Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scenario-based modelling of waves generated by sublacustrine explosive eruptions at Lake Taupō, New Zealand
Matthew W. Hayward
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
NIWA Taihoro Nukurangi, Ōtautahi / Christchurch, Aotearoa / New Zealand
Emily M. Lane
NIWA Taihoro Nukurangi, Ōtautahi / Christchurch, Aotearoa / New Zealand
Colin N. Whittaker
Civil and Environmental Engineering, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Graham S. Leonard
GNS Science Te Pū Ao, Te Whanganui-a-Tara / Wellington, Aotearoa / New Zealand
William L. Power
GNS Science Te Pū Ao, Te Whanganui-a-Tara / Wellington, Aotearoa / New Zealand
Related authors
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025, https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Short summary
This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models and found that forecasts at Baring Head improved significantly due to its narrow geography, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
Tate Kimpton, Colin Whittaker, Pablo Higuera, and Liam Wotherspoon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3724, https://doi.org/10.5194/egusphere-2024-3724, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This research assesses tsunami exposure across New Zealand using detailed inundation maps for various tsunami scenarios. An efficient and accurate model highlights both urban centres and provincial regions as highly exposed, with significant impacts on buildings, infrastructure, and land. The findings provide critical understanding to help communities and decision-makers better plan for tsunamis, offering valuable insights for improving resilience and protecting assets nationwide.
Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
Preprint under review for HESS
Short summary
Short summary
River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Cited articles
Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011jc007646, 2012. a
Allan, A. S. R.: The Oruanui eruption: Insights into the generation and
dynamics of the world's youngest supereruption, PhD thesis, Victoria
University of Wellington, http://hdl.handle.net/10063/2975 (last access: 1 March 2023), 2013. a
Azadbakht, M. and Yim, S. C.: Simulation and estimation of tsunami loads on bridge superstructures, J. Waterw. Port C., 141, 04014031, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000262, 2015. a
Barker, S. J., Van Eaton, A. R., Mastin, L. G., Wilson, C. J. N., Thompson, M. A., Wilson, T. M., Davis, C., and Renwick, J. A.: Modeling ash dispersal from future eruptions of Taupo supervolcano, Geochem. Geophy. Geosy., 20, 3375–3401, https://doi.org/10.1029/2018gc008152, 2019. a, b, c, d
Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel, E. R. H., Mauriohooho, K., and Charlier, B. L. A.: Taupō: an overview of New Zealand's youngest supervolcano, New Zeal. J. Geol. Geop., 64, 1–27, https://doi.org/10.1080/00288306.2020.1792515, 2020. a, b
Battershill, L., Whittaker, C., Lane, E., Popinet, S., White, J., Power, W., and Nomikou, P.: Numerical simulations of a fluidized granular flow entry into water: insights into modeling tsunami generation by pyroclastic density currents, J. Geophys. Res.-Sol. Ea., 126, e2021JB022855,
https://doi.org/10.3389/feart.2021.628652, 2021. a
Beetham, E., Kench, P. S., O'Callaghan, J., and Popinet, S.: Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu, J. Geophys. Res.-Oceans, 121, 311–326, https://doi.org/10.1002/2015JC011246, 2016. a
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson, K., Murphy, S., Paris, R., Rafiana, I., De Risi, R., Rossetto, T., Selva, J., Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P., Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B., González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kânoglu, U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon, A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R., Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., and Vyhmeister, E.: Probabilistic tsunami hazard and risk analysis: a review of research gaps, Front. Earth Sci., 9, 114, https://doi.org/10.3389/feart.2021.628772, 2021. a, b
