Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-955-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scenario-based modelling of waves generated by sublacustrine explosive eruptions at Lake Taupō, New Zealand
Matthew W. Hayward
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
NIWA Taihoro Nukurangi, Ōtautahi / Christchurch, Aotearoa / New Zealand
Emily M. Lane
NIWA Taihoro Nukurangi, Ōtautahi / Christchurch, Aotearoa / New Zealand
Colin N. Whittaker
Civil and Environmental Engineering, University of Auckland, Tāmaki Makaurau / Auckland, Aotearoa / New Zealand
Graham S. Leonard
GNS Science Te Pū Ao, Te Whanganui-a-Tara / Wellington, Aotearoa / New Zealand
William L. Power
GNS Science Te Pū Ao, Te Whanganui-a-Tara / Wellington, Aotearoa / New Zealand
Related authors
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
Preprint under review for HESS
Short summary
Short summary
River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-110, https://doi.org/10.5194/gmd-2024-110, 2024
Preprint under review for GMD
Short summary
Short summary
This research explores improving wave forecasts in New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models, finding that forecasts at Baring Head improved significantly due to its strong tidal currents, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
James H. Williams, Thomas M. Wilson, Nick Horspool, Ryan Paulik, Liam Wotherspoon, Emily M. Lane, and Matthew W. Hughes
Nat. Hazards Earth Syst. Sci., 20, 451–470, https://doi.org/10.5194/nhess-20-451-2020, https://doi.org/10.5194/nhess-20-451-2020, 2020
Short summary
Short summary
Post-event field survey data from two tsunami events, the 2011 Tōhoku tsunami, Japan, and the 2015 Illapel tsunami, Chile, are used in this study to develop fragility functions for roads and bridges. This study demonstrates the effectiveness of supplementing post-event field surveys with remotely sensed data. The resulting fragility functions address a substantial research gap in tsunami impacts on infrastructure and include a range of subtleties in asset and hazard characteristics.
Shaun R. Eaves, Andrew N. Mackintosh, Brian M. Anderson, Alice M. Doughty, Dougal B. Townsend, Chris E. Conway, Gisela Winckler, Joerg M. Schaefer, Graham S. Leonard, and Andrew T. Calvert
Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, https://doi.org/10.5194/cp-12-943-2016, 2016
Short summary
Short summary
Geological evidence for past changes in glacier length provides a useful source of information about pre-historic climate change. We have used glacier modelling to show that air temperature reductions of −5 to −7 °C, relative to present, are required to simulate the glacial extent in the North Island, New Zealand, during the last ice age (approx. 20000 years ago). Our results provide data to assess climate model simulations, with the aim of determining the drivers of past natural climate change.
D. Burbidge, C. Mueller, and W. Power
Nat. Hazards Earth Syst. Sci., 15, 2299–2312, https://doi.org/10.5194/nhess-15-2299-2015, https://doi.org/10.5194/nhess-15-2299-2015, 2015
Short summary
Short summary
This study looks at the effect on the maximum wave height of a tsunami when the parameters of the earthquake that generates it are varied. We show that this effect is a strong function of the distance and direction of the earthquake, the choice of fault parameter and the bathymetry of the ocean. The results of this study have implications for how uncertainty in an earthquake’s fault parameters is incorporated into both tsunami warnings and hazard assessments in the future.
U. Morgenstern, C. J. Daughney, G. Leonard, D. Gordon, F. M. Donath, and R. Reeves
Hydrol. Earth Syst. Sci., 19, 803–822, https://doi.org/10.5194/hess-19-803-2015, https://doi.org/10.5194/hess-19-803-2015, 2015
S. A. Fraser, N. J. Wood, D. M. Johnston, G. S. Leonard, P. D. Greening, and T. Rossetto
Nat. Hazards Earth Syst. Sci., 14, 2975–2991, https://doi.org/10.5194/nhess-14-2975-2014, https://doi.org/10.5194/nhess-14-2975-2014, 2014
Related subject area
Volcanic Hazards
Brief communication: Small-scale geohazards cause significant and highly variable impacts on emotions
“More poison than words can describe”: what did people die of after the 1783 Laki eruption in Iceland?
