Articles | Volume 24, issue 6
https://doi.org/10.5194/nhess-24-1913-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Addressing class imbalance in soil movement predictions
Related authors
Cited articles
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321–357, 2002.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Crosta, G.: Regionalization of rainfall thresholds: an aid to landslide hazard evaluation, Environ. Geol., 35, 131–145, 1998.
Douzas, G., Bacao, F., and Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE, Inform. Sciences, 465, 1–20, 2018.