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Abstract. Landslides threaten human life and infrastructure,
resulting in fatalities and economic losses. Monitoring sta-
tions provide valuable data for predicting soil movement,
which is crucial in mitigating this threat. Accurately predict-
ing soil movement from monitoring data is challenging due
to its complexity and inherent class imbalance. This study
proposes developing machine learning (ML) models with
oversampling techniques to address the class imbalance is-
sue and develop a robust soil movement prediction system.
The dataset, comprising 2 years (2019–2021) of monitor-
ing data from a landslide in Uttarakhand, has a 70 : 30 ra-
tio of training and testing data. To tackle the class imbal-
ance problem, various oversampling techniques, including
the synthetic minority oversampling technique (SMOTE), K-
means SMOTE, borderline-SMOTE, and adaptive SMOTE
(ADASYN), were applied to the training dataset. Several
ML models, namely random forest (RF), extreme gradi-
ent boosting (XGBoost), light gradient boosting machine
(LightGBM), adaptive boosting (AdaBoost), category boost-
ing (CatBoost), long short-term memory (LSTM), multilayer
perceptron (MLP), and a dynamic ensemble, were trained
and compared for soil movement prediction. A 5-fold cross-
validation method was applied to optimize the ML models on
the training data, and the models were tested on the testing
set. Among these ML models, the dynamic ensemble model
with K-means SMOTE performed the best in testing, with
an accuracy, precision, and recall rate of 0.995, 0.995, and
0.995, respectively, and an F1 score of 0.995. Additionally,
models without oversampling exhibited poor performance in
training and testing, highlighting the importance of incorpo-
rating oversampling techniques to enhance predictive capa-
bilities.

1 Introduction

Landslides pose a significant threat to infrastructure, result-
ing in numerous fatalities and substantial economic losses
each year (Parkash, 2011). These destructive events oc-
cur globally, particularly in hilly and mountainous regions,
driven by gravity and characterized by the movement of large
rocks, debris, and soil (Crosta, 1998). Factors such as heavy
rainfall, earthquakes, and the impacts of climate change con-
tribute to the occurrence and severity of landslides (Crosta,
1998).

Monitoring, predicting, and warning people about slope
movements in landslide-prone areas are crucial for mitigating
landslide risks. Advanced technologies like the Global Po-
sitioning System (GPS), light detection and ranging (lidar),
the geographic information system (GIS), and remote sens-
ing have proven effective for assessing and analyzing slope
failure hazards (Ray et al., 2020). However, their high cost
and the need for specialized expertise limit their accessibil-
ity, especially in developing countries where cost-effective
internet of things (IoT) technologies are necessary (Pathania
et al., 2020).

Machine learning (ML) models have been extensively
studied for predicting soil movement in landslide-prone areas
(Kumar et al., 2021a, b, 2023). This prediction problem could
be divided into classification and regression tasks. The clas-
sification task aims to predict the degree of soil movement
using various ML models. On the other hand, the regression
task involves estimating the acceleration or displacement of
soil under observation.

One common challenge in landslide prediction is a class
imbalance, where certain classes have significantly more data
samples than others. This imbalance can adversely affect
the performance of ML models. To address class imbalance
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issues, techniques such as the synthetic minority oversam-
pling technique (SMOTE), K-means SMOTE, borderline-
SMOTE, and the adaptive synthetic minority oversampling
technique (ADASYN) are employed to balance the dataset
(Chawla et al., 2002; Douzas et al., 2018; Han et al., 2005;
He et al., 2008).

Several researchers have dedicated their efforts to address-
ing class imbalance problems in ML. Notably, Chawla et
al. (2002) introduced SMOTE, Douzas et al. (2018) devised
K-means SMOTE, Han et al. (2005) proposed borderline-
SMOTE, and He et al. (2008) introduced the adaptive syn-
thetic minority oversampling technique (ADASYN). These
techniques were developed to generate synthetic data and
balance imbalanced datasets.

The field of soil movement prediction requires further in-
vestigation, particularly considering the complexities asso-
ciated with a class imbalance in the datasets. Despite ex-
tensive research on ML models’ predictive abilities for soil
movement in landslides, there still needs to be more under-
standing regarding how class imbalance affects the models’
performance and accuracy. This study aims to bridge this
knowledge gap by examining different approaches to tackle
class imbalance and exploring diverse ML models to im-
prove the prediction of soil movement. Various multivariate
classification models, including random forest (RF); adap-
tive boosting (AdaBoost); extreme gradient boosting (XG-
Boost); light gradient boosting machine (LightGBM); cate-
gory boosting (CatBoost); long short-term memory (LSTM);
multilayer perceptron (MLP); and an ensemble of RF, Ad-
aBoost, XGBoost, LightGBM, and CatBoost, are developed
to predict soil movement when coupled with class imbalance
techniques (Kumar et al., 2019; Semwal et al., 2022; Wu et
al., 2020; Pathania et al., 2021; Zhang et al., 2022; Sahin,
2022; Kumar et al., 2020; Kumar et al., 2023).

This study delves into the field of soil movement predic-
tion, making significant advancements by developing spe-
cialized ML models and techniques tailored to this domain.
A notable aspect that has received limited attention in the
existing literature is the challenge of class imbalance in land-
slide datasets. While previous research has primarily focused
on ML models for soil movement prediction, this work ad-
dresses the issue of imbalanced data head-on. Multiple vari-
ants of SMOTE and other balancing strategies are introduced
and implemented to enhance the efficacy and accuracy of the
ML models.

Additionally, this research explores using cost-effective in-
ternet of things (IoT) technologies in developing regions to
improve the investigation and assessment of landslide haz-
ards. The dataset used in this study spans 2 years, from
June 2019 to June 2021, and was collected by an inexpen-
sive IoT monitoring station in Uttarakhand, India. This real-
world dataset captures the distinctive characteristics and pat-
terns of soil movements prevalent in the landslide-prone area.
By employing a comprehensive methodology, this work ad-
vances soil movement prediction and effectively addresses

the challenge of class imbalance. It commences with a thor-
ough overview of the collected data, emphasizing the mea-
sured weather and soil-related factors. Various SMOTE vari-
ants and other balancing techniques are employed to rectify
the class imbalance, resulting in the generation of synthetic
samples and ensuring a balanced representation of soil move-
ment classes. The intricate correlations and patterns in the
soil movement data are captured using a variety of ML mod-
els, including RF; AdaBoost; XGBoost; LightGBM; Cat-
Boost; MLP; LSTM; and a dynamic ensemble of RF, Ad-
aBoost, XGBoost, and CatBoost. Overall, this study’s find-
ings show potential for accurately reducing landslide risks,
increasing the accuracy of landslide prediction, and encour-
aging the use of cost-effective IoT technologies in landslide-
prone locations.

