10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2, 2002.
ESGF: Historical data, ESGF [data set], http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=historical (last access: 8 March 2022), 2022a.
ESGF: piControl data, ESGF [data set], http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=piControl (last access: 8 March 2022), 2022b.
ESGF: ssp585 data, ESGF [data set], http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=ssp585 (last access: 8 March 2022), 2022c.
ESGF: ssp126 data, ESGF [data set], http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=ssp126 (last access: 8 March 2022), 2022d.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the evolution of global mean sea level in ocean climate models, Ocean Model., 51, 37–72, https://doi.org/10.1016/j.ocemod.2012.04.003, 2012.
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S.-B., and Woodworth, P. L.: The Tides They Are A-Changin': A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications, Rev. Geophys., 58, e2018RG000636, https://doi.org/10.1029/2018RG000636, 2019.
Haigh, I. D., Marcos, M., Talke, S. A., Woodworth, P. L., Hunter, J. R., Hague, B. S., Arns, A., Bradshaw, E., and Thompson, P.: GESLA Version 3: A major update to the global higher-frequency sea-level dataset, Geosci. Data J., 10, 293–314, https://doi.org/10.1002/gdj3.174, 2023 (data available at: http://www.gesla.org, last access: 18 November 2024).
Hemer, M. A., Fan, Y., Mori, N., Semedo, A., and Wang, X. L.: Projected changes in wave climate from a multi-model ensemble, Nat. Clim. Change, 3, 471–476, https://doi.org/10.1038/nclimate1791, 2013.
Hermans, T. H. J., Tinker, J., Palmer, M. D., Katsman, C. A., Vermeersen, B. L. A., and Slangen, A. B. A.: Improving sea-level projections on the Northwestern European shelf using dynamical downscaling, Clim. Dynam., 54, 1987–2011, https://doi.org/10.1007/s00382-019-05104-5, 2020.
Hermans, T. H. J., Katsman, C. A., Camargo, C. M. L., Garner, G. G., Kopp, R. E., and Slangen, A. B. A.: The Effect of Wind Stress on Seasonal Sea-Level Change on the Northwestern European Shelf, J. Climate, 35, 1745–1759, https://doi.org/10.1175/JCLI-D-21-0636.1, 2022.
Hermans, T. H. J., Malagón-Santos, V., Katsman, C. A., Jane, R. A., Rasmussen, D. J., Haasnoot, M., Garner, G. G., Kopp, R. E., Oppenheimer, M., and Slangen, A. B. A.: The timing of decreasing coastal flood protection due to sea-level rise, Nat. Clim. Change, 13, 359–366, https://doi.org/10.1038/s41558-023-01616-5, 2023.
Howard, T. and Palmer, M. D.: Sea-level rise allowances for the UK, Environ. Res. Commun., 2, 035003, https://doi.org/10.1088/2515-7620/ab7cb4, 2020.
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast, Surv. Geophys., 40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019.
IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer , N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–35, https://doi.org/10.1017/9781009157964.001, 2019.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Irazoqui Apecechea, M., Melet, A., and Armaroli, C.: Towards a pan-European coastal flood awareness system: Skill of extreme sea-level forecasts from the Copernicus Marine Service, Front. Mar. Sci., 9, 1091844, https://doi.org/10.3389/fmars.2022.1091844, 2023.
Jevrejeva, S., Williams, J., Vousdoukas, M. I., and Jackson, L. P.: Future sea level rise dominates changes in worst case extreme sea levels along the global coastline by 2100, Environ. Res. Lett., 18, 024037, https://doi.org/10.1088/1748-9326/acb504, 2023.
Jin, Y., Zhang, X., Church, J. A., and Bao, X.: Projected Sea Level Changes in the Marginal Seas near China Based on Dynamical Downscaling, J. Climate, 34, 7037–7055, https://doi.org/10.1175/JCLI-D-20-0796.1, 2021.
Kim, Y.-Y., Kim, B.-G., Jeong, K. Y., Lee, E., Byun, D.-S., and Cho, Y.-K.: Local Sea-Level Rise Caused by Climate Change in the Northwest Pacific Marginal Seas Using Dynamical Downscaling, Front. Mar. Sci., 8, 620570, https://doi.org/10.3389/fmars.2021.620570, 2021.
Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke, D., and Hinkel, J.: Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century, Sci. Rep., 10, 11629, https://doi.org/10.1038/s41598-020-67736-6, 2020.
