Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3095-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3095-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Environmental Hydraulics Institute, Universidad de Cantabria (IHCantabria), Avda. Isabel Torres, 15, Santander, Spain
Íñigo Aniel-Quiroga
Environmental Hydraulics Institute, Universidad de Cantabria (IHCantabria), Avda. Isabel Torres, 15, Santander, Spain
Rachid Omira
Department of Meteorology and Geophysics, Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
Mauricio González
Environmental Hydraulics Institute, Universidad de Cantabria (IHCantabria), Avda. Isabel Torres, 15, Santander, Spain
Jihwan Kim
Department of Meteorology and Geophysics, Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Maria A. Baptista
Department of Physics, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
Related authors
No articles found.
David Galán-Pérez, Iñigo Aniel-Quiroga, Albert Gallego, Ignacio Aguirre-Ayerbe, Mauricio González, Omar Quetzalcóatl, Jose Antonio Álvarez-Gómez, and Luis Pedraz
EGUsphere, https://doi.org/10.5194/egusphere-2026-644, https://doi.org/10.5194/egusphere-2026-644, 2026
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Tsunamis can have devastating consequences, yet identifying which earthquakes generate them remains challenging. This study presents a global database of tsunami simulations covering historical earthquakes and introduces a numerical simulation-based criterion to identify tsunamigenic events. By comparing results with historical records, the approach improves tsunami identification and can support more reliable and timely tsunami warning decisions worldwide.
Cited articles
Abe, K.: Synthesis of a Tsunami Spectrum in a Semi-Enclosed Basin Using Its Background Spectrum, Pure Appl. Geophys., 168, 1101–1112, https://doi.org/10.1007/s00024-010-0222-x, 2011.
Admire, A. R., Dengler, L. A., Crawford, G. B., Uslu, B. U., Borrero, J. C., Greer, S. D., and Wilson, R. I.: Observed and Modeled Currents from the Tohoku-oki, Japan and other Recent Tsunamis in Northern California, Pure Appl. Geophys., 171, 3385–3403, https://doi.org/10.1007/s00024-014-0797-8, 2014.
Antonopoulos, J.: The great Minoan eruption of Thera volcano and the ensuing tsunami in the Greek Archipelago, Nat. Hazards, 5, 153–168, https://doi.org/10.1007/BF00127003, 1992.
Ayca, A. and Lynett, P. J.: Effect of tides and source location on nearshore tsunami-induced currents, J. Geophys. Res.-Oceans, 121, 8807–8820, https://doi.org/10.1002/2016JC012435, 2016.
Ayca, A. and Lynett, P. J.: Debris and Vessel Transport due to Tsunami Currents in Ports and Harbors, Coast. Eng. Proc., 68, 68–68, https://doi.org/10.9753/icce.v36.currents.68, 2018.
Ayca, A. and Lynett, P. J.: Modeling the motion of large vessels due to tsunami-induced currents, Ocean Eng., 236, 109487, https://doi.org/10.1016/j.oceaneng.2021.109487, 2021.
Ayca, A., Lynett, P., Borrero, J., Miller, K., and Wilson, R.: Numerical and Physical Modeling of Localized Tsunami-Induced Currents in Harbors, Coast. Eng. Proc., 1, 6, https://doi.org/10.9753/icce.v34.currents.6, 2014.
Baptista, M. A., Miranda, J. M., Batlló, J., Lisboa, F., Luis, J., and Maciá, R.: New study on the 1941 Gloria Fault earthquake and tsunami, Nat. Hazards Earth Syst. Sci., 16, 1967–1977, https://doi.org/10.5194/nhess-16-1967-2016, 2016.
Belousov, A., Voight, B., Belousova, M., and Muravyev, Y.: Tsunamis generated by subaquatic volcanic explosions: Unique data from 1996 Eruption in Karymskoye Lake, Kamchatka, Russia, Pure Appl. Geophys., 157, 1135–1143, https://doi.org/10.1007/s000240050021, 2000.
Berger, M. J. and LeVeque, R. J.: Implicit Adaptive Mesh Refinement for Dispersive Tsunami Propagation, SIAM J. Sci. Comput., 46, B554–B578, https://doi.org/10.1137/23M1585210, 2023.
Borrero, J. C., Lynett, P. J., and Kalligeris, N.: Tsunami currents in ports, Philos. T. R. Soc. A, 373, 20140372, https://doi.org/10.1098/rsta.2014.0372, 2015.
Center for Operational Oceanographic Products and Services by the National Oceanic and Atmospheric Administration (NOAA): Deep-ocean Assessment and Reporting of Tsunamis (DART), https://www.ncei.noaa.gov/maps/hazards/, 8 February 2022.