2 Background

Several techniques have been proposed to address the chal-
lenge of learning from imbalanced datasets, where the clas-
sification categories are not evenly represented. For ex-
ample, Chawla et al. (2002) proposed SMOTE, which in-
volves generating synthetic minority-class examples to bal-
ance the dataset. SMOTE has been shown to improve model
performance compared to only undersampling the majority
class. Douzas et al. (2018) introduced K-means SMOTE, a
method that combines SMOTE with K-means clustering to
effectively overcome imbalances between and within classes
without generating unnecessary noise. Additionally, Han et
al. (2005) developed a borderline SMOTE method that fo-
cuses on oversampling only the minority examples near the
class boundary. Experimental results indicate that borderline-
SMOTE1 and borderline-SMOTE2 outperform SMOTE and
random oversampling methods in terms of the true posi-
tive rate and F value. Lastly, He et al. (2008) developed
ADASYN, which addresses class imbalance by generat-
ing more synthetic data for minority-class examples that
are harder to learn. ADASYN reduces bias and adaptively
shifts the classification decision boundary toward challeng-
ing examples. Simulation analyses have demonstrated the ef-
fectiveness of ADASYN across various evaluation metrics.
These techniques offer valuable approaches to mitigate the
impact of imbalanced data in classification tasks. These class
imbalance techniques have limited the exploration and ap-
plication of landslide datasets. Existing studies primarily fo-
cus on the general imbalanced dataset scenario but need to
consider the unique characteristics and challenges associated
with landslide datasets. Therefore, research is required for
systematic studies that compare the performance and effec-
tiveness of techniques such as SMOTE, K-means SMOTE,
borderline-SMOTE, and ADASYN in the specific context of
soil movement prediction across various evaluation metrics.
By bridging this literature gap, we can enhance the accu-
racy and reliability of models for predicting soil movement
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in landslide-prone areas and contribute to improved landslide
risk mitigation strategies.

Several researchers developed various ML models to pre-
dict soil movement and prediction problems in other fields
(Kumar et al., 2019; Semwal et al., 2022; Wu et al., 2020;
Pathania et al., 2021; Zhang et al., 2022; Sahin, 2022; Kumar
et al., 2020). For example, Kumar et al. (2019) developed an
ensemble of ML models (RF, bagging, stacking, and voting)
for predicting soil movement at the Tangni landslide in Ut-
tarakhand, India. These models were compared with sequen-
tial minimal optimization (SMO) and autoregression (AR).
The results indicate that the ensemble models outperformed
the SMO and AR models in predicting soil movement. Fur-
thermore, Semwal et al. (2022) developed sequential mini-
mal optimization regression (SMOreg), instance-based learn-
ing (IBk), RF, linear regression (LR), MLP, and ensemble
ML models to predict root tensile strength for different veg-
etation species. The results show that the MLP performed
better than the other models, providing more accurate pre-
dictions of root tensile strength. Next, Wu et al. (2020) de-
veloped a decision tree (DT) with AdaBoost and bagging
ensembles for mapping the susceptibility of landslides in
Long County, Shaanxi Province, China. Researchers devel-
oped the technique with an ensemble of an alternating de-
cision tree (ADTree) with bagging and AdaBoost to map
landslide susceptibility. The results revealed that the ensem-
ble of ADTree and AdaBoost performed better than the in-
dividual ADTree model and ensemble of ADTree and bag-
ging. Similarly, Pathania et al. (2021) developed a novel
ensemble gradient boosting model, called SVM–XGBoost
(support vector machine), for soil movement warning at the
Gharpa landslide, Mandi, India. They compared the perfor-
mance of SVM–XGBoost with other models such as indi-
vidual SVMs, DTs, RFs, XGBoost instances, naïve Bayes
(NB) classifiers, and different variants of XGBoost. The re-
sults showed that the SVM–XGBoost model performed bet-
ter than other models in soil movement prediction. In their
research, Kumar et al. (2021b) directed their attention to-
ward predicting soil movement, specifically at the Tangni
landslide site in India. To enhance the accuracy of their pre-
dictions, they explored various variants of long short-term
memory (LSTM) models. They introduced a novel ensemble
approach called BS-LSTM, which combined bidirectional
and stacked LSTM models. The findings of their study in-
dicated that the BS-LSTM model outperformed the other
LSTM variants in accurately predicting soil movement. Sim-
ilarly, Zhang et al. (2022) conducted a study to assess the
susceptibility of landslides using gradient boosting ML tech-
niques coupled with class-balancing methods. Their inves-
tigation specifically focused on the aftermath of the 2018
Hokkaido earthquake and employed diverse datasets and
methodologies to predict the susceptibility of specific areas
prone to landslides. Compared to well-established models
such as XGBoost and LightGBM, the proposed model show-
cased superior performance in accurately assessing landslide

susceptibility. Furthermore, Sahin (2022) developed multiple
ML models, including XGBoost, CatBoost, gradient boost-
ing machine (GBM), and LightGBM, to model the suscep-
tibility of landslides. By leveraging a comprehensive land-
slide inventory map and relevant conditioning factors stored
in a geodatabase, the study employed feature selection tech-
niques and compared the predictive capabilities of ensemble
methods with the widely used RF model. The results high-
lighted that CatBoost exhibited the highest predictive capa-
bility, followed by XGBoost, LightGBM, and GBM, while
RF demonstrated comparatively lower predictive capability.
The study used a geodatabase with a landslide inventory map
and conditioning factors. Feature selection techniques were
applied, and the performance of XGBoost, CatBoost, GBM,
and LightGBM was compared to RF. The results revealed
that CatBoost had the highest prediction capability, followed
by XGBoost, LightGBM, and GBM. The literature gap in
the context of soil movement prediction is the limited ex-
ploration and evaluation of ML models in combination with
synthetic data generated by SMOTE techniques. While var-
ious ML models, such as ensemble models (e.g., RF), neu-
ral network models (MLP and LSTM), and gradient boost-
ing ML models (e.g., AdaBoost, XGBoost, LightGBM, Cat-
Boost), have been developed and applied for soil movement
prediction, their utilization in conjunction with synthetic data
generated by SMOTE techniques has received less attention
in the literature. Incorporating SMOTE-generated synthetic
data into the training process of these models can address the
issue of class imbalance in landslide datasets and improve
their performance in predicting soil movement. Therefore,
further research is needed to investigate the effectiveness of
these ML models when combined with SMOTE techniques
in the context of soil movement prediction, thereby filling the
existing literature gap.

The models of RF; AdaBoost; XGBoost; LightGBM; Cat-
Boost; MLP; LSTM; and an ensemble of RF, AdaBoost, XG-
Boost, LightGBM, and CatBoost were chosen to predict soil
movement based on their proven effectiveness in previous
research. RF is excellent at capturing complex relationships
and has outperformed non-ensemble models in predicting de-
bris flow and landslide susceptibility. AdaBoost has success-
fully predicted soil movement alerts ahead of time. At the
same time, XGBoost and LightGBM have demonstrated their
ability to achieve balanced and precise predictions, espe-
cially in earthquake-induced landslide susceptibility assess-
ments. Among gradient boosting models, CatBoost stands
out for its superior prediction capability, making it a well-
suited option for modeling landslide susceptibility. On the
other hand, when it comes to predicting root tensile strength,
MLP has demonstrated higher accuracy in its predictions.
Additionally, LSTM, a robust recurrent neural network ar-
chitecture, is particularly effective in capturing temporal de-
pendencies and long-term patterns in sequential data. Col-
lectively, these models offer a diverse set of capabilities that
prove valuable in the prediction of soil movement.
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3 Data collection and description