Automating tephra fall building damage assessment using deep learning
SEATANI: hazards from seamounts in Southeast Asia, Taiwan, and Andaman and Nicobar Islands (eastern India)
Where will the next flank eruption at Etna occur? An updated spatial probabilistic assessment
The 2021 La Palma volcanic eruption and its impact on ionospheric scintillation as measured from GNSS reference stations, GNSS-R and GNSS-RO
Lava flow hazard modeling during the 2021 Fagradalsfjall eruption, Iceland: applications of MrLavaLoba
Assessing long-term tephra fallout hazard in southern Italy from Neapolitan volcanoes
Clustering of eruptive events from high-precision strain signals recorded during the 2020–2022 lava fountains at the Etna volcano (Italy)
Grain size modulates volcanic ash retention on crop foliage and potential yield loss
Characterizing the evolution of mass flow properties and dynamics through analysis of seismic signals: insights from the 18 March 2007 Mt. Ruapehu lake-breakout lahar
Multi-station automatic classification of seismic signatures from the Lascar volcano database
The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean
Assessing minimum pyroclastic density current mass to impact critical infrastructures: example from Aso caldera (Japan)
Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards
Assessing the effectiveness and the economic impact of evacuation: the case of the island of Vulcano, Italy
VADUGS: a neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model
Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic
A unified probabilistic framework for volcanic hazard and eruption forecasting
Quantifying location error to define uncertainty in volcanic mass flow hazard simulations
Lava flow hazard map of Piton de la Fournaise volcano
Thematic vent opening probability maps and hazard assessment of small-scale pyroclastic density currents in the San Salvador volcanic complex (El Salvador) and Nejapa-Chiltepe volcanic complex (Nicaragua)
Assessing the impact of explosive eruptions of Fogo volcano (São Miguel, Azores) on the tourism economy
Remote monitoring of seismic swarms and the August 2016 seismic crisis of Brava, Cabo Verde, using array methods
Insights into the recurrent energetic eruptions that drive Awu, among the deadliest volcanoes on Earth
Invited perspectives: The volcanoes of Naples: how can the highest volcanic risk in the world be effectively mitigated?
A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation
Analysis of properties of the 19 February 2018 volcanic eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 satellite data
Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data
Mapping the susceptibility of rain-triggered lahars at Vulcano island (Italy) combining field characterization, geotechnical analysis, and numerical modelling
Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location
Assessing the impact of road segment obstruction on accessibility of critical services in case of a hazard
Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna
Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption
A retrospective study of the pre-eruptive unrest on El Hierro (Canary Islands): implications of seismicity and deformation in the short-term volcanic hazard assessment
An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere
Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters
Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)
High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption
Examining the impact of lahars on buildings using numerical modelling
Brief communication: Extended chronology of the Cordón Caulle volcanic eruption beyond 2011 reveals toxic impacts
Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption
Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption
Factors controlling erosion/deposition phenomena related to lahars at Volcán de Colima, Mexico
The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation
Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results
Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience
Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014
Evgenia Ilyinskaya, Vésteinn Snæbjarnarson, Hanne Krage Carlsen, and Björn Oddsson
Nat. Hazards Earth Syst. Sci., 24, 3115–3128, https://doi.org/10.5194/nhess-24-3115-2024, https://doi.org/10.5194/nhess-24-3115-2024, 2024
Short summary
Short summary
Natural hazards can have negative impacts on mental health. We used artificial intelligence to analyse sentiments expressed by people in Twitter (now X) posts during a period of heightened earthquake activity and during a small volcanic eruption in Iceland. We show that even small natural hazards which cause no material damage can still have a significant impact on people. Earthquakes had a predominantly negative impact, but, somewhat unexpectedly, the eruption seemed to have a positive impact.
Claudia Elisabeth Wieners and Guðmundur Hálfdanarson
Nat. Hazards Earth Syst. Sci., 24, 2971–2994, https://doi.org/10.5194/nhess-24-2971-2024, https://doi.org/10.5194/nhess-24-2971-2024, 2024
Short summary
Short summary
After the 1783 Laki eruption, excess mortality in Iceland was one-sixth of the population, traditionally explained by famine due to livestock loss. Since 1970, it has been suggested that 1) fluorine poisoning may have contributed to mortality in Iceland and 2) air pollution might have caused excess deaths in both Iceland and Europe. Reviewing contemporary Icelandic demographic data, air pollution simulations, and medical records on fluorosis, we show that evidence for both hypotheses is weak.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-81, https://doi.org/10.5194/nhess-2024-81, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is vital for response and recovery. Traditional post-event damage assessment methods such as ground surveys, are often time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach that uses UAV acquired optical images and deep learning to rapidly generate spatial building damage information.