Lambert, E., Rohmer, J., Cozannet, G. L., and van de Wal, R. S. W.: Adaptation time to magnified flood hazards underestimated when derived from tide gauge records, Environ. Res. Lett., 15, 074015, https://doi.org/10.1088/1748-9326/ab8336, 2020.
Lemarié, F., Samson, G., Redelsperger, J.-L., Giordani, H., Brivoal, T., and Madec, G.: A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0), Geosci. Model Dev., 14, 543–572, https://doi.org/10.5194/gmd-14-543-2021, 2021.
Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.-C., Weedon, G. P., Palmer, T., Staneva, J., and Bricheno, L.: Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?, Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, 2019.
Lobeto, H., Menendez, M., and Losada, I. J.: Future behavior of wind wave extremes due to climate change, Sci. Rep., 11, 7869, https://doi.org/10.1038/s41598-021-86524-4, 2021.
Lowe, R. J., Cuttler, M. V. W., and Hansen, J. E.: Climatic Drivers of Extreme Sea Level Events Along the Coastline of Western Australia, Earths Future, 9, e2020EF001620, https://doi.org/10.1029/2020EF001620, 2021.
NEMO: https://www.nemo-ocean.eu/, last access: 18 November 2024.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., et al.: NEMO ocean engine. In Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v3.6-patch, Number 27), Zenodo [code], https://doi.org/10.5281/zenodo.3248739, 2017.
Marcos, M. and Woodworth, P. L.: Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico, J. Geophys. Res.-Oceans, 122, 7031–7048, https://doi.org/10.1002/2017JC013065, 2017.
Marcos, M., Rohmer, J., Vousdoukas, M. I., Mentaschi, L., Le Cozannet, G., and Amores, A.: Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves, Geophys. Res. Lett., 46, 4356–4364, https://doi.org/10.1029/2019GL082599, 2019.
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., and Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe, Geophys. Res. Lett., 43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016.
McMichael, C., Dasgupta, S., Ayeb-Karlsson, S., and Kelman, I.: A review of estimating population exposure to sea-level rise and the relevance for migration, Environ. Res. Lett., 15, 123005, https://doi.org/10.1088/1748-9326/abb398, 2020.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated wave contribution to coastal sea-level rise, Nat. Clim. Change, 8, 234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018.
Melet, A., Almar, R., Hemer, M., Le Cozannet, G., Meyssignac, B., and Ruggiero, P.: Contribution of Wave Setup to Projected Coastal Sea Level Changes, J. Geophys. Res.-Oceans, 125, e2020JC016078, https://doi.org/10.1029/2020JC016078, 2020.
Melet, A., van de Wal, R., Amores, A., Arns, A., Chaigneau, A. A., Dinu, I., Haigh, I. D., Hermans, T. H. J., Lionello, P., Marcos, M., Meier, H. E. M., Meyssignac, B., Palmer, M. D., Reese, R., Simpson, M. J. R., and Slangen, A. B. A.: Sea Level Rise in Europe: Observations and projections, in: Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise (SLRE1), edited by: van den Hurk, B., Pinardi, N., Kiefer, T., Larkin, K., Manderscheid, P., and Richter, K., Copernicus Publications, State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis, Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, 2016.
Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A., and Feyen, L.: Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns, Geophys. Res. Lett., 44, 2416–2426, https://doi.org/10.1002/2016GL072488, 2017.
Meucci, A., Young, I. R., Hemer, M., Kirezci, E., and Ranasinghe, R.: Projected 21st century changes in extreme wind-wave events, Sci. Adv., 6, eaaz7295, https://doi.org/10.1126/sciadv.aaz7295, 2020.
Morim, J., Vitousek, S., Hemer, M., Reguero, B., Erikson, L., Casas-Prat, M., Wang, X. L., Semedo, A., Mori, N., Shimura, T., Mentaschi, L., and Timmermans, B.: Global-scale changes to extreme ocean wave events due to anthropogenic warming, Environ. Res. Lett., 16, 074056, https://doi.org/10.1088/1748-9326/ac1013, 2021.