Borrero, J. C., Lynett, P. J., and Kalligeris, N.: Tsunami currents in ports, Philos. T. Roy. Soc. A, 373, 20140372, https://doi.org/10.1098/rsta.2014.0372, 2015. a
Bosserelle, C., Lane, E. M., and Harang, A.: BG-Flood: A GPU adaptive, open-source, general inundation hazard model, in: Proceedings of the Australasian Coasts and Ports Conference 2021, 30 November–3 December 2021, Christchurch, New Zealand, Engineers Australia, Australia, 152–153, ISBN 978-0-473-64705-6, 2022. a
Carvajal, M., Sepúlveda, I., Gubler, A., and Garreaud, R.: Worldwide
signature of the 2022 Tonga volcanic tsunami, Geophys. Res. Lett.,
49, e2022GL098153, https://doi.org/10.1029/2022GL098153, 2022. a
Cohen, J. and Molemaker, M. J.: A fast double precision CFD code using CUDA, Parallel Computational Fluid Dynamics: Recent Advances and Future Directions, DEStech Publications, Inc., 414–429, ISBN 978-1-60595-022-8, 2009. a
Cole, J.: Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand, B. Volcanol., 52, 445–459, https://doi.org/10.1007/BF00268925, 1990. a
Cole, J. and Lewis, K.: Evolution of the Taupo-Hikurangi subduction system,
Tectonophysics, 72, 1–21, https://doi.org/10.1016/0040-1951(81)90084-6, 1981. a
Daramizadeh, A. and Ansari, M.: Numerical simulation of underwater explosion
near air–water free surface using a five-equation reduced model, Ocean
Eng., 110, 25–35, https://doi.org/10.1016/j.oceaneng.2015.10.003, 2015. a
Davy, B. W. and Caldwell, T. G.: Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand, J. Volcanol. Geoth. Res., 81, 69–89, https://doi.org/10.1016/s0377-0273(97)00074-7, 1998. a, b
De Ronde, C. E. J., Stoffers, P., Garbe-Schönberg, D., Christenson, B. W., Jones, B., Manconi, R., Browne, P. R. L., Hissmann, K., Botz, R., Davy, B. W., Schmitt, M., and Battershill, C. N.: Discovery of active hydrothermal venting in Lake Taupo, New Zealand, J. Volcanol. Geoth. Res., 115, 257–275, https://doi.org/10.1016/s0377-0273(01)00332-8, 2002. a
Duffy, D. G.: On the generation of oceanic surface waves by underwater volcanic explosions, J. Volcanol. Geoth. Res., 50, 323–344,
https://doi.org/10.1016/0377-0273(92)90100-r, 1992. a
East, H. K., Perry, C. T., Beetham, E. P., Kench, P. S., and Liang, Y.:
Modelling reef hydrodynamics and sediment mobility under sea level rise in
atoll reef island systems, Global Planet. Change, 192, 103196,
https://doi.org/10.1016/j.gloplacha.2020.103196, 2020. a
Egorov, Y.: Tsunami wave generation by the eruption of underwater volcano, Nat. Hazards Earth Syst. Sci., 7, 65–69, https://doi.org/10.5194/nhess-7-65-2007, 2007. a, b
Esposti Ongaro, T., de'Michieli Vitturi, M., Cerminara, M., Fornaciai, A., Nannipieri, L., Favalli, M., Calusi, B., Macías, J., Castro, M. J., Ortega, S., González-Vida, J. M., and Escalante, C.: Modeling Tsunamis Generated by Submarine Landslides at Stromboli Volcano (Aeolian Islands, Italy): A Numerical Benchmark Study, Front. Earth Sci., 9, 274, https://doi.org/10.3389/feart.2021.628652, 2021. a, b
Gamble, J., Woodhead, J., Wright, I., and Smith, I.: Basalt and sediment geochemistry and magma petrogenesis in a transect from oceanic island arc to rifted continental margin arc: the Kermadec–Hikurangi Margin, SW Pacific, J. Petrol., 37, 1523–1546, https://doi.org/10.1093/petrology/37.6.1523, 1996. a
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., and Løvholt, F.: Dispersion of tsunamis: does it really matter?, Nat. Hazards Earth Syst. Sci., 13, 1507–1526, https://doi.org/10.5194/nhess-13-1507-2013, 2013. a
Grilli, S. T. and Watts, P.: Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses, J. Waterw. Port C., 131, 283–297, https://doi.org/10.1061/(ASCE)0733-950X(2005)131:6(283), 2005. a
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin, M.: Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia, Sci. Rep., 9, 1–13, https://doi.org/10.1038/s41598-019-48327-6, 2019. a
Guyenne, P. and Grilli, S.: Computations of Three-Dimensional Overturning Waves In Shallow Water: Dynamics And Kinematics, in: The Thirteenth International Offshore and Polar Engineering Conference, 25–30 May 2003, Honolulu, Hawaii, USA, OnePetro, ISBN 1-880653-60−5, 2003. a