The dataset for predicting soil movement was collected from
an actual landslide site in Uttarakhand, India. The monitored
landslides are characterized as shallow landslides with debris
flow, occurring at elevations ranging from 1450 to 1920 m.
The slopes in the landslide zones in the upper parts are made
up of weathered limestone and dolomitic limestone, whereas
the lower slopes exhibit black carbonaceous slate. The slates
are highly weathered and leached, adorned with white and
yellow encrustation. These are covered with a thin veneer
of debris, mainly consisting of pebble- and cobble-sized
limestone, sandstone, and slate embedded in a sand–silt–
clay matrix. Additional context includes an annual rainfall
of 4190 mm in the area, as reported by Gupta et al. (2016).
Spanning a duration of 2 years, from June 2019 to June 2021,
this dataset holds valuable insights into the behavior of soil
in response to various environmental factors. To gather these
data, a cost-effective landslide monitoring station (LMS) was
carefully deployed at the landslide. Equipped with a range
of sensors, the LMS diligently recorded critical weather
and soil-related parameters. Weather-wise, it diligently cap-
tured temperature readings in degrees Celsius, humidity lev-
els as a percentage, rainfall measurements in inches per hour
(in. h−1; equivalent to 25.4 mm h−1), atmospheric pressure in
millibars (mb), and even sunlight intensity in lux (lx). These
meticulous recordings shed light on the prevailing weather
conditions experienced at the precise location of the land-
slide. The LMS relied on an accelerometer sensor to monitor
the soil conditions with utmost precision. An advanced sen-
sor was utilized to measure the acceleration of the soil in
three directions: Ax, Ay, and Az (in m s−2). This provided
valuable insights into the soil’s movement and stability. Ad-
ditionally, a gyroscope sensor was employed to capture the
angular rotation of the soil along the Wx, Wy, and Wz axes
(in degrees per second). This sensor enhanced the under-
standing of the soil’s behavior by accurately detecting its an-
gular movements. Furthermore, the LMS was equipped with
a capacitive soil moisture sensor, enabling it to measure the
volumetric moisture content of the soil in percentage. The
LMS transmitted all these 12 attributes, including weather
parameters, soil g force, angular rotation, and soil mois-
ture content, to the cloud every 10 min. The dataset obtained
from the LMS consisted of approximately 39 000 data points,
covering a wide range of environmental and soil-related at-
tributes. Table 1 showcases the statistics for the recorded soil
movement prediction parameters. For each attribute, the ta-
ble provides the mean value, representing the average mea-
surement, along with the standard deviation (SD), indicating
the variability in the data. The minimum and maximum val-
ues highlight the range of measurements observed, offering
insights into the extreme values and overall data distribution.

4 Methodology

4.1 Data pre-processing

The sensors installed at the landslide locations experienced
malfunctions, resulting in multiple missing values within the
collected data. To address this issue, we employed a method
to fill these gaps by replacing the missing values with the av-
erage values recorded at the corresponding timestamps dur-
ing the previous week. By calculating the average values for
parameters such as light intensity, humidity, temperature, and
pressure from the same time periods in the preceding week,
we obtained estimates to replace the skewed or missing data
points.

4.2 Class labeling

The dataset contained values for acceleration and angular ro-
tation in three directions: x, y, and z. The changes in acceler-
ation and angular rotation were calculated by subtracting the
current values from the past values, allowing for the assess-
ment of movement. Four categories were defined to classify
the movement data: no movement, low movement, moderate
movement, and high movement. These categories were deter-
mined based on standard deviation thresholds derived from
the acceleration and angular rotation values. Specifically,
values from the mean were categorized as follows: within
±1 standard deviation as no movement, within ±2 standard
deviations as low movement, within ±3 standard deviations
as moderate movement, and exceeding ±3 standard devia-
tions as high movement. This classification approach con-
sidered the variability in acceleration and angular rotation
changes to determine the intensity of movement.

During the analysis, each timestamp was assigned to a
movement class based on the class associated with the high-
est standard deviation observed in any acceleration or angu-
lar rotation element. If an individual element had the highest
standard deviation at a specific timestamp, that timestamp
was assigned to the corresponding movement class with the
maximum standard deviation.

Table 2 presents the distribution of movement intensity
within the dataset, which consisted of 38 900 data points. The
table shows the percentage distribution of movement cate-
gories: high, moderate, low, and no movement. The major-
ity of the dataset (97.8 %) falls under the no-movement cate-
gory, indicating a lack of significant movement. On the other
hand, the high-movement category represents only a small
fraction (1.1 %) of the dataset. Additionally, the moderate-
movement category comprises 0.7 % of the samples, while
the low-movement category accounts for 0.4 % of the dataset.
This distribution highlights the class imbalance issue present
in the dataset, which needs to be taken into account when de-
veloping a classification model for predicting soil movement.
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Table 1. Summary statistics of recorded parameters for soil movement prediction dataset.

Parameter Mean SD Min Max

Temperature (°C) 16.18 10.48 0.00 39.00
Humidity (%) 66.69 35.46 0.00 99.00
Rain (in. h−1) 0.00 5.60 0.00 15.00
Pressure (mb) 1040.96 27.96 921.61 1065.41
Light (lx) 5025.35 10 154.75 0.00 54 612.00
Ax (m s−2) 0.02 1.23 −28.02 40.25
Ay (m s−2) 0.00 1.37 −100.08 100.08
Az (m s−2) 0.00 2.28 −149.61 315.61
Wx (° s−1) 0.00 15.86 −1994.51 1997.24
Wy (° s−1) 0.00 15.85 −1998.05 1998.73
Wz (° s−1) 0.00 6.95 −932.00 932.00
Moisture (%) 80.00 20.30 40.00 100.00

Table 2. Class distribution of soil movement data points.

Movement class Number of data points Percentage

High movement 423 1.1 %
Moderate movement 146 0.7 %
Low movement 268 0.4 %
No movement 38 063 97.8 %

4.3 Sliding-window packets

The technique of sliding-window packets involves dividing
a given dataset into fixed-length subsequences or packets
and their corresponding labels. To achieve this, a sequence
length parameter is used to determine the length of each sub-
sequence. The sliding-window approach is then employed,
where a window starts at the beginning of the dataset and
moves through the data with a step size of 1. A subsequence
of the specified length is extracted from the dataset at each
window position. The label for prediction is taken from the
next position after the window.

The technique of sliding-window packets aims to predict
future values or events based on preceding subsequences. For
instance, if the sequence length is set to 5, the sliding window
will select five consecutive values from the dataset as a subse-
quence at each step. The label for prediction will be the value
at the sixth position. This process continues until the end of
the dataset is reached, resulting in multiple subsequences and
their respective labels. Once the packets are created, they are
flattened to form a single feature vector. For instance, if the
sequence length is 5 and the dataset has 12 features, each
packet will contain 60 elements (5× 12). This transformation
allows for the packets to be treated as individual samples with
multiple features suitable for ML models. The primary pur-
pose of creating these packets is to address prediction tasks
involving sequences where the input data’s order and depen-
dencies are crucial. The model can effectively capture and

learn patterns and relationships within the sequential data by
utilizing the sliding-window packets. The flattened packets
generated using the sliding-window technique are inputs in
oversampling techniques.

4.4 Oversampling

In our analysis, we encountered a significant class imbalance
issue in the labeled data. The no-movement class, which rep-
resents the majority of the data, had a large number of data
points. All other classes, including high movement, moderate
movement, and low movement, represent minority classes,
each constituting only 1 %, 0.7 %, and 0.4 % of the total
data, respectively. This class imbalance posed a challenge for
building an effective classification model, as the skewed data
distribution made it difficult to classify the minority class ac-
curately.