Morim, J., Wahl, T., Vitousek, S., Santamaria-Aguilar, S., Young, I., and Hemer, M.: Understanding uncertainties in contemporary and future extreme wave events for broad-scale impact and adaptation planning, Sci. Adv., 9, eade3170, https://doi.org/10.1126/sciadv.ade3170, 2023.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections, Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Muis, S., Aerts, J. C. J. H., Á. Antolínez, J. A., Dullaart, J. C., Duong, T. M., Erikson, L., Haarsma, R. J., Apecechea, M. I., Mengel, M., Le Bars, D., O'Neill, A., Ranasinghe, R., Roberts, M. J., Verlaan, M., Ward, P. J., and Yan, K.: Global Projections of Storm Surges Using High-Resolution CMIP6 Climate Models, Earths Future, 11, e2023EF003479, https://doi.org/10.1029/2023EF003479, 2023.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding – A Global Assessment, PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
O'Dea, E., Bell, M. J., Coward, A., and Holt, J.: Implementation and assessment of a flux limiter based wetting and drying scheme in NEMO, Ocean Model., 155, 101708, https://doi.org/10.1016/j.ocemod.2020.101708, 2020.
Outten, S. and Sobolowski, S.: Extreme wind projections over Europe from the Euro-CORDEX regional climate models, Weather and Climate Extremes, 33, 100363, https://doi.org/10.1016/j.wace.2021.100363, 2021.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Palmer, M., Howard, T., Tinker, J., Lowe, J., Bricheno, L., Calvert, D., Edwards, T., Gregory, J., Harris, G., Krijnen, J., Pickering, M., Roberts, C., and Wolf, J.: UKCP18 marine report, https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Marine-report.pdf (last access: 18 November 2024), 2018.
Piña-Valdés, J., Socquet, A., Beauval, C., Doin, M.-P., D'Agostino, N., and Shen, Z.-K.: 3D GNSS Velocity Field Sheds Light on the Deformation Mechanisms in Europe: Effects of the Vertical Crustal Motion on the Distribution of Seismicity, J. Geophys. Res.-Sol. Ea., 127, e2021JB023451, https://doi.org/10.1029/2021JB023451, 2022.
Pineau-Guillou, L., Lazure, P., and Wöppelmann, G.: Large-scale changes of the semidiurnal tide along North Atlantic coasts from 1846 to 2018, Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, 2021.
Rashid, M. M., Wahl, T., and Chambers, D. P.: Extreme sea level variability dominates coastal flood risk changes at decadal time scales, Environ. Res. Lett., 16, 024026, https://doi.org/10.1088/1748-9326/abd4aa, 2021.
Rasmussen, D. J., Bittermann, K., Buchanan, M. K., Kulp, S., Strauss, B. H., Kopp, R. E., and Oppenheimer, M.: Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries, Environ. Res. Lett., 13, 034040, https://doi.org/10.1088/1748-9326/aaac87, 2018.
Rasmussen, D. J., Kulp, S., Kopp, R. E., Oppenheimer, M., and Strauss, B. H.: Popular extreme sea level metrics can better communicate impacts, Climatic Change, 170, 30, https://doi.org/10.1007/s10584-021-03288-6, 2022.
Reinert, M., Pineau‐Guillou, L., Raillard, N., and Chapron, B.: Seasonal Shift in Storm Surges at Brest Revealed by Extreme Value Analysis, J. Geophys. Res.-Oceans, 126, e2021JC017794, https://doi.org/10.1029/2021JC017794, 2021.
Robin, Y. and Ribes, A.: Nonstationary extreme value analysis for event attribution combining climate models and observations, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, https://doi.org/10.5194/ascmo-6-205-2020, 2020.
Roustan, J.-B., Pineau-Guillou, L., Chapron, B., Raillard, N., and Reinert, M.: Shift of the storm surge season in Europe due to climate variability, Sci. Rep., 12, 8210, https://doi.org/10.1038/s41598-022-12356-5, 2022.
Saint-Martin, D., Geoffroy, O., Voldoire, A., Cattiaux, J., Brient, F., Chauvin, F., Chevallier, M., Colin, J., Decharme, B., Delire, C., Douville, H., Guérémy, J.-F. -f, Joetzjer, E., Ribes, A., Roehrig, R., Terray, L., and Valcke, S.: Tracking Changes in Climate Sensitivity in CNRM Climate Models, J. Adv. Model. Earth Sy., 13, e2020MS002190, https://doi.org/10.1029/2020ms002190, 2021.
Sannino, G., Carillo, A., Iacono, R., Napolitano, E., Palma, M., Pisacane, G., and Struglia, M.: Modelling Present and Future Climate in the Mediterranean Sea: A Focus on Sea-Level Change, Clim. Dynam., 59, 357–391, https://doi.org/10.1007/s00382-021-06132-w, 2022.
Sayol, J. M. and Marcos, M.: Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain), J. Geophys. Res.-Oceans, 123, 794–811, https://doi.org/10.1002/2017JC013355, 2018.