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
EGUsphere, https://doi.org/10.5194/egusphere-2023-2624, https://doi.org/10.5194/egusphere-2023-2624, 2023
Short summary
Short summary
In this paper we propose a probability map that shows where most likely, in the future, flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of the past flank eruptive fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
Carlos Molina, Badr-Eddine Boudriki Semlali, Guillermo González-Casado, Hyuk Park, and Adriano Camps
Nat. Hazards Earth Syst. Sci., 23, 3671–3684, https://doi.org/10.5194/nhess-23-3671-2023, https://doi.org/10.5194/nhess-23-3671-2023, 2023
Short summary
Short summary
Global navigation satellite system signals are used to measure the perturbations induced in the ionosphere by earthquakes related to volcanic eruptions. The study uses data from ground stations and satellites measuring the signals reflected on the ocean or during radio occultation. The results shows a small correlation, but given the small magnitude of the earthquakes, it is difficult to apply this concept to any practical application that finds earthquake proxies in ionospheric perturbations.
Gro B. M. Pedersen, Melissa A. Pfeffer, Sara Barsotti, Simone Tarquini, Mattia de'Michieli Vitturi, Bergrún A. Óladóttir, and Ragnar Heiðar Þrastarson
Nat. Hazards Earth Syst. Sci., 23, 3147–3168, https://doi.org/10.5194/nhess-23-3147-2023, https://doi.org/10.5194/nhess-23-3147-2023, 2023
Short summary
Short summary
The lava eruption at Fagradalsfjall in 2021 was the most visited eruption in Iceland, with thousands of visitors per day for 6 months. To address the short- and long-term danger of lava inundating infrastructure and hiking paths, we used the lava flow model MrLavaLoba before and during the eruption. These simulations helped communicate lava hazards to stakeholders and can be used as a case study for lava hazard assessment for future eruptions in the area, which are likely to be more destructive.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Luigi Carleo, Gilda Currenti, and Alessandro Bonaccorso
Nat. Hazards Earth Syst. Sci., 23, 1743–1754, https://doi.org/10.5194/nhess-23-1743-2023, https://doi.org/10.5194/nhess-23-1743-2023, 2023
Short summary
Short summary
Lava fountains at the Etna volcano are explosive eruptions that pose a serious threat to civil infrastructure and aviation. Their evolution from weak explosion to sustained eruptive column is imprinted in tiny ground deformations caught by strain signals with diverse duration and amplitude. By performing a clustering analysis on strain variations, we discover a transition among four eruptive styles, providing useful hints for volcano monitoring and hazard assessment.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Braden Walsh, Charline Lormand, Jon Procter, and Glyn Williams-Jones
Nat. Hazards Earth Syst. Sci., 23, 1029–1044, https://doi.org/10.5194/nhess-23-1029-2023, https://doi.org/10.5194/nhess-23-1029-2023, 2023
Short summary
Short summary
Here, we delve into the properties of a lake-breakout mass flow that grew up to a volume of ~ 4.4 × 106 m3 over the course of 83 km that occurred on 18 March 2007 at Mt. Ruapehu, Aotearoa / New Zealand. The combination of seismic analysis (frequency and directionality) with on-the-ground measurements (e.g., video, sediment concentration) shows how a lahar evolves over time and distance and how using seismic techniques can help monitor the ever-changing dynamics and properties of a flow event.
Pablo Salazar, Franz Yupanqui, Claudio Meneses, Susana Layana, and Gonzalo Yáñez
Nat. Hazards Earth Syst. Sci., 23, 991–1006, https://doi.org/10.5194/nhess-23-991-2023, https://doi.org/10.5194/nhess-23-991-2023, 2023
Short summary
Short summary
The acquisition of more generalizable models, using machine learning techniques, creates a good opportunity to develop a multi-volcano probabilistic model for volcanoes worldwide. This will improve the understanding and evaluation of the hazards and risks associated with the activity of volcanoes.
Gui Hu, Linlin Li, Zhiyuan Ren, and Kan Zhang
Nat. Hazards Earth Syst. Sci., 23, 675–691, https://doi.org/10.5194/nhess-23-675-2023, https://doi.org/10.5194/nhess-23-675-2023, 2023
Short summary
Short summary
We explore the tsunamigenic mechanisms and the hydrodynamic characteristics of the 2022 Hunga Tonga–Hunga Ha'apai volcanic tsunami event. Through extensive analysis of tsunami waveforms, we identify four distinct tsunami components from different physical mechanisms. The long-lasting oscillation of the tsunami event in the Pacific Ocean was mainly associated with the interplay of the ocean waves left by atmospheric waves with local bathymetry.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022, https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Short summary
This paper focuses on the issue of population information about natural hazards and disaster risk. It builds on the analysis of the unique seismo-volcanic crisis on the island of Mayotte, France, that started in May 2018 and lasted several years. We document the gradual response of the actors in charge of scientific monitoring and risk management. We then make recommendations for improving risk communication strategies in Mayotte and also in contexts where comparable geo-crises may happen.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Warner Marzocchi, Jacopo Selva, and Thomas H. Jordan
Nat. Hazards Earth Syst. Sci., 21, 3509–3517, https://doi.org/10.5194/nhess-21-3509-2021, https://doi.org/10.5194/nhess-21-3509-2021, 2021
Short summary
Short summary
Eruption forecasting and volcanic hazard analysis are pervaded by uncertainty of different kinds, such as the natural randomness, our lack of knowledge, and the so-called unknown unknowns. After discussing the limits of how classical probabilistic frameworks handle these uncertainties, we put forward a unified probabilistic framework which unambiguously defines uncertainty of different kinds, and it allows scientific validation of the hazard model against independent observations.