To overcome the class imbalance challenge, we imple-
mented several oversampling techniques, with a particular
focus on SMOTE and its extensions (Chawla et al., 2002;
Douzas et al., 2018; Han et al., 2005; He et al., 2008).
SMOTE, which stands for the synthetic minority oversam-
pling technique, addresses the imbalance by generating syn-
thetic data points for the minority class (Chawla et al., 2002).
By utilizing the characteristics of existing samples from the
minority classes, we created new data points, thereby in-
creasing the representation of the high-movement, moderate-
movement, and low-movement classes. In addition to the
standard SMOTE, we also explored other variations such
as K-means SMOTE (Douzas et al., 2018) and borderline-
SMOTE (Han et al., 2005) to further enhance the balance of
class distribution.

Furthermore, we utilized ADASYN, an extension of
SMOTE that explicitly addresses the classification bound-
ary of the minority class (He et al., 2008). ADASYN as-
signs higher weights to the minority examples that are more
challenging to classify, leading to the generation of addi-
tional artificial data points for these instances. By incorporat-
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ing ADASYN into our oversampling strategy, we enhanced
the balance of the class distribution further and improved the
classification accuracy for all classes.

Figure 1 illustrates the application of the K-means
SMOTE technique for addressing the class imbalance. Fig-
ure 1 depicts a scatterplot where the red crosses represent
the minority-class samples, while the black dots represent
the majority-class samples. The green crosses indicate the
newly generated synthetic samples by the K-means SMOTE
algorithm. The dashed line represents the decision bound-
ary separating the two classes. K-means SMOTE operates by
following two simple steps iteratively (Douzas et al., 2018).
Firstly, it assigns each observation to the nearest cluster cen-
troid among the K available. Secondly, it updates the posi-
tion of the centroids so that they are positioned at the cen-
ter between the assigned observations. The imbalance ratio
(IR) shown in Fig. 1 helps K-means SMOTE determine the
appropriate amount of oversampling for the minority class,
ensuring a balanced representation of the classes in synthetic
samples. The parameter K in all SMOTE techniques was var-
ied from 2 to 5 in this experiment to observe how different
numbers for nearest neighbors impact the diversity and qual-
ity of synthetic samples created, thereby affecting the perfor-
mance of the model on imbalanced data.

4.5 Machine learning models

Various models were employed to classify the soil move-
ment. The specific models will be discussed in the follow-
ing subsection. To evaluate the accuracy of these models,
the dataset was divided into two groups: training data (70 %)
and testing data (30 %). Random sampling was used to select
70 % of the data points for training the classification models
mentioned below, while the remaining 30 % of the dataset
was reserved for model evaluation.

4.5.1 AdaBoost

AdaBoost enhances ML model performance by combining
results from multiple weak learners, techniques slightly bet-
ter than random guessing (Wu et al., 2020). In the AdaBoost
model, the number of trees sets the maximum weak models,
impacting performance and overfitting. The learning rate in-
fluences each model’s contribution, with a higher rate giving
more weight. The maximum depth parameter prevents weak
models from becoming too complex. Table 3 details the Ad-
aBoost model’s parameter range.

4.5.2 XGBoost

XGBoost, a gradient boosting ensemble ML model with
decision trees (Chen and Guestrin, 2016), excels in struc-
tured data handling. The number of trees in XGBoost deter-
mines boosting rounds, impacting performance with a com-
putational complexity trade-off. The learning rate influences
convergence speed and generalization ability, and the maxi-

mum depth parameter prevents overfitting for enhanced inter-
pretability. See Table 3 for the XGBoost model’s parameter
range.

4.5.3 LightGBM

LightGBM, a gradient boosting framework for tasks like
ranking and classification (Ke et al., 2017), stands out with
its leaf-wise approach, reducing loss, improving accuracy,
and ensuring efficient learning. The number of trees in the
model influences boosting rounds for potential performance
enhancement. The learning rate parameter balances conver-
gence speed and accuracy, while the maximum depth param-
eter controls complexity and prevents overfitting. See Table 3
for the LightGBM model’s parameter range.

4.5.4 CatBoost

CatBoost, short for category boosting, is an ML model de-
veloped by Yandex and released as an open-source tool
(Prokhorenkova et al., 2018). In the CatBoost model, the
choice of the loss function significantly impacts perfor-
mance. Loss functions like log, entropy, or hinge are tailored
for specific classification problems, influencing results. Ta-
ble 3 outlines the range of parameters for the CatBoost model
for fine tuning and optimizing CatBoost’s performance on a
given dataset.

4.5.5 Random forest

RF, an ensemble learning method combining predictions
from multiple decision trees (Breiman, 2001), constructs re-
gression or classification models. Known for handling rela-
tionships and non-linearities without requiring variable inde-
pendence assumptions, RF excels in various industries, in-
cluding landslide prediction and site recognition. Optimiz-
ing RF performance involves adjusting parameters like the
number of trees (DTs), splitting criteria (Gini or entropy),
and maximum tree depth, controlling robustness, accuracy,
and complexity. Table 3 details parameter ranges for the RF
model.

4.5.6 Multilayer perceptron

MLP, a neural network architecture introduced by Rosen-
blatt et al. (1961), features interconnected layers: input, hid-
den, and output. Neurons calculate weighted sums, pass-
ing through activation functions to capture intricate rela-
tionships. Dropout layers prevent overfitting by deactivating
neurons randomly during training, enhancing generalization.
Versatile for classification, the MLP’s look-back period in-
fluences temporal dependency capture, while the number of
layers and nodes per layer governs complexity. Table 3 out-
lines parameter ranges for the MLP model.
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Figure 1. K-means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et al., 2018).

4.5.7 LSTM

LSTM is a recurrent neural network that captures long-term
dependencies in sequential data (Hochreiter and Schmid-
huber, 1997). It excels in various applications, including
natural-language processing and time series forecasting. In
our LSTM model, experiments explored different parame-
ters: LSTM unit sizes (32, 64, 128, 256), activation functions
(sigmoid; tanh; ReLU, rectified linear unit), and a look-back
period ranging from 3 to 10. We chose the categorical cross-
entropy loss function for multi-class classification. Table 3
details the parameter range for the LSTM model.

4.5.8 Dynamic ensembling

Dynamic ensembling is a highly effective technique in ML
that takes advantage of the adaptability and ongoing im-
provement of predictive models (Ko et al., 2008). It involves
creating a versatile and continuously evolving ensemble by
harnessing the strengths of multiple models, including RF,
CatBoost, XGBoost, LightGBM, and AdaBoost. Tradition-
ally, ensembling methods like bagging and boosting have
focused on fixed ensembles. However, dynamic ensembling
goes beyond this by introducing the ability to add or remove
models based on their performance dynamically. In the case
of dynamic ensembling with the models, as mentioned ear-
lier, the monitoring criterion used is accuracy. Accuracy as
the monitoring criterion ensures that the dynamic ensemble
maintains a high level of accuracy in its predictions. If a

model falls below a predefined accuracy threshold, it is con-
sidered underperforming and may be replaced to enhance the
ensemble’s overall performance.

Dynamic ensembling offers numerous advantages, includ-
ing handling concept drift, where the underlying data distri-
bution changes over time. By incorporating new models that
capture updated patterns and relationships in the data, the dy-
namic ensemble can effectively adapt to conceptualize drift
and maintain accurate predictions.

The dynamic ensemble model utilized base models such
as RF, CatBoost, XGBoost, LightGBM, and AdaBoost. Each
base model was trained individually with the same de-
fault parameter settings as their standalone counterparts. The
range of parameters for the dynamic ensemble model is men-
tioned in Table 3.

5 Model execution, minimization, and handling class
imbalance

A rigorous process was followed to develop an effective
model for predicting the intensity of soil movement. The
dataset has a 70 : 30 ratio, with 70 % allocated for training
and 30 % for testing. To tackle the class imbalance issue in
the training data, oversampling techniques were applied ex-
clusively to the training set, ensuring a balanced representa-
tion of all three classes. The oversampling methods were not
extended to the testing data, preserving its original distribu-
tion. In this study, we developed two methods, referred to as
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Table 3. The range of parameters varied in the models.

Model Parameter Range of parameter

AdaBoost Number of trees [10, 100] in steps of 5
Learning rate [0.1, 2] in steps of 0.1

XGBoost Number of trees [10, 100] in steps of 5
Learning rate [0.05, 0.55] in steps of 0.05
Maximum depth [5, 50] in steps of 5

LightGBM Number of trees [10, 100] in steps of 5
Learning rate [0.05, 0.55] in steps of 0.05
Maximum depth [5, 50] in steps of 5

CatBoost Loss function Log, entropy, hinge
Learning rate [0.1, 2] in steps of 0.1
Maximum depth [3, 33] in steps of 3

RF Number of trees [10, 100] in steps of 5
Criteria Gini, entropy
Maximum depth [5, 50] in steps of 5

MLP Look-back period 3 to 10
Layers [1, 3]
Nodes per layer [50, 250] in steps of 50
Learning rate [0.1, 0.9] in steps of 0.1

LSTM Look-back period 3 to 10
LSTM units 32, 64, 128, 256
Activation function Sigmoid, tanh, ReLU
Learning rate [0.1, 0.9] in steps of 0.1

the method with five training datasets (5-TD) and the method
with 5-fold cross-validation (5-CV). The 5-TD method was
employed for parameter variation analysis across different
datasets. On the other hand, the 5-CV method was utilized
for conducting 5-fold cross-validation to analyze the perfor-
mance of the ML models.

5.1 5-TD method

For the 5-TD method, the training dataset was split into five
training datasets, each utilized for parameter variation anal-
ysis. This involved training and optimizing the ML model
for each dataset independently using the grid search method.
Since each dataset possessed different optimal parameters,
we calculated the mean and SD of the ML-optimized param-
eter values across all datasets to assess parameter variabil-
ity. This enabled us to observe parameter variations across
the ML models, providing insights into the sensitivity of the
models to different dataset characteristics and parameter con-
figurations. A lower SD implied that the model maintained
consistency across each dataset and demonstrated robust gen-
eralization capabilities. Conversely, a higher SD suggested
that the model encountered difficulties maintaining consis-
tency across datasets, potentially hindering its ability to learn
general patterns effectively. The evaluation primarily focused
on F1 score metrics to determine how effectively the models
predicted the intensity of soil movements in each of the five
datasets.

5.2 5-CV method

For the 5-CV method, a suite of ML models underwent train-
ing using a 5-fold cross-validation approach (Kumar et al.,
2023). In the 5-CV method, the training data were split into
five datasets, where each dataset was alternately used for val-
idation, while the others were used for training. The mod-
els were optimized by employing a grid search methodol-
ogy and optimized based on performance on the five valida-
tion sets, and a single set of best-performing parameters was
selected for each model. Subsequently, the models with the
best parameters found during training were tested on the in-
dependent testing data, and their performance metrics were
reported as indicative of their predictive capabilities. The
evaluation primarily focused on F1 score metrics to deter-
mine how effectively the models predicted the intensity of
soil movement across the five validation sets and the test set.

6 Results

6.1 Parameter analysis result

Upon scrutinizing the parameter analysis presented in Ta-
ble 4 from the 5-TD method, a discernible trend emerged:
models trained with oversampling techniques exhibit a no-
tably smaller SD than their counterparts trained without
oversampling. For instance, when examining the AdaBoost
model, we observe that the SD of the parameter of num-
ber of trees was 0 for the oversampling case. In contrast,
it stood at 16.43 for the dataset without oversampling. This
phenomenon underscores the stabilizing effect of oversam-
pling on parameter estimates, mitigating the variability that
may arise from imbalanced datasets.

Similarly, in the case of the RF model, the SD of the pa-
rameter of number of trees was 0 with oversampling, indi-
cating consistent parameter values across folds. Conversely,
for the dataset without oversampling, the SD increased to
21.21, suggesting greater variability in parameter estimates.
This trend persisted across various models and parameters,
highlighting the robustness imparted by oversampling tech-
niques in stabilizing model performance.

Overall, these examples underscore the importance of
oversampling in reducing parameter variability and ensuring
consistent model behavior, particularly in scenarios involv-
ing imbalanced datasets.

6.2 Optimized parameters

In the 5-CV method, we optimized the parameters separately
for the ML models using a 5-fold cross-validation process
on the full training dataset. In analyzing various SMOTE
techniques, the parameter K , representing the count of near-
est neighbors for synthesizing new samples, was consistently
optimized at a value of 4. Table 5 presents each model’s op-
timized parameter values obtained through the grid search in
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Table 4. The result of parameter variation analysis across five datasets from the 5-TD method.

Model Parameter With oversampling Without oversampling

Mean SD Mean SD

AdaBoost Number of trees 80 0 62 16.43
Learning rate 0.66 0.22 0.9 0

XGBoost Number of trees 50 0 50 0
Maximum depth 20 0 10 0
Learning rate 0.5 0 0.68 0.16

LightGBM Number of trees 50 0 50 0
Maximum depth 20 0 20 0
Learning rate 0.5 0 0.6 0.12

CatBoost Number of trees 50 0 50 0
Maximum depth 20 0 20 0
Learning rate 0.8 0 0.66 0.13

RF Number of trees 80 0 50 21.21
Maximum depth 20 0 20 0

MLP Look-back period 2.8 0.44 3.6 1.34
Layers 2 0 2 0
Nodes in first layer 130 67.08 130 67.08
Nodes in second layer 200 0 60 54.77
Learning rate 0.78 0.16 0.64 0.28

LSTM Look-back period 4.6 0.89 4 1.41
Layers 2 0 2 0
Nodes in first layer 90 22.36 70 27.39
Nodes in second layer 160 54.77 100 61.24
Learning rate 0.84 0.08 0.86 0.05

5-CV on the training dataset. These parameters were care-
fully fine-tuned to ensure the best fit for the given data. In
the case of AdaBoost, the optimized values included 80 trees
and a learning rate of 0.6. The optimized values for the XG-
Boost model consisted of 50 trees, a learning rate of 0.3, and
a maximum depth of 10. These settings were determined to
enhance the model’s performance in terms of both speed and
accuracy.

Similarly, the LightGBM model underwent parameter op-
timization, selecting 50 trees, a learning rate of 0.5, and a
maximum depth of 20. Next, the CatBoost model was also
optimized, leading to entropy selection as the loss function,
50 trees, a learning rate of 0.8, and a maximum depth of 20.
In the RF model, the optimized values were 80 for the num-
ber of trees and 20 for the maximum depth, and the evalua-
tion criteria were set to Gini. Likewise, the MLP model opti-
mized its parameters with a look-back period of 3, 2 layers,
and 200 nodes per layer. Similarly, the LSTM model consists
of 2 layers with 100 and 200 nodes in the first and second
layers and utilizes a ReLU activation function. Lastly, the
dynamic ensemble model in this study incorporated the op-
timized RF, CatBoost, XGBoost, LightGBM, and AdaBoost
models to improve the accuracy of landslide analysis predic-

tions. By leveraging the strengths of these individually op-
timized models, as mentioned above, the dynamic ensemble
model aimed to improve the accuracy and reliability of land-
slide analysis predictions.