Serafin, K. A., Ruggiero, P., and Stockdon, H. F.: The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U. S. West Coast sandy beaches, Geophys. Res. Lett., 44, 1839–1847, https://doi.org/10.1002/2016GL071020, 2017.
Serafin, K. A., Ruggiero, P., Barnard, P. L., and Stockdon, H. F.: The influence of shelf bathymetry and beach topography on extreme total water levels: Linking large-scale changes of the wave climate to local coastal hazards, Coast. Eng., 150, 1–17, https://doi.org/10.1016/j.coastaleng.2019.03.012, 2019.
Staneva, J., Ricker, M., Carrasco Alvarez, R., Breivik, Ø., and Schrum, C.: Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations, Water, 13, 415, https://doi.org/10.3390/w13040415, 2021.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of setup, swash, and runup, Coast. Eng., 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.
Stokes, K., Poate, T., Masselink, G., King, E., Saulter, A., and Ely, N.: Forecasting coastal overtopping at engineered and naturally defended coastlines, Coast. Eng., 164, 103827, https://doi.org/10.1016/j.coastaleng.2020.103827, 2021.
Tadesse, M. G., Wahl, T., Rashid, M. M., Dangendorf, S., Rodríguez-Enríquez, A., and Talke, S. A.: Long-term trends in storm surge climate derived from an ensemble of global surge reconstructions, Sci. Rep., 12, 13307, https://doi.org/10.1038/s41598-022-17099-x, 2022.
Tebaldi, C., Ranasinghe, R., Vousdoukas, M., Rasmussen, D. J., Vega-Westhoff, B., Kirezci, E., Kopp, R. E., Sriver, R., and Mentaschi, L.: Extreme sea levels at different global warming levels, Nat. Clim. Change, 11, 746–751, https://doi.org/10.1038/s41558-021-01127-1, 2021.
The Wamdi Group: The WAM Model – A Third Generation Ocean Wave Prediction Model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988 (code available at: https://github.com/mywave/WAM, last access: 17 July 2023)
Toomey, T., Amores, A., Marcos, M., and Orfila, A.: Coastal sea levels and wind-waves in the Mediterranean Sea since 1950 from a high-resolution ocean reanalysis, Front. Mar. Sci., 9, 991504, https://doi.org/10.3389/fmars.2022.991504, 2022.
Valiente, N. G., Masselink, G., Scott, T., Conley, D., and McCarroll, R. J.: Role of waves and tides on depth of closure and potential for headland bypassing, Mar. Geol., 407, 60–75, https://doi.org/10.1016/j.margeo.2018.10.009, 2019.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Sci. Rep., 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4067, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4164, 2019b.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP ssp585, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4225, 2019c.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP ssp126, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4185, 2020a.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Mélia, D. S. y, Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
Vos, K., Harley, M. D., Splinter, K. D., Walker, A., and Turner, I. L.: Beach Slopes From Satellite-Derived Shorelines, Geophys. Res. Lett., 47, e2020GL088365, https://doi.org/10.1029/2020GL088365, 2020.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.: Extreme sea levels on the rise along Europe's coasts: EXTREME SEA LEVELS ALONG EUROPE'S COASTS, Earths Future, 5, 304–323, https://doi.org/10.1002/2016EF000505, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., and Feyen, L.: Climatic and socioeconomic controls of future coastal flood risk in Europe, Nat. Clim Change, 8, 776–780, https://doi.org/10.1038/s41558-018-0260-4, 2018a.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018b.
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J., and Slangen, A. B. A.: Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis, Nat. Commun., 8, 16075, https://doi.org/10.1038/ncomms16075, 2017.
Wolff, C., Nikoletopoulos, T., Hinkel, J., and Vafeidis, A. T.: Future urban development exacerbates coastal exposure in the Mediterranean, Sci. Rep., 10, 14420, https://doi.org/10.1038/s41598-020-70928-9, 2020.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M., and Haigh, I.: Towards a global higher-frequency sea level dataset, Geosci. Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2016.
Woodworth, P., Hunter, J., Marcos, M., and Hughes, C.: Towards reliable global allowances for sea level rise, Global Planet. Change, 203, 103522, https://doi.org/10.1016/j.gloplacha.2021.103522, 2021.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast, Surv. Geophys., 40, 1351–1397, https://doi.org/10.1007/s10712-019-09531-1, 2019.
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze...
Altmetrics
Final-revised paper
Preprint