Stuart R. Mead, Jonathan Procter, and Gabor Kereszturi
Nat. Hazards Earth Syst. Sci., 21, 2447–2460, https://doi.org/10.5194/nhess-21-2447-2021, https://doi.org/10.5194/nhess-21-2447-2021, 2021
Short summary
Short summary
Computer simulations can be used to estimate the flow path and inundation of volcanic mass flows; however, their accuracy needs to be appropriately measured and handled in order to determine hazard zones. This paper presents an approach to simulation accuracy assessment and hazard zonation with a volcanic debris avalanche as the benchmark. This method helped to identify and support key findings about errors in mass flow simulations, as well as potential end-use cases for hazard zonation.
Magdalena Oryaëlle Chevrel, Massimiliano Favalli, Nicolas Villeneuve, Andrew J. L. Harris, Alessandro Fornaciai, Nicole Richter, Allan Derrien, Patrice Boissier, Andrea Di Muro, and Aline Peltier
Nat. Hazards Earth Syst. Sci., 21, 2355–2377, https://doi.org/10.5194/nhess-21-2355-2021, https://doi.org/10.5194/nhess-21-2355-2021, 2021
Short summary
Short summary
At Piton de la Fournaise, eruptions are typically fissure-fed and form extensive lava flow fields. Most historical events have occurred inside an uninhabited caldera, but rarely has lava flowed where population and infrastructure might be at risk. We present an up-to-date lava flow hazard map to visualize the probability of inundation by a lava flow per unit area that is an essential tool for hazard mitigation and guiding crises response management.
Andrea Bevilacqua, Alvaro Aravena, Augusto Neri, Eduardo Gutiérrez, Demetrio Escobar, Melida Schliz, Alessandro Aiuppa, and Raffaello Cioni
Nat. Hazards Earth Syst. Sci., 21, 1639–1665, https://doi.org/10.5194/nhess-21-1639-2021, https://doi.org/10.5194/nhess-21-1639-2021, 2021
Short summary
Short summary
We present novel probability maps for the opening position of new vents in the San Salvador (El Salvador) and Nejapa-Chiltepe (Nicaragua) volcanic complexes. In particular, we present thematic maps, i.e., we consider different hazardous phenomena separately. To illustrate the significant effects of considering the expected eruption style in the construction of vent opening maps, we focus on the analysis of small-scale pyroclastic density currents using an approach based on numerical modeling.
Joana Medeiros, Rita Carmo, Adriano Pimentel, José Cabral Vieira, and Gabriela Queiroz
Nat. Hazards Earth Syst. Sci., 21, 417–437, https://doi.org/10.5194/nhess-21-417-2021, https://doi.org/10.5194/nhess-21-417-2021, 2021
Short summary
Short summary
This study proposes a new approach to accessing the economic impact of explosive eruptions on the tourism sector on São Miguel Island, which uses the loss present value method to estimate the benefits generated by accommodation units over 30 years for different scenarios. The results reveal that in a near-total-destruction scenario, the economic loss is ~ EUR 145 million. This method can be adapted to other volcanic regions and also to other geological hazards and economic sectors.
Carola Leva, Georg Rümpker, and Ingo Wölbern
Nat. Hazards Earth Syst. Sci., 20, 3627–3638, https://doi.org/10.5194/nhess-20-3627-2020, https://doi.org/10.5194/nhess-20-3627-2020, 2020
Short summary
Short summary
Often, an abrupt increase in shallow seismicity at volcanoes is seen as an indicator for magmatic intrusions into the upper crust. If no eruption occurs and the seismic activity stops, this is called a failed eruption. Here, we report a failed eruption of Brava, Cabo Verde, in August 2016. We remotely monitored the seismicity of Brava with a seismic array, operating from October 2015 to December 2016. Other episodes with increased seismicity around the island were also observed during the study.