Choi, B. H., Pelinovsky, E., Kim, K. O., and Lee, J. S.: Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Nat. Hazards Earth Syst. Sci., 3, 321–332, https://doi.org/10.5194/nhess-3-321-2003, 2003.
Clawpack: GeoClaw tsunami numerical code, http://www.clawpack.org, last access: 24 December 2023.
CNAT: https://www.tvperu.gob.pe/noticias/nacionales/cnat-no-existe-alerta-de-tsunami-en-el-litoral-peruano, last access: 6 February 2022.
CPAAAAE: Informe Final sobre las acciones de los funcionarios públicos y privados que ocasionaron el derrame de petróleo de la Empresa Multinacional REPSOL YPF S. A., Lima, 421 pp., 2023.
Dirección General De Aeronáutica Civil/Dirección Meteorológica de Chile (DGAC): Catastro de Estaciones del Sistema SACLIM, https://climatologia.meteochile.gob.cl/application/informacion/buscadorEstaciones, last access: 20 March 2023.
Dogan, G. G., Yalciner, A. C., Annunziato, A., Yalciner, B., and Necmioglu, O.: Global propagation of air pressure waves and consequent ocean waves due to the January 2022 Hunga Tonga-Hunga Ha'apai eruption, Ocean Eng., 267, 113174, https://doi.org/10.1016/j.oceaneng.2022.113174, 2023.
Dormand, J. R. and Prince, P. J.: A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19–26, https://doi.org/10.1016/0771-050X(80)90013-3, 1980.
Falvard, S., Paris, R., Belousova, M., Belousov, A., Giachetti, T., and Cuven, S.: Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits, Mar. Geol., 396, 160–170, https://doi.org/10.1016/j.margeo.2017.04.011, 2018.
General Bathymetric Chart of the Oceans (GEBCO): Global Bathymetric Data, https://download.gebco.net/, last access: 17 November 2022.
Goupillaud, P., Grossmann, A., and Morlet, J.: Cycle-octave and related transforms in seismic signal analysis, Geoexploration, 23, 85–102, https://doi.org/10.1016/0016-7142(84)90025-5, 1984.
Hayward, M. W., Whittaker, C. N., Lane, E. M., Power, W. L., Popinet, S., and White, J. D. L.: Multilayer modelling of waves generated by explosive subaqueous volcanism, Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, 2022.
Hu, G., Li, L., Ren, Z., and Zhang, K.: The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean, Nat. Hazards Earth Syst. Sci., 23, 675–691, https://doi.org/10.5194/nhess-23-675-2023, 2023.
Hu, Y., Li, Z., Wang, L., Chen, B., Zhu, W., Zhang, S., Du, J., Zhang, X., Yang, J., Zhou, M., Liu, Z., Wang, S., Miao, C., Zhang, L., and Peng, J.: Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques, Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics Inf. Sci. Wuhan Univ. [J], 47, 242–251, https://doi.org/10.13203/J.WHUGIS20220050, 2022.
Imamura, F., Suppasri, A., Arikawa, T., Koshimura, S., Satake, K., and Tanioka, Y.: Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022, Pure Appl. Geophys., 179, 1549–1560, https://doi.org/10.1007/s00024-022-03058-0, 2022.
INDECI: https://www.gob.pe/institucion/indeci/noticias/576687-
inician-acciones-de-respuesta-luego-de-oleajes-en-el-litoral, last access: 22 April 2024.
Inoue, Y., Rafiqul Islam, M., and Murai, M.: Effect of wind, current and non-linear second order drift forces on a moored multi-body system in an irregular sea, in: Oceans Conference Record (IEEE), Honolulu, HI, USA, 5–8 November 2001, 1915–1922, https://doi.org/10.1109/oceans.2001.968139, 2001.
Journée, J. M. J. and Massie, W. W.: Offshore Hydromechanics, 1st edn., https://ocw.tudelft.nl/courses/offshore-hydromechanics/ (last access: 28 November 2023), 2001.
Kienle, J., Kowalik, Z., and Murty, T. S.: Tsunamis generated by eruptions from Mount St. Augustine Volcano, Alaska, Science , 236, 1442–1447, https://doi.org/10.1126/science.236.4807.1442, 1987.
Kim, J. and Omira, R.: The 6–7 July 2010 meteotsunami along the coast of Portugal: insights from data analysis and numerical modelling, Nat. Hazards, 106, 1397–1419, https://doi.org/10.1007/s11069-020-04335-8, 2021.