Harbitz, C. B., Løvholt, F., and Bungum, H.: Submarine landslide tsunamis:
how extreme and how likely?, Nat. Hazards, 72, 1341–1374,
https://doi.org/10.1007/s11069-013-0681-3, 2014. a
Hayward, M. W.: Data for figures of explosive volcanic tsunami generation, propagation and inundation around Lake Taupō, Zenodo [data set], https://doi.org/10.5281/zenodo.6867585, 2022. a
Hayward, M. W., Whittaker, C. N., Lane, E. M., and Power, W. L.: Submarine explosive volcanism – numerical modelling of tsunami propagation and run-up, in: Proceedings of the 20th Australasian Coasts and Ports Conference, 20 November–3 December 2021, Christchurch, New Zealand, Engineers Australia, Australia, 280–285, ISBN 978-0-473-64705-6, 2022a. a
Hayward, M. W., Whittaker, C. N., Lane, E. M., Power, W. L., Popinet, S., and White, J. D. L.: Multilayer modelling of waves generated by explosive subaqueous volcanism, Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, 2022b. a, b, c, d
Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A. B.: Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia, Ocean Eng., 195, 106733, https://doi.org/10.1016/j.oceaneng.2019.106733, 2020. a
Houghton, B. F., Carey, R. J., Cashman, K. V., Wilson, C. J. N., Hobden, B. J., and Hammer, J. E.: Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: evidence from clast vesicularity, J. Volcanol. Geoth. Res., 195, 31–47, https://doi.org/10.1016/j.jvolgeores.2010.06.002, 2010. a
Irwin, J.: Lake Taupo, provisional bathymetry, 1 : 50 000, NZ Oceanographic Institute Chart, Lake Series, National Library of New Zealand, NLNZ ALMA 9912203103502836, 1972. a
Klein, A.: Tongan volcano erupts, New Sci., 253, 7, https://doi.org/10.1016/S0262-4079(22)00074-4, 2022. a
Kono, F., Nakasato, N., Hayashi, K., Vazhenin, A., and Sedukhin, S.: Evaluations of OpenCL-written tsunami simulation on FPGA and comparison with GPU implementation, J. Supercomput., 74, 2747–2775, https://doi.org/10.1007/s11227-018-2315-8, 2018. a
LeVeque, R. J., George, D. L., and Berger, M. J.: Tsunami modelling with adaptively refined finite volume methods, Acta Numer., 20, 211–289, 2011. a
Li, T., Wang, S., Li, S., and Zhang, A.-M.: Numerical investigation of an underwater explosion bubble based on FVM and VOF, Appl. Ocean Res., 74,
49–58, https://doi.org/10.1016/j.apor.2018.02.024, 2018. a
Liu, M., Liu, G., Lam, K., and Zong, Z.: Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30, 106–118, 2003. a
Liu, Y. L., Zhang, A. M., Tian, Z. L., and Wang, S. P.: Numerical investigation on global responses of surface ship subjected to underwater explosion in waves, Ocean Eng., 161, 277–290, https://doi.org/10.1016/j.oceaneng.2018.05.013, 2018. a
Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa’anunu, O., Bosserelle, C., Jaffe, B., La Selle, S., Ritchie, A, Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., and Cinar, G. E.: Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption, Nature, 609, 728–733, 2022. a
Lynett, P. J., Borrero, J. C., Weiss, R., Son, S., Greer, D., and Renteria, W.: Observations and modeling of tsunami-induced currents in ports and harbors, Earth Planet. Sc. Lett., 327, 68–74, https://doi.org/10.1016/j.epsl.2012.02.002, 2012. a, b
Mader, C. L.: Modeling the La Palma landslide tsunami, Science of Tsunami Hazards, 19, 150–170, 2001. a
Maeno, F. and Imamura, F.: Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia, J. Geophys. Res.-Sol. Ea., 116, B09205, https://doi.org/10.1029/2011JB008253, 2011. a
Nomanbhoy, N. and Satake, K.: Generation mechanism of tsunamis from the 1883 Krakatau eruption, Geophys. Res. Lett., 22, 509–512, https://doi.org/10.1029/94gl03219, 1995. a
Nosov, M. A., Moshenceva, A. V., and Kolesov, S. V.: Horizontal motions of water in the vicinity of a tsunami source, Pure Appl. Geophys., 170, 1647–1660, https://doi.org/10.1007/s00024-012-0605-2, 2013. a
Omira, R., Ramalho, R., Kim, J., González, P. J., Kadri, U., Miranda, J., Carrilho, F., and Baptista, M.: Global Tonga tsunami explained by a fast-moving atmospheric source, Nature, 609, 734–740, https://doi.org/10.1038/s41586-022-04926-4, 2022. a
