Articles | Volume 24, issue 6
https://doi.org/10.5194/nhess-24-1913-2024
https://doi.org/10.5194/nhess-24-1913-2024
Research article
 | 
06 Jun 2024
Research article |  | 06 Jun 2024

Addressing class imbalance in soil movement predictions

Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt

Related authors

An Ensemble Random Forest Model for Seismic Energy Forecast
Sukh Sagar Shukla, Jaya Dhanya, Praveen Kumar, Priyanka, and Varun Dutt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-129,https://doi.org/10.5194/nhess-2024-129, 2024
Preprint under review for NHESS
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024,https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024,https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321–357, 2002. 
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Crosta, G.: Regionalization of rainfall thresholds: an aid to landslide hazard evaluation, Environ. Geol., 35, 131–145, 1998. 
Douzas, G., Bacao, F., and Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE, Inform. Sciences, 465, 1–20, 2018. 
Download
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Altmetrics
Final-revised paper
Preprint