Kim, J., Pedersen, G. K., Løvholt, F., and LeVeque, R. J.: A Boussinesq type extension of the GeoClaw model – a study of wave breaking phenomena applying dispersive long wave models, Coast. Eng., 122, 75–86, https://doi.org/10.1016/j.coastaleng.2017.01.005, 2017.
Kim, J., Choi, B. J., and Omira, R.: On the Greenspan resurgence of meteotsunamis in the Yellow Sea—insights from the newly discovered 11–12 June 2009 event, Nat. Hazards, 114, 1323–1340, https://doi.org/10.1007/s11069-022-05427-3, 2022.
Kirby, J. T., Grilli, S. T., Horrillo, J., Liu, P. L.-F., Nicolsky, D., Abadie, S., Ataie-Ashtiani, B., Castro, M. J., Clous, L., Escalante, C., Fine, I., González-Vida, J. M., Løvholt, F., Lynett, P., Ma, G., Macías, J., Ortega, S., Shi, F., Yavari-Ramshe, S., and Zhang, C.: Validation and inter-comparison of models for landslide tsunami generation, Ocean Model., 170, 101943, https://doi.org/10.1016/j.ocemod.2021.101943, 2022.
Kubota, T., Saito, T., and Nishida, K.: Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption, Science, 377, 91–94, https://doi.org/10.1126/science.abo4364, 2022.
López, M. and Iglesias, G.: Long wave effects on a vessel at berth, Appl. Ocean Res., 47, 63–72, https://doi.org/10.1016/j.apor.2014.03.008, 2014.
Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa'anunu, O., Bosserelle, C., Jaffe, B., La Selle, S., Ritchie, A., Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., and Cinar, G. E.: Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha'apai eruption, Nature, 609, 728–733, https://doi.org/10.1038/s41586-022-05170-6, 2022.
Lynett, P. J., Borrero, J. C., Weiss, R., Son, S., Greer, D., and Renteria, W.: Observations and modeling of tsunami-induced currents in ports and harbors, Earth Planet. Sc. Lett., 327–328, 68–74, https://doi.org/10.1016/j.epsl.2012.02.002, 2012.
Lynett, P. J., Borrero, J., Son, S., Wilson, R., and Miller, K.: Assessment of the tsunami-induced current hazard, Geophys. Res. Lett., 41, 2048–2055, https://doi.org/10.1002/2013GL058680, 2014.
Madsen, P. A. and Sørensen, O. R.: A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry, Coast. Eng., 18, 183–204, https://doi.org/10.1016/0378-3839(92)90019-Q, 1992.
Mandli, K. T. and Dawson, C. N.: Adaptive Mesh Refinement for Storm Surge, Ocean Model., 75, 36–50, https://doi.org/10.1016/j.ocemod.2014.01.002, 2014.
Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J. M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., Park, J., Shani-Kadmiel, S., Witsil, A., Arrowsmith, S., Caudron, C., Watada, S., Perttu, A. B., Taisne, B., Mialle, P., Le Pichon, A., Vergoz, J., Hupe, P., Blom, P. S., Waxler, R., De Angelis, S., Snively, J. B., Ringler, A. T., Anthony, R. E., Jolly, A. D., Kilgour, G., Averbuch, G., Ripepe, M., Ichihara, M., Arciniega-Ceballos, A., Astafyeva, E., Ceranna, L., Cevuard, S., Che, I. Y., De Negri, R., Ebeling, C. W., Evers, L. G., Franco-Marin, L. E., Gabrielson, T. B., Hafner, K., Harrison, R. G., Komjathy, A., Lacanna, G., Lyons, J., Macpherson, K. A., Marchetti, E., McKee, K. F., Mellors, R. J., Mendo-Pérez, G., Mikesell, T. D., Munaibari, E., Oyola-Merced, M., Park, I., Pilger, C., Ramos, C., Ruiz, M. C., Sabatini, R., Schwaiger, H. F., Tailpied, D., Talmadge, C., Vidot, J., Webster, J., and Wilson, D. C.: Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga, Science, 377, 95–100, https://doi.org/10.1126/science.abo7063, 2022.
NIWA: NIWA's climate, freshwater and marine science/ The National Climate Database (New Zealand), https://niwa.co.nz/climate-and-weather/obtaining-climate-data-niwa, last access: 20 March 2023.
OCIMF: Estimating The Environmental Loads On Anchoring Systems, Oil Companies International Marine Forum, London, 33 pp., ISBN 978-1856094047, 2010.
Oh, M. J., Ham, S. H., and Ku, N.: The coefficients of equipment number formula of ships, J. Mar. Sci. Eng., 8, 1–11, https://doi.org/10.3390/jmse8110898, 2020.
Ohgaki, K., Yoneyama, H., and Suzuki, T.: Evaluation on Safety of Moored Ships and Mooring Systems for a Tsunami Attack, Oceans 2008 – MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008, 1–6, https://doi.org/10.1109/OCEANSKOBE.2008.4530986, 2008.
Omira, R., Ramalho, R. S., Kim, J., González, P. J., Kadri, U., Miranda, J. M., Carrilho, F., and Baptista, M. A.: Global Tonga tsunami explained by a fast-moving atmospheric source, Nature, 609, 734–740, https://doi.org/10.1038/s41586-022-04926-4, 2022.
Pakoksung, K., Suppasri, A., and Imamura, F.: The near-field tsunami generated by the 15 January 2022 eruption of the Hunga Tonga-Hunga Ha'apai volcano and its impact on Tongatapu, Tonga, Sci. Rep.-UK, 12, 15187, https://doi.org/10.1038/s41598-022-19486-w, 2022.
Pararas-Carayannis, G.: The tsunami generated from the eruption of the volcano of Santorin in the Bronze Age, Nat. Hazards, 5, 115–123, https://doi.org/10.1007/BF00127000, 1992.
Pararas-Carayannis, G.: Volcanic tsunami generating source mechanisms in the eastern Caribbean region, Sci. Tsunami Hazards, 22, 74–114, 2004.
Paris, R.: Source mechanisms of volcanic tsunamis, Philos. T. Roy. Soc. A, 373, 20140380, https://doi.org/10.1098/rsta.2014.0380, 2015.
Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L., and Ulvrova, M.: Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea), Nat. Hazards, 70, 447–470, https://doi.org/10.1007/s11069-013-0822-8, 2014.
Pelinovsky, E., Choi, B. H., Stromkov, A., Didenkulova, I., and Kim, H. S.: Analysis of Tide-Gauge Records of the 1883 Krakatau Tsunami, Adv. Nat. Technol. Haz., 23, 57–77, https://doi.org/10.1007/1-4020-3331-1_4, 2005.
Proudman, J.: The Effects on the Sea of Changes in Atmospheric Pressure, Geophys. J. Int., 2, 197–209, https://doi.org/10.1111/J.1365-246X.1929.TB05408.X, 1929.
Rabinovich, A. B.: Spectral analysis of tsunami waves: Separation of source and topography effects, J. Geophys. Res.-Oceans, 102, 12663–12676, https://doi.org/10.1029/97JC00479, 1997.
Ramírez-Herrera, M. T., Coca, O., and Vargas-Espinosa, V.: Tsunami Effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano Eruption, Tonga, Pure Appl. Geophys., 179, 1117–1137, https://doi.org/10.1007/S00024-022-03017-9, 2022.
Sakakibara, S., Takeda, S., Iwamoto, Y., and Kubo, M.: A hybrid potential theory for predicting the motions of a moored ship induced by large-scaled tsunami, Ocean Eng., 37, 1564–1575, https://doi.org/10.1016/J.OCEANENG.2010.09.005, 2010.
Satake, K., Rabinovich, A. B., Dominey-Howes, D., and Borrero, J. C.: Introduction to “Historical and Recent Catastrophic Tsunamis in the World: Volume I. The 2011 Tohoku Tsunami”, Pure Appl. Geophys., 170, 955–961, https://doi.org/10.1007/s00024-012-0615-0, 2013.
Shampine, L. F.: Some Practical Runge-Kutta Formulas, Math. Comput., 46, 135, https://doi.org/10.2307/2008219, 1986.
Shevchenko, G., Shishkin, A., Bogdanov, G., and Loskutov, A.: Tsunami Measurements in Bays of Shikotan Island, Pure Appl. Geophys., 168, 2011–2021, https://doi.org/10.1007/s00024-011-0284-4, 2011.
Shigeki, S. and Masayoshi, K.: Initial attack of large-scaled tsunami on ship motions and mooring loads, Ocean Eng., 36, 145–157, https://doi.org/10.1016/j.oceaneng.2008.09.010, 2009.
SPDA Actualidad Ambiental: https://www.actualidadambiental.pe/
derrame-petroleo-cronologia-de-lo-sucedido-segun-el-capitan-
del-buque-mare-doricum-video/, last access: 1 March 2024.
Tahar, A. and Kim, M. H.: Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO, Appl. Ocean Res., 25, 367–382, https://doi.org/10.1016/j.apor.2003.02.001, 2003.
Terry, J. P., Goff, J., Winspear, N., Bongolan, V. P., and Fisher, S.: Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau, Geosci. Lett., 9, 24, https://doi.org/10.1186/s40562-022-00232-z, 2022.