Philipson Bani, Kristianto, Syegi Kunrat, and Devy Kamil Syahbana
Nat. Hazards Earth Syst. Sci., 20, 2119–2132, https://doi.org/10.5194/nhess-20-2119-2020, https://doi.org/10.5194/nhess-20-2119-2020, 2020
Short summary
Short summary
Awu is a little-known volcano in Indonesia, and paradoxically it is one of the deadliest volcanoes on Earth. Some of its recurrent intense eruptions have induced world-scale impacts. The pulverization of a cooled lava dome and its conduit plug have allowed lake water injection into the conduit, leading to explosive water–magma interaction. The past vigorous eruptions were likely induced by these phenomena and it is a possible scenario for future events.
Giuseppe De Natale, Claudia Troise, and Renato Somma
Nat. Hazards Earth Syst. Sci., 20, 2037–2053, https://doi.org/10.5194/nhess-20-2037-2020, https://doi.org/10.5194/nhess-20-2037-2020, 2020
Short summary
Short summary
This paper starts by showing the present low performance of eruption forecasting and then addresses the problem of effectively mitigating the highest volcanic risk in the world, represented by the Naples area (southern Italy). The problem is considered in a highly multidisciplinary way, taking into account the main economic, sociological and urban planning issues. Our study gives precise guidelines to assessing and managing volcanic risk in any densely urbanised area.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Adrianus de Laat, Margarita Vazquez-Navarro, Nicolas Theys, and Piet Stammes
Nat. Hazards Earth Syst. Sci., 20, 1203–1217, https://doi.org/10.5194/nhess-20-1203-2020, https://doi.org/10.5194/nhess-20-1203-2020, 2020
Short summary
Short summary
TROPOMI satellite measurements can accurately determine the height of thick volcanic ash clouds from a short-lived volcanic eruption of the Sinabung volcano in Indonesia. Standard geostationary satellite detection of volcanic ash was limited due to the presence of water and ice in the upper parts of volcanic ash clouds, a known issue. The TROPOMI satellite measurements do not suffer from this limitation, hence providing information where standard geostationary volcanic ash detection is limited.
Ayleen Gaete, Thomas R. Walter, Stefan Bredemeyer, Martin Zimmer, Christian Kujawa, Luis Franco Marin, Juan San Martin, and Claudia Bucarey Parra
Nat. Hazards Earth Syst. Sci., 20, 377–397, https://doi.org/10.5194/nhess-20-377-2020, https://doi.org/10.5194/nhess-20-377-2020, 2020
Short summary
Short summary
Phreatic eruptions often occur without signs of enhanced volcanic unrest, avoiding detection and posing a threat to people in the vicinity. We analyzed data of the 2015 phreatic eruption of Lascar volcano, Chile, to retrospectively identify a precipitation event as the trigger mechanism and potential signs heralding this minor eruption. We showed that it is possible to detect the precursory activity of phreatic eruptions by deploying appropriate multiparametric monitoring.
Valérie Baumann, Costanza Bonadonna, Sabatino Cuomo, Mariagiovanna Moscariello, Sebastien Biass, Marco Pistolesi, and Alessandro Gattuso
Nat. Hazards Earth Syst. Sci., 19, 2421–2449, https://doi.org/10.5194/nhess-19-2421-2019, https://doi.org/10.5194/nhess-19-2421-2019, 2019
Short summary
Short summary
Lahars are fast-moving mixtures of volcanic debris and water propagating downslope on volcanoes that can be very dangerous for people and property. Identification of lahar source areas and initiation mechanisms is crucial to comprehensive lahar hazard assessment. We present the first rain-triggered lahar susceptibility map for La Fossa volcano (Vulcano, Italy) combining probabilistic tephra modelling, slope-stability modelling, precipitation data, field characterizations, and geotechnical tests.
David M. Hyman, Andrea Bevilacqua, and Marcus I. Bursik
Nat. Hazards Earth Syst. Sci., 19, 1347–1363, https://doi.org/10.5194/nhess-19-1347-2019, https://doi.org/10.5194/nhess-19-1347-2019, 2019
Short summary
Short summary
In this work, we present new methods for calculating the mean, standard deviation, median, and modal locations of the boundaries of volcanic hazards. These calculations are based on a new, mathematically rigorous definition of probabilistic hazard maps – a way to map the probabilities of inundation by a given hazard. We apply this analysis to several models of volcanic flows: simple models of viscous flows, complex models of a tabletop granular flow, and a complex model of a volcanic mud flow.
Sophie Mossoux, Matthieu Kervyn, and Frank Canters
Nat. Hazards Earth Syst. Sci., 19, 1251–1263, https://doi.org/10.5194/nhess-19-1251-2019, https://doi.org/10.5194/nhess-19-1251-2019, 2019
Short summary
Short summary
Hazard maps provide information about the probability of given areas of being affected by hazards. So far studies combining hazard mapping with accessibility to services are few. In this study, we propose two new metrics defining the importance of each road segment in the accessibility of services, taking into account the probability of being affected by a hazard. These metrics may help support discussions about the development of new infrastructure or road segments and evacuation procedures.
Sara Osman, Eduardo Rossi, Costanza Bonadonna, Corine Frischknecht, Daniele Andronico, Raffaello Cioni, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 19, 589–610, https://doi.org/10.5194/nhess-19-589-2019, https://doi.org/10.5194/nhess-19-589-2019, 2019
Short summary
Short summary
The fallout of large clasts (> 5 cm) from the margins of eruptive plumes can damage local infrastructure and severely injure people close to the volcano. Even though this potential hazard has been observed at many volcanoes, it has often been overlooked. We present the first hazard and risk assessment of large-clast fallout from eruptive plumes and use Mt Etna (Italy) as a case study. The use of dedicated shelters in the case of an explosive event that occurs with no warning is also evaluated.
Herlan Darmawan, Thomas R. Walter, Valentin R. Troll, and Agus Budi-Santoso
Nat. Hazards Earth Syst. Sci., 18, 3267–3281, https://doi.org/10.5194/nhess-18-3267-2018, https://doi.org/10.5194/nhess-18-3267-2018, 2018
Short summary
Short summary
At Merapi volcano, lava dome failure may generate pyroclastic flow and threaten populations who live on its flanks. Here, we assessed the potential hazard of the Merapi lava dome by using drone photogrammetry and numerical modeling. Results show a weak structural depression that is associated with high thermal imaging in the southern Merapi lava dome sector. The southern lava dome sector may be further destabilized by typical rainfall at the Merapi summit and produce pyroclastic flow up to 4 km.
Stefania Bartolini, Carmen López, Laura Becerril, Rosa Sobradelo, and Joan Martí
Nat. Hazards Earth Syst. Sci., 18, 1759–1770, https://doi.org/10.5194/nhess-18-1759-2018, https://doi.org/10.5194/nhess-18-1759-2018, 2018
Short summary
Short summary
The most challenging aspect of forecasting volcanic eruptions is the correct identification and interpretation of precursors during the episodes that normally precede eruptive activity. We show an easy and useful approach to the understanding of the information recorded by the monitoring system and show how this information can be used to forecast an eruption and its potential hazards in real time. This methodology can be used to facilitate communication between scientists and decision-makers.
Elena Gerwing, Matthias Hort, Jörn Behrens, and Bärbel Langmann
Nat. Hazards Earth Syst. Sci., 18, 1517–1534, https://doi.org/10.5194/nhess-18-1517-2018, https://doi.org/10.5194/nhess-18-1517-2018, 2018
Short summary
Short summary
This article describes the first volcanic emission advection model based on an adaptive mesh. The advection of volcanic emissions plays a crucial role in climate research, air traffic control and human wellbeing. In contrast to already existing volcanic emission dispersion models relying on a fixed grid, the application of an adaptive mesh enables us to simulate the advection of volcanic emissions with a high local resolution while minimizing computational cost.
Natalie J. Harvey, Nathan Huntley, Helen F. Dacre, Michael Goldstein, David Thomson, and Helen Webster
Nat. Hazards Earth Syst. Sci., 18, 41–63, https://doi.org/10.5194/nhess-18-41-2018, https://doi.org/10.5194/nhess-18-41-2018, 2018
Laura Becerril, Joan Martí, Stefania Bartolini, and Adelina Geyer
Nat. Hazards Earth Syst. Sci., 17, 1145–1157, https://doi.org/10.5194/nhess-17-1145-2017, https://doi.org/10.5194/nhess-17-1145-2017, 2017
Short summary
Short summary
Lanzarote is an island (Canaries, Spain), that has hosted the largest and longest eruption in the archipelago (Timanfaya 1730–36). It brought severe economic losses and forced local people to migrate. We have developed the first comprehensive hazard assessment for the island. New eruptions will take place close to the last one and will be characterised by Strombolian activity, with ash emission towards the S, medium-length lava flows and hydromagmatic activity only close to the coastal areas.
Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 17, 861–879, https://doi.org/10.5194/nhess-17-861-2017, https://doi.org/10.5194/nhess-17-861-2017, 2017
Short summary
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Stuart R. Mead, Christina Magill, Vincent Lemiale, Jean-Claude Thouret, and Mahesh Prakash
Nat. Hazards Earth Syst. Sci., 17, 703–719, https://doi.org/10.5194/nhess-17-703-2017, https://doi.org/10.5194/nhess-17-703-2017, 2017
Short summary
Short summary
Volcanic mudflows, called lahars, can cause large amounts of damage to buildings. In this research we developed a method to estimate lahar-induced building damage based on the height, speed and amount of volcanic material in the lahar. This method was applied to a small region in Arequipa, Peru, where computer models were used to estimate the number of buildings affected by lahars. The research found that building location and the size of the flow are most important in determining damage.
Werner T. Flueck
Nat. Hazards Earth Syst. Sci., 16, 2351–2355, https://doi.org/10.5194/nhess-16-2351-2016, https://doi.org/10.5194/nhess-16-2351-2016, 2016
Short summary
Short summary
The 2011 Puyehue volcano eruption also caused persisting chemical impacts. By 2012, dental fluorosis in deer appeared, with bone fluoride increasing > 38-fold. Livestock also succumbed to fluorosis. As exposure of ruminants continued, bone fluoride reached 10 396 ppm, by 2014 caused skeletal fluorosis, reduced wool growth, and caused major losses among periparturient cattle. Peculiarities of digestive processes make ruminants susceptible to fluoride-containing ashes.
Ana Graciela Ulke, Marcela M. Torres Brizuela, Graciela B. Raga, and Darrel Baumgardner
Nat. Hazards Earth Syst. Sci., 16, 2159–2175, https://doi.org/10.5194/nhess-16-2159-2016, https://doi.org/10.5194/nhess-16-2159-2016, 2016
Short summary
Short summary
The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex (Chile) impacted air traffic around the Southern Hemisphere for several months. The ash deposited in vast areas of the Patagonian steppe was subjected to the strong wind conditions prevalent during the austral winter and spring. An ash resuspension event impacted Buenos Aires and resulted in the closure of airports in the area on 16 October 2011. Measurements of aerosol properties clearly indicate the enhanced concentrations
Nicole Richter, Massimiliano Favalli, Elske de Zeeuw-van Dalfsen, Alessandro Fornaciai, Rui Manuel da Silva Fernandes, Nemesio M. Pérez, Judith Levy, Sónia Silva Victória, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 16, 1925–1951, https://doi.org/10.5194/nhess-16-1925-2016, https://doi.org/10.5194/nhess-16-1925-2016, 2016
Short summary
Short summary
We provide a comprehensive lava flow hazard assessment for Fogo volcano, Cabo Verde before and after the 2014–2015 eruption based on probabilistic lava flow simulations. We find that the probability of lava flow invasion has not decreased at the location of two villages that were destroyed during this eruption, but have already started to be rebuilt. Our findings will be important for the next eruption of Fogo volcano and have implications for future lava flow crises elsewhere in the world.
Rosario Vázquez, Lucia Capra, and Velio Coviello
Nat. Hazards Earth Syst. Sci., 16, 1881–1895, https://doi.org/10.5194/nhess-16-1881-2016, https://doi.org/10.5194/nhess-16-1881-2016, 2016
Short summary
Short summary
We present the morphological changes experienced by Montegrande ravine (Volcán de Colima, Mexico) during the 2013, 2014 and 2015 rainy seasons. A total of 11 lahars occurred during this period of time, and their erosion/deposition effects were quantified by means of cross sections and rainfall analysis. The major factors controlling the E/D rates are the channel-bed slope, the cross-section width, the flow depth and the joint effect of sediment availability and accumulated rainfall.
Alessandro Bonforte, Douglas Antonio Hernandez, Eduardo Gutiérrez, Louis Handal, Cecilia Polío, Salvatore Rapisarda, and Piergiorgio Scarlato
Nat. Hazards Earth Syst. Sci., 16, 1755–1769, https://doi.org/10.5194/nhess-16-1755-2016, https://doi.org/10.5194/nhess-16-1755-2016, 2016
Short summary
Short summary
In this paper, we present the work done during an international cooperation between Italy and El Salvador, for implementing the multiparametric monitoring of the San Miguel volcano in El Salvador after its sudden unrest. In particular, the aim of this paper is to show and describe the installed geodetic network and to show, comment and interpret the very first detailed ground deformation data obtained on this volcano during an unrest period, useful for characterizing its unknown dynamics.
Lara Mani, Paul D. Cole, and Iain Stewart
Nat. Hazards Earth Syst. Sci., 16, 1673–1689, https://doi.org/10.5194/nhess-16-1673-2016, https://doi.org/10.5194/nhess-16-1673-2016, 2016
Short summary
Short summary
Here, we aim to better understand the potential for using video games in volcanic hazard education with at-risk communities. A study using a bespoke-designed video game – St. Vincent's Volcano – was trialled on the Caribbean island of St. Vincent in 2015. Preliminary data analysis demonstrates 94 % of study participants had an improved knowledge of volcanic hazards after playing the game, leading us to conclude that video games could be a logical progression for education and outreach activities.
Alicia García, Servando De la Cruz-Reyna, José M. Marrero, and Ramón Ortiz
Nat. Hazards Earth Syst. Sci., 16, 1135–1144, https://doi.org/10.5194/nhess-16-1135-2016, https://doi.org/10.5194/nhess-16-1135-2016, 2016
Short summary
Short summary
Earthquakes of volcanic origin (VT) represent a significant hazard in volcanic islands prone to landslides. We present a methodology to forecast large VT earthquakes during volcanic crises based on an algorithm that translates fluctuations of the level of seismicity into 10-day time windows of increased probability of a major event. This algorithm has been successfully applied during the 2011–2013 volcanic crisis at El Hierro (Canary Islands).
Boris M. Shevtsov, Pavel P. Firstov, Nina V. Cherneva, Robert H. Holzworth, and Renat R. Akbashev
Nat. Hazards Earth Syst. Sci., 16, 871–874, https://doi.org/10.5194/nhess-16-871-2016, https://doi.org/10.5194/nhess-16-871-2016, 2016
Short summary
Short summary
The Kamchatka volcano group is located near populated areas and international air routes. Due to this, explosive eruptions are a serious threat to their security. To decrease the risks, effective systems for remote detection of eruptions are necessary. WWLLN resolution is enough for the remote sensing of the volcano lightning activity in the early stage of ash cloud formation a few minutes after the eruption when electrification proceeds the most intensively.
Cited articles
Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011jc007646, 2012. a
Allan, A. S. R.: The Oruanui eruption: Insights into the generation and
dynamics of the world's youngest supereruption, PhD thesis, Victoria
University of Wellington, http://hdl.handle.net/10063/2975 (last access: 1 March 2023), 2013. a
Azadbakht, M. and Yim, S. C.: Simulation and estimation of tsunami loads on bridge superstructures, J. Waterw. Port C., 141, 04014031, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000262, 2015. a
Barker, S. J., Van Eaton, A. R., Mastin, L. G., Wilson, C. J. N., Thompson, M. A., Wilson, T. M., Davis, C., and Renwick, J. A.: Modeling ash dispersal from future eruptions of Taupo supervolcano, Geochem. Geophy. Geosy., 20, 3375–3401, https://doi.org/10.1029/2018gc008152, 2019. a, b, c, d
Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel, E. R. H., Mauriohooho, K., and Charlier, B. L. A.: Taupō: an overview of New Zealand's youngest supervolcano, New Zeal. J. Geol. Geop., 64, 1–27, https://doi.org/10.1080/00288306.2020.1792515, 2020. a, b
Battershill, L., Whittaker, C., Lane, E., Popinet, S., White, J., Power, W., and Nomikou, P.: Numerical simulations of a fluidized granular flow entry into water: insights into modeling tsunami generation by pyroclastic density currents, J. Geophys. Res.-Sol. Ea., 126, e2021JB022855,
https://doi.org/10.3389/feart.2021.628652, 2021. a
Beetham, E., Kench, P. S., O'Callaghan, J., and Popinet, S.: Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu, J. Geophys. Res.-Oceans, 121, 311–326, https://doi.org/10.1002/2015JC011246, 2016. a
Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson, K., Murphy, S., Paris, R., Rafiana, I., De Risi, R., Rossetto, T., Selva, J., Taroni, M., Del Zoppo, M., Armigliato, A., Bureš, V., Cech, P., Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar, H. B., González, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kânoglu, U., Macías, J., Papadopoulos, G. A., Polet, J., Romano, F., Salamon, A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R., Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., and Vyhmeister, E.: Probabilistic tsunami hazard and risk analysis: a review of research gaps, Front. Earth Sci., 9, 114, https://doi.org/10.3389/feart.2021.628772, 2021. a, b
Borrero, J. C., Lynett, P. J., and Kalligeris, N.: Tsunami currents in ports, Philos. T. Roy. Soc. A, 373, 20140372, https://doi.org/10.1098/rsta.2014.0372, 2015. a
Bosserelle, C., Lane, E. M., and Harang, A.: BG-Flood: A GPU adaptive, open-source, general inundation hazard model, in: Proceedings of the Australasian Coasts and Ports Conference 2021, 30 November–3 December 2021, Christchurch, New Zