Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-121-2024
https://doi.org/10.5194/nhess-24-121-2024
Research article
 | 
18 Jan 2024
Research article |  | 18 Jan 2024

Proposal for a new meteotsunami intensity index

Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke

Related authors

Meteotsunami in the United Kingdom: the hidden hazard
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023,https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024,https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024,https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024,https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary

Cited articles

Candella, R. N. and de Araujo, C. E. S.: Meteotsunamis in Brazil: an overview of known occurrences from 1977 to 2020, Nat. Hazards, 106, 1563–1579, https://doi.org/10.1007/s11069-020-04331-y, 2021. 
Dawson, A. G., Musson, R. M. W., Foster, I. D. L., and Brunsden, D.: Abnormal historic sea-surface fluctuations, SW England, Mar. Geol., 170, 59–68, https://doi.org/10.1016/S0025-3227(00)00065-7, 2000. 
Denamiel, C., Belušic, D., Zemunik, P., and Vilibić, I.: Climate projections of meteotsunami hazards, Front. Mar. Sci., 10, 1167863, https://doi.org/10.3389/fmars.2023.1167863, 2023. 
Engeset, R., Pfuhl, G., Orten, C., Hendrikx, J., and Hetland, A.: Colours and maps for communicating natural hazards to users with and without colour vision deficiency, Int. J. Disast. Risk Reduct., 76, 103034, https://doi.org/10.1016/j.ijdrr.2022.103034, 2022. 
Gornitz, V.: Global coastal hazards from future sea level rise, Palaeogeogr. Palaeocl. Palaeoecol., 89, 379–398, https://doi.org/10.1016/0031-0182(91)90173-O, 1991. 
Download
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Altmetrics
Final-revised paper
Preprint