Pakoksung, K., Suppasri, A., and Imamura, F.: Probabilistic Tsunami Hazard Analysis of Inundated Buildings Following a Subaqueous Volcanic Explosion Based on the 1716 Tsunami Scenario in Taal Lake, Philippines, Geosciences, 11, 92, https://doi.org/10.3390/geosciences11020092, 2021. a
Pararas-Carayannis, G.: Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii, Science of Tsunami Hazards, 20,
251–277, 2002. a
Paris, R.: Source mechanisms of volcanic tsunamis, Philos. T. Roy. Soc. A, 373, 20140380, https://doi.org/10.1098/rsta.2014.0380, 2015. a, b, c
Paris, R. and Ulvrová, M.: Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines, B. Volcanol., 81, 14, https://doi.org/10.1007/s00445-019-1272-2, 2019. a, b
Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L., and Ulvrova, M.: Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea), Nat. Hazards, 70, 447–470, https://doi.org/10.1007/s11069-013-0822-8, 2014. a, b, c
Paris, R., Ulvrová, M., Selva, J., Brizuela, B., Costa, A., Grezio, A., Lorito, S., and Tonini, R.: Probabilistic hazard analysis for tsunamis generated by subaqueous volcanic explosions in the Campi Flegrei caldera, Italy, J. Volcanol. Geoth. Res., 379, 106–116, https://doi.org/10.1016/j.jvolgeores.2019.05.010, 2019. a, b
Popinet, S.: Quadtree-adaptive tsunami modelling, Ocean Dynam., 61,
1261–1285, https://doi.org/10.1007/s10236-011-0438-z, 2011. a, b
Popinet, S.: A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys., 302, 336–358,
https://doi.org/10.1016/j.jcp.2015.09.009, 2015. a
Popinet, S.: A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows, J. Comput. Phys., 148, 109609, https://doi.org/10.1016/j.jcp.2020.109609, 2020. a, b, c
Rowe, D. K., Shankar, U., James, M., and Waugh, B.: Use of GIS to predict effects of water level on the spawning area for smelt, Retropinna retropinna,
in Lake Taupo, New Zealand, Fisheries Manag. Ecol., 9, 205–216, https://doi.org/10.1046/j.1365-2400.2002.00298.x, 2002. a
Sato, H. and Taniguchi, H.: Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: Implications for energy partitioning, Geophys. Res. Lett., 24, 205–208,
https://doi.org/10.1029/96gl04004, 1997. a
Schilperoort, B., Coenders-Gerrits, M., Rodríguez, C. J., van Hooft, A., van de Wiel, B., and Savenije, H.: Detecting nighttime inversions in the interior of a Douglas fir canopy, Agr. Forest Meteorol., 321, 108960, https://doi.org/10.1016/j.agrformet.2022.108960, 2022. a
Self, S.: The effects and consequences of very large explosive volcanic eruptions, Philos. T. Roy. Soc. A, 364, 2073–2097,
https://doi.org/10.1098/rsta.2006.1814, 2006. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous volcanic eruptions. Part 1: Free surface disturbances, J. Geophys. Res.-Oceans, 126, e2020JC016588, https://doi.org/10.1029/2020jc016588, 2021a. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous volcanic eruptions. Part 2: Properties of generated waves, J. Geophys. Res.-Oceans, 126, e2020JC016587, https://doi.org/10.1029/2020jc016587, 2021b. a
Shin, Y. S.: Ship shock modeling and simulation for far-field underwater explosion, Comput. Struct., 82, 2211–2219, https://doi.org/10.1016/j.compstruc.2004.03.075, 2004. a
Stirling, M. and Wilson, C.: Development of a volcanic hazard model for New Zealand: first approaches from the methods of probabilistic seismic hazard analysis, Bulletin of the New Zealand Society for Earthquake Engineering, 35, 266–277, https://doi.org/10.5459/bnzsee.35.4.266-277, 2002. a, b
Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., and Shi, F.: Far-field tsunami impact in the North Atlantic basin from large scale flank collapses of the Cumbre Vieja Volcano, La Palma, Pure Appl. Geophys., 172, 3589–3616, https://doi.org/10.1007/s00024-015-1135-5, 2015. a
Torsvik, T., Paris, R., Didenkulova, I., Pelinovsky, E., Belousov, A., and Belousova, M.: Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia, Nat. Hazards Earth Syst. Sci., 10, 2359–2369, https://doi.org/10.5194/nhess-10-2359-2010, 2010. a
Ulvrová, M., Paris, R., Kelfoun, K., and Nomikou, P.: Numerical simulations of tsunamis generated by underwater volcanic explosions at Karymskoye lake (Kamchatka, Russia) and Kolumbo volcano (Aegean Sea, Greece), Nat. Hazards Earth Syst. Sci., 14, 401–412, https://doi.org/10.5194/nhess-14-401-2014, 2014.