6.2.1 Train–test results

Table 6 presents the training results of different classification
models evaluated using 5-fold cross-validation on the train-
ing dataset and various oversampling techniques for land-
slide prediction, utilizing the 5-CV method. In Table 6, C0,
C1, C2, and C3 represent no-movement, low-movement,
moderate-movement, and high-movement classes’ accura-
cies, respectively. These results provide valuable insights into
the performance of each model when trained on the training
dataset with and without oversampling. The XGBoost model
with K-means SMOTE emerged as the best model in train-
ing, achieving outstanding accuracy, precision, recall, and F1
scores of 0.999, 0.999, 0.999, and 0.999, respectively. The
dynamic ensemble model with the K-means SMOTE and
borderline-SMOTE techniques also performed similarly with
F1 scores of 0.998. It demonstrates remarkable predictive ca-
pability by achieving perfect accuracy in oversampling sce-
narios. When the XGBoost model was trained without over-
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Table 5. The best value of the parameters was calibrated from the training data using the 5-CV method.

Model Parameter Best value of parameter

AdaBoost Number of trees 80
Learning rate 0.6

XGBoost Number of trees 50
Learning rate 0.3
Maximum depth 10

LightGBM Number of trees 50
Learning rate 0.5
Maximum depth 20

CatBoost Loss function Entropy
Learning rate 0.8
Number of trees 50
Maximum depth 20

RF Number of trees 80
Criteria Gini
Maximum depth 20

MLP Look-back period 3
Layers 2
Nodes per layer 200 in both layers
Learning rate 0.6

LSTM Look-back period 5
LSTM units 100 in first and 200 in second layer
Activation function ReLU
Learning rate 0.9

sampling, its accuracy, precision, recall, and F1 score were
notably lower, with values of 0.999, 0.999, 0.971, and 0.985,
respectively.

Table 7 presents the test results of various classification
models combined with different oversampling techniques for
landslide prediction (here models were trained using the 5-
CV method). In Table 7, C0, C1, C2, and C3 represent no-
movement, low-movement, moderate-movement, and high-
movement classes’ accuracies, respectively. Among them,
the dynamic ensemble model utilizing the K-means SMOTE
technique demonstrated exceptional performance in accu-
rately predicting landslides on unseen data. It achieves im-
pressive accuracy, precision, and recall rates of 0.995, 0.995,
and 0.995, respectively, along with an F1 score of 0.995.
These outstanding results confirm the effectiveness of the
dynamic ensemble approach when combined with K-means
SMOTE for accurate soil movement prediction. Similarly,
the borderline-SMOTE technique also showed similar per-
formance with accuracy, precision, recall, and an F1 score
of 0.995 for all. When the model is tested without oversam-
pling, its accuracy, precision, recall, and F1 score are notably
lower, with values of 0.981, 0.646, 0.397, and 0.462, respec-
tively. The best-performing model is highlighted in bold in
Tables 6 and 7.

Moreover, it is noteworthy that K-means SMOTE consis-
tently outperformed other oversampling techniques across all
models during the test performance evaluations, establishing
itself as the optimal technique. Notably, it is crucial to high-
light the impact of oversampling on the performance of the
dynamic ensemble model. This underscores the discernible
effectiveness of K-means SMOTE in generating oversam-
pling for the soil movement dataset. The success of K-means
SMOTE can be attributed to its ability to identify clusters
within the minority class and select similar features for over-
sampling. The IR employed by K-means SMOTE aids in de-
termining the appropriate degree of oversampling for the mi-
nority class, ensuring a balanced representation of classes in
synthetic samples.

Moreover, the absence of oversampling techniques nega-
tively impacted the models’ performance in both training and
testing. Without oversampling, the models exhibited lower
accuracy, precision, recall, and F1 scores during training and
testing, emphasizing the challenges posed by class imbal-
ance. In the absence of a balanced representation through
oversampling, the models struggled to effectively learn and
generalize from the imbalanced dataset. Consequently, this
underscores the pivotal role of oversampling in mitigating
class imbalance issues, leading to substantial enhancements
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Table 6. Results of ML models obtained from the training dataset using 5-fold cross-validation in the 5-CV method. The best model with
oversampling techniques and its results are shown in bold.

Model Oversampling technique Accuracy Precision Recall F1 score

C0 C1 C2 C3 Overall

AdaBoost SMOTE 0.942 0.562 0.640 0.817 0.747 0.748 0.747 0.747
K-means SMOTE 0.948 0.760 0.675 0.855 0.807 0.809 0.807 0.806
Borderline-SMOTE 0.919 0.565 0.667 0.815 0.740 0.741 0.740 0.740
ADASYN 0.934 0.552 0.649 0.798 0.740 0.741 0.740 0.740
Without oversampling 0.995 0.250 0.243 0.341 0.980 0.575 0.465 0.506

XGBoost SMOTE 0.995 0.999 0.999 0.997 0.998 0.998 0.998 0.998
K-means SMOTE 0.997 0.999 0.999 0.998 0.999 0.999 0.999 0.999
Borderline-SMOTE 0.996 0.999 0.999 0.998 0.998 0.998 0.998 0.998
ADASYN 0.994 0.999 0.999 0.997 0.998 0.998 0.998 0.998
Without oversampling 1.000 0.995 0.953 0.906 0.999 0.999 0.971 0.985

LightGBM SMOTE 0.984 0.994 0.999 0.988 0.991 0.991 0.991 0.991
K-means SMOTE 0.991 0.998 0.998 0.996 0.996 0.996 0.996 0.996
Borderline-SMOTE 0.985 0.999 0.999 0.995 0.995 0.995 0.995 0.995
ADASYN 0.983 0.994 0.998 0.987 0.991 0.991 0.991 0.991
Without oversampling 1.000 1.000 1.000 0.976 0.994 0.999 0.999 0.996

CatBoost SMOTE 0.990 0.999 0.999 0.997 0.997 0.997 0.997 0.997
K-means SMOTE 0.991 0.999 0.999 0.997 0.997 0.997 0.997 0.997
Borderline-SMOTE 0.992 0.999 0.999 0.997 0.997 0.997 0.997 0.997
ADASYN 0.991 0.999 0.999 0.997 0.996 0.996 0.996 0.996
Without oversampling 0.999 0.924 0.916 0.735 0.997 0.997 0.903 0.946

RF SMOTE 0.920 0.892 0.951 0.905 0.921 0.923 0.921 0.922
K-means SMOTE 0.920 0.921 0.959 0.902 0.925 0.928 0.925 0.926
Borderline-SMOTE 0.948 0.969 0.988 0.959 0.967 0.967 0.967 0.967
ADASYN 0.921 0.898 0.945 0.899 0.915 0.917 0.915 0.915
Without oversampling 1.000 0.701 0.682 0.537 0.992 0.995 0.742 0.841

MLP SMOTE 0.959 0.976 0.997 0.952 0.961 0.961 0.961 0.961
K-means SMOTE 0.940 0.996 0.984 0.957 0.974 0.974 0.974 0.974
Borderline-SMOTE 0.968 0.974 0.989 0.913 0.964 0.964 0.964 0.964
ADASYN 0.929 0.975 0.981 0.984 0.961 0.961 0.961 0.961
Without oversampling 0.997 0.016 0.000 0.056 0.980 0.693 0.336 0.381

LSTM SMOTE 0.882 0.841 0.881 0.896 0.875 0.884 0.875 0.877
K-means SMOTE 0.980 0.996 0.992 0.968 0.984 0.984 0.984 0.984
Borderline-SMOTE 0.946 0.954 0.997 0.965 0.966 0.966 0.966 0.966
ADASYN 0.955 0.979 0.997 0.955 0.971 0.971 0.971 0.971
Without oversampling 0.999 0.859 0.925 0.700 0.995 0.979 0.871 0.919

Dynamic ensemble SMOTE 0.992 0.999 0.999 0.999 0.997 0.997 0.997 0.997
K-means SMOTE 0.994 0.999 0.999 0.999 0.998 0.998 0.998 0.998
Borderline-SMOTE 0.997 0.999 0.999 0.998 0.998 0.998 0.998 0.998
ADASYN 0.992 0.999 0.999 0.998 0.997 0.997 0.997 0.997
Without oversampling 1.000 0.951 0.944 0.770 0.997 0.999 0.916 0.954

in predictive accuracy and overall model robustness during
training and testing evaluations.

Models trained with oversampling techniques consistently
demonstrate comparable performance across both training
and testing datasets, indicating a lack of overfitting. Con-
versely, models trained without oversampling, notably RF,

MLP, LSTM, and a dynamic ensemble, exhibit signs of
overfitting, as evidenced by significantly higher performance
metrics in the training dataset relative to the testing dataset.
This observation underscores the effectiveness of oversam-
pling techniques in mitigating overfitting by enhancing the
model’s ability to generalize to unseen data.

https://doi.org/10.5194/nhess-24-1913-2024 Nat. Hazards Earth Syst. Sci., 24, 1913–1928, 2024



1924 P. Kumar et al.: Addressing class imbalance in soil movement predictions

Table 7. Results of ML models obtained from the testing dataset in the 5-CV method.

Model Oversampling technique Accuracy Precision Recall F1 score

C0 C1 C2 C3 Overall

AdaBoost SMOTE 0.939 0.548 0.436 0.763 0.932 0.383 0.671 0.442
K-means SMOTE 0.946 0.583 0.436 0.681 0.939 0.382 0.662 0.445
Borderline-SMOTE 0.917 0.595 0.462 0.756 0.911 0.374 0.682 0.423
ADASYN 0.995 0.226 0.205 0.230 0.978 0.514 0.414 0.447
Without oversampling 0.931 0.524 0.436 0.681 0.924 0.360 0.643 0.412

XGBoost SMOTE 0.991 0.976 0.974 0.837 0.989 0.774 0.945 0.846
K-means SMOTE 0.993 0.952 0.949 0.785 0.990 0.787 0.920 0.842
Borderline-SMOTE 0.994 0.905 0.769 0.733 0.990 0.803 0.850 0.823
ADASYN 0.990 0.988 0.974 0.830 0.988 0.761 0.946 0.837
Without oversampling 0.996 0.250 0.026 0.333 0.980 0.553 0.401 0.447

LightGBM SMOTE 0.983 0.905 0.974 0.748 0.980 0.656 0.903 0.750
K-means SMOTE 0.984 0.917 0.872 0.704 0.980 0.654 0.869 0.737
Borderline-SMOTE 0.990 0.738 0.667 0.637 0.983 0.695 0.758 0.720
ADASYN 0.981 0.917 0.974 0.741 0.978 0.638 0.903 0.735
Without oversampling 0.996 0.214 0.205 0.326 0.980 0.547 0.435 0.472

CatBoost SMOTE 0.986 0.964 0.974 0.852 0.984 0.705 0.944 0.799
K-means SMOTE 0.988 0.952 0.974 0.815 0.986 0.726 0.932 0.810
Borderline-SMOTE 0.990 0.798 0.641 0.689 0.984 0.720 0.779 0.743
ADASYN 0.987 0.988 0.974 0.859 0.985 0.722 0.952 0.814
Without oversampling 0.997 0.226 0.179 0.311 0.981 0.611 0.428 0.487

RF SMOTE 0.988 0.988 0.974 0.970 0.988 0.763 0.980 0.851
K-means SMOTE 0.995 0.917 0.821 0.867 0.993 0.885 0.900 0.889
Borderline-SMOTE 0.991 0.976 0.974 0.956 0.991 0.801 0.974 0.875
ADASYN 0.989 0.988 0.974 0.978 0.988 0.757 0.982 0.848
Without oversampling 0.998 0.190 0.051 0.289 0.980 0.676 0.382 0.440

MLP SMOTE 0.958 1.000 1.000 0.948 0.958 0.554 0.977 0.671
K-means SMOTE 0.965 0.988 0.974 0.830 0.964 0.578 0.939 0.689
Borderline-SMOTE 0.937 0.750 0.641 0.659 0.932 0.444 0.747 0.518
ADASYN 0.927 1.000 0.974 0.963 0.928 0.554 0.966 0.652
Without oversampling 0.995 0.012 0.026 0.015 0.974 0.380 0.262 0.270

LSTM SMOTE 0.878 0.774 0.897 0.815 0.877 0.451 0.841 0.522
K-means SMOTE 0.981 0.869 0.923 0.763 0.977 0.693 0.884 0.766
Borderline-SMOTE 0.948 0.917 1.000 0.919 0.948 0.527 0.946 0.636
ADASYN 0.953 0.952 1.000 0.911 0.953 0.552 0.954 0.661
Without oversampling 0.996 0.488 0.667 0.415 0.985 0.804 0.642 0.704

Dynamic ensemble SMOTE 0.978 0.999 0.999 0.997 0.994 0.994 0.994 0.994
K-means SMOTE 0.999 1.000 0.979 1.000 0.995 0.995 0.995 0.995
Borderline-SMOTE 0.982 0.999 0.999 0.997 0.995 0.995 0.995 0.995
ADASYN 0.979 0.999 0.999 0.997 0.994 0.994 0.994 0.994
Without oversampling 0.998 0.167 0.128 0.296 0.981 0.646 0.397 0.462

Comparing the dynamic ensemble model with other classi-
fication models, it becomes evident that the dynamic ensem-
ble model with K-means SMOTE consistently outperformed
the rest, highlighting the effectiveness in accurately predict-
ing landslides.

These findings underscore the importance of carefully se-
lecting appropriate ML models and employing suitable over-

sampling techniques to address the class imbalance challenge
in soil movement prediction. They provide valuable insights
into the performance and suitability of these models and
techniques for enhancing landslide prediction accuracy, ul-
timately enabling proactive measures to mitigate landslide
risks.
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In Fig. 2, we juxtaposed the performance metrics ob-
tained using K-means SMOTE against those obtained with-
out oversampling across various machine learning models. In
Fig. 2, the blue bars represent the F1 score achieved with K-
means SMOTE (oversampling), while the orange bars rep-
resent the F1 score without oversampling. Notably, when
comparing the performance in the test dataset using the F1
score metric, the oversampling dataset generated with K-
means SMOTE consistently yielded superior results com-
pared to the without oversampling approach. For instance, in
the case of the AdaBoost model, K-means SMOTE resulted
in an F1 score of 0.412 for the technique without oversam-
pling, whereas it achieved an F1 score of 0.445 for K-means
SMOTE. Similarly, in the XGBoost model, the F1 score im-
proved from 0.447 without oversampling to 0.842 with K-
means SMOTE. This trend persisted across various other
models such as LightGBM, CatBoost, RF, MLP, LSTM, and
a dynamic ensemble, where K-means SMOTE consistently
demonstrated superior performance in terms of the F1 score
compared to the technique without oversampling. These re-
sults underscore the effectiveness of K-means SMOTE in en-
hancing the predictive performance of ML models for soil
movement prediction tasks.