The UNESCO Intergovernmental Oceanographic Commission (IOC): Sea level station monitoring facility, https://www.ioc-sealevelmonitoring.org/map.php, 8 February 2022.
Thomson, R. E., Rabinovich, A. B., Fine, I. V., Sinnott, D. C., McCarthy, A., Sutherland, N. A. S., and Neil, L. K.: Meteorological tsunamis on the coasts of British Columbia and Washington, Phys. Chem. Earth, 34, 971–988, https://doi.org/10.1016/j.pce.2009.10.003, 2009.
Tonga Volcanic Eruption and Tsunami: https://appliedsciences.nasa.gov/what-we-do/disasters/disasters-activations/tonga-volcanic-eruption-tsunami-2022, last access: 15 December 2022.
UNESCO/IOC: Sea level station monitoring facility, Flanders Marine Institute (VLIZ), Intergovernmental Oceanographic Commission (IOC), Sea level station monitoring facility, https://doi.org/10.14284/482, 2021.
Vergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M. A., Marchetti, E., Labazuy, P., Ceranna, L., Pilger, C., Gaebler, P., Näsholm, S. P., Brissaud, Q., Poli, P., Shapiro, N., De Negri, R., and Mialle, P.: IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis, Earth Planet. Sc. Lett., 591, 117639, https://doi.org/10.1016/J.EPSL.2022.117639, 2022.
Wilson, R., Lynett, P., Eskijian, M., Miller, K., LaDuke, Y., Curtis, E., Hornick, M., Keen, A., and Ayca, A.: Tsunami Hazard Analysis and Products for Harbors in California, in: Tsunami Hazards: Innovations in Mapping, Modeling, and Outreach, in: Geological Society of America Annual Meeting in Seattle, Washington, 23 October 2017, 49-6, https://doi.org/10.1130/abs/2017am-306344, 2017.
World Bank: Report Estimates Damages at US90M, https://www.worldbank.org/en/news/press-release/
2022/02/14/tonga-volcanic-eruption-and-tsunami-world-bank-
disaster-assessment-report-estimates-damages-at-us-90m, last access: 28 February 2024.
Wright, C. J., Hindley, N. P., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C. N., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S. M., Powell, N., Randall, C. E., and Yue, J.: Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha'apai eruption, Nature, 609, 741–746, https://doi.org/10.1038/s41586-022-05012-5, 2022.
Xu, Z., Sun, L., Rahman, M. N. A., Liang, S., Shi, J., and Li, H.: Insights on the small tsunami from January 28, 2020, Caribbean Sea MW7.7 earthquake by numerical simulation and spectral analysis, Nat. Hazards, 111, 2703–2719, https://doi.org/10.1007/s11069-021-05154-1, 2022.
Yokoyama, I.: A geophysical interpretation of the 1883 Krakatau eruption, J. Volcanol. Geoth. Res., 9, 359–378, https://doi.org/10.1016/0377-0273(81)90044-5, 1981.
Zheng, Z., Ma, X., Yan, M., Ma, Y., and Dong, G.: Hydrodynamic response of moored ships to seismic-induced harbor oscillations, Coast. Eng., 176, 104147, https://doi.org/10.1016/j.coastaleng.2022.104147, 2022.
Executive editor
The Hunga Tonga-Hunga Ha’apai volcano eruption on January 15, 2022, caused a volcano-meteorological tsunami (VMT) that was detected globally. Over 10,000 kilometres from the eruption site, the moorings of a ship in Callao, Peru, failed, releasing more than 11,000 barrels of crude oil 15 hours post-eruption. The authors explore whether the Tonga 22 event led to the mooring failure. They analysed data from tide gauges, DART buoys, and barometers in the Southern Pacific Ocean. The maximum energy of the spectra showed a 120-minute wave period off the coast of Peru, coinciding with the accident's timing. Using a Boussinesq model, which simulates the movement and impact of waves in water, the authors examined the VMT's wave propagation to the Peruvian port and assessed the impact on the mooring system. The results indicated that the 120-minute wave significantly increased mooring stresses, surpassing the Minimum Break Load (MBL). The authors conclude that the VMT's long wave period caused mooring line overstresses, leading to port accidents. This event highlights the importance of Tsunami Early Warning Systems and port authority preparedness for VMTs induced by atmospheric acoustic waves, offering new insights into the Tonga 2022 tsunami's extensive impacts.
The Hunga Tonga-Hunga Ha’apai volcano eruption on January 15, 2022, caused a...
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global...
Altmetrics
Final-revised paper
Preprint