a, b, c
Ulvrova, M., Paris, R., Nomikou, P., Kelfoun, K., Leibrandt, S., Tappin, D., and McCoy, F.: Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece), J. Volcanol. Geoth. Res., 321, 125–139, https://doi.org/10.1016/j.jvolgeores.2016.04.034, 2016. a
Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H., Southon, J., Barrell, D. J., Wilson, C. J., McGlone, M. S., Allan, A. S., Almond, P. C., Petchey, F., Dabell, K., Dieffenbacher-Krall, A. C., and Blaauw, M.: A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand, Quaternary Sci. Rev., 74, 195–201, https://doi.org/10.1016/j.quascirev.2012.11.006, 2013. a
Wang, S.-P., Zhang, A.-M., Liu, Y.-L., Zhang, S., and Cui, P.: Bubble dynamics and its applications, J. Hydrodyn., 30, 975–991,
https://doi.org/10.1007/s42241-018-0141-3, 2018. a
Ward, S. N. and Day, S.: Cumbre Vieja volcano–potential collapse and tsunami at La Palma, Canary Islands, Geophys. Res. Lett., 28, 3397–3400,
https://doi.org/10.1029/2001GL013110, 2001. a, b
Ward, S. N. and Day, S.: Tsunami thoughts, CSEG Recorder, 38–44, https://csegrecorder.com/articles/view/tsunami-thoughts (last access: 1 March 2023), 2005. a
Whalin, R. W., Pace, C. E., and Lane, W. F.: Mono Lake Explosion Test Series, 1965: Analysis of Surface Wave and Wave Runup Data, Waterways Experiment Station, US Army Technical Report N-70-12, 1970. a
Williams, R., Rowley, P., and Garthwaite, M. C.: Reconstructing the Anak
Krakatau flank collapse that caused the December 2018 Indonesian tsunami,
Geology, 47, 973–976, https://doi.org/10.1130/g46517.1, 2019. a
Wilson, C. J. N.: Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand, Philos. T. Roy. Soc. A, 343, 205–306, https://doi.org/10.1098/rsta.1993.0050, 1993. a, b, c, d
Wilson, C. J. N.: The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview, J. Volcanol. Geoth. Res., 112, 133–174, https://doi.org/10.1016/s0377-0273(01)00239-6, 2001. a
Wilson, C. J. N. and Walker, G. P. L.: The Taupo eruption, New Zealand I. General aspects, Philos. T. Roy. Soc. A, 314, 199–228, https://doi.org/10.1098/rsta.1985.0019, 1985. a
Xu, L.-Y., Wang, S.-P., Liu, Y.-L., and Zhang, A.-M.: Numerical simulation on the whole process of an underwater explosion between a deformable seabed and a free surface, Ocean Eng., 219, 108311, https://doi.org/10.1016/j.oceaneng.2020.108311, 2020. a
Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D., and Satake, K.: The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption, Sci. Adv., 6, eaaz1377, https://doi.org/10.1126/sciadv.aaz1377, 2020. a
Short summary
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are...
Altmetrics
Final-revised paper
Preprint