Figure 3 illustrates the confusion matrix, depicting the per-
formance of the dynamic ensemble model in both the train-
ing and testing datasets, utilizing the K-means SMOTE over-
sampling technique. The confusion matrix provides a com-
prehensive overview of the model’s classification accuracy
by presenting the true and predicted labels across different
classes. The dynamic ensemble model demonstrates robust
performance in the training dataset, as evidenced by the high
counts along the diagonal, indicating a substantial number of
correct predictions across all classes. Similarly, in the testing
dataset, the model maintains its efficacy, with the majority of
samples correctly classified across various classes.

7 Discussion and conclusions

In summary, the threat posed by landslides requires the devel-
opment of effective prediction frameworks, although model-
ing the chaotic nature of natural data remains challenging.
The analyzed dataset exhibited a significant class imbalance,
with the majority class dominating the samples. This distri-
bution imbalance necessitated careful consideration and ap-
propriate techniques to address the issue.

Various oversampling techniques were employed to tackle
the class imbalance, including SMOTE and its extensions
(K-means SMOTE, borderline-SMOTE, and ADASYN).
ADASYN, which focuses on the minority-class boundary,
effectively generated synthetic data points and improved the
class distribution balance.

Multiple classification models, such as AdaBoost, XG-
Boost, LightGBM, CatBoost, RF, MLP, LSTM, and a dy-
namic ensemble, were evaluated to predict soil movement.

The grid search approach and 5-CV were employed to opti-
mize the parameters of each model. Within the 5-CV frame-
work, the parameter analysis was conducted on each fold
treated as an independent dataset, allowing for a compre-
hensive assessment of parameter variability across differ-
ent dataset splits. This approach facilitated the identification
of optimal parameter configurations that yielded consistent
performance across diverse dataset distributions. By treating
each fold as an independent dataset, the parameter analy-
sis provided insights into the variability in parameter values,
thereby enhancing our understanding of how the models gen-
eralize to unseen data.

The ML models’ training results highlight oversampling’s
significant impact on model performance. The dynamic en-
semble model, particularly when coupled with K-means
SMOTE, emerges as the standout performer in the training
phase. This model demonstrates superior predictive capabil-
ities by achieving remarkable accuracy, precision, recall, and
F1 scores of 0.998, 0.998, 0.998, and 0.998, respectively.

Furthermore, these models were tested to assess their
ability to generalize well to unseen data. The testing re-
sults showcased the dynamic ensemble model with K-means
SMOTE as the top performer, achieving an outstanding ac-
curacy of 0.995, precision of 0.995, recall of 0.995, and
F1 score of 0.995. This confirms that the exceptional per-
formance observed in training extends to the testing phase,
emphasizing the robustness and reliability of the dynamic
ensemble approach with K-means SMOTE. Moreover, the
dynamic ensemble model incorporating borderline-SMOTE
emerges as the second-best model in the test phase, showcas-
ing high accuracy, precision, and recall rates of 0.995, 0.995,
and 0.995, respectively, along with an F1 score of 0.995. This
result reinforces the reliability and robustness of the model in
tackling landslide prediction tasks.

The superior performance of the K-means SMOTE tech-
nique can be attributed to its ability to identify clusters within
the minority class and generate synthetic samples that main-
tain the underlying structure of the data. By considering the
IR, K-means SMOTE ensures a balanced representation of
classes in the synthetic samples, contributing to improved
model generalization and predictive accuracy. Furthermore,
the lack of oversampling adversely affects both training and
testing performances. The models face challenges in learn-
ing and generalizing from the imbalanced dataset without a
balanced representation.

On the other hand, the success of the dynamic ensem-
ble model, comprising AdaBoost, XGBoost, LightGBM,
CatBoost, and RF, can be attributed to the complementary
strengths of these diverse algorithms. Ensemble methods
leverage the collective decision-making power of multiple
models, each capturing different aspects of the underlying
data patterns. The combination of boosting algorithms like
AdaBoost, gradient boosting methods like XGBoost, tree-
based models like LightGBM and CatBoost, and the robust-
ness of RF creates a robust and versatile ensemble that excels
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Figure 2. Comparison of F1 score performance between K-means SMOTE and techniques without oversampling across various ML models
for soil movement prediction in testing. Blue bars represent F1 scores achieved with K-means SMOTE, while orange bars represent F1
scores obtained without oversampling.

Figure 3. Confusion matrix depicting the performance of the dynamic ensemble model on the training and testing datasets using the K-means
SMOTE oversampling technique.

in handling various aspects of the dataset, contributing to its
overall superior performance.

In summary, the findings underscore the critical role of
oversampling techniques, especially K-means SMOTE, in
enhancing the predictive performance of landslide prediction
models. The success of the dynamic ensemble model further
highlights the importance of ensemble techniques in aggre-
gating diverse model predictions for improved accuracy.

The superior performance demonstrated by oversampling
techniques compared to those without oversampling can be
attributed to several factors. Firstly, oversampling techniques

address class imbalance by generating synthetic samples for
minority classes, thus providing the model with more repre-
sentative training data. This allows for the ML model to learn
the underlying patterns of the minority class more effectively,
leading to improved classification performance. Addition-
ally, oversampling techniques help reduce the risk of over-
fitting by providing a more balanced representation of the
dataset, enhancing the model’s ability to generalize to unseen
data. Moreover, by increasing the diversity of the training
data, oversampling techniques enable the model to capture a
wider range of variation within the dataset, resulting in bet-
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ter generalization performance. Overall, using oversampling
techniques ensures that the ML model is better equipped to
handle imbalanced datasets, leading to enhanced predictive
performance in soil movement prediction tasks.

Furthermore, the parameter analysis reveals that oversam-
pling techniques add generalized information to the dataset,
making it more consistent across different datasets. This re-
duced variability in the dataset allows for ML models to learn
these generalized patterns more effectively. As evident in the
parameter analysis results, oversampling techniques lead to a
smaller SD in parameter values across different models, indi-
cating improved consistency and generalization. This further
supports the notion that oversampling techniques help miti-
gate overfitting and enhance the overall performance of ML
models in soil movement prediction tasks.

Despite these achievements, it is crucial to acknowledge
the study’s limitations. The generalizability of the findings to
different geological conditions or regions may be restricted
due to the specificity of the dataset. While effective, the syn-
thetic data points generated through oversampling may only
capture part of the complexity inherent in real-world land-
slide occurrences. The choice of classification models and
parameter settings introduces a level of bias, with alterna-
tive configurations potentially yielding different results. Ad-
ditionally, relying on historical data may limit the model’s
ability to account for future changes or unforeseen events,
such as changes in rainfall intensity, seismic activity, or hu-
man influences.

In future work, the exploration of encoder–decoder
or transformer models in the class-imbalanced movement
dataset is planned. These models, known for their success in
sequence-to-sequence tasks, may improve classification ac-
curacy and address class imbalance challenges. This avenue
of experimentation aims to provide valuable insights into the
suitability of advanced models for analyzing and modeling
imbalanced movement data.

To sum up, the study contributes to understanding land-
slide risks and supports the development of effective preven-
tive measures. The combination of robust oversampling tech-
niques, ensemble modeling, and a systematic approach to pa-
rameter tuning yields a promising framework for accurate
landslide prediction. The work presented lays the ground-
work for future research to refine models and address the
inherent challenges in landslide prediction tasks.
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