Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-121-2024
https://doi.org/10.5194/nhess-24-121-2024
Research article
 | 
18 Jan 2024
Research article |  | 18 Jan 2024

Proposal for a new meteotsunami intensity index

Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke

Related authors

Meteotsunami in the United Kingdom: the hidden hazard
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023,https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary
Probabilistic tsunami hazard analysis of Batukaras, a tourism village in Indonesia
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
Nat. Hazards Earth Syst. Sci., 25, 1057–1069, https://doi.org/10.5194/nhess-25-1057-2025,https://doi.org/10.5194/nhess-25-1057-2025, 2025
Short summary

Cited articles

Candella, R. N. and de Araujo, C. E. S.: Meteotsunamis in Brazil: an overview of known occurrences from 1977 to 2020, Nat. Hazards, 106, 1563–1579, https://doi.org/10.1007/s11069-020-04331-y, 2021. 
Dawson, A. G., Musson, R. M. W., Foster, I. D. L., and Brunsden, D.: Abnormal historic sea-surface fluctuations, SW England, Mar. Geol., 170, 59–68, https://doi.org/10.1016/S0025-3227(00)00065-7, 2000. 
Denamiel, C., Belušic, D., Zemunik, P., and Vilibić, I.: Climate projections of meteotsunami hazards, Front. Mar. Sci., 10, 1167863, https://doi.org/10.3389/fmars.2023.1167863, 2023. 
Engeset, R., Pfuhl, G., Orten, C., Hendrikx, J., and Hetland, A.: Colours and maps for communicating natural hazards to users with and without colour vision deficiency, Int. J. Disast. Risk Reduct., 76, 103034, https://doi.org/10.1016/j.ijdrr.2022.103034, 2022. 
Gornitz, V.: Global coastal hazards from future sea level rise, Palaeogeogr. Palaeocl. Palaeoecol., 89, 379–398, https://doi.org/10.1016/0031-0182(91)90173-O, 1991. 
Download
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Share
Altmetrics
Final-revised paper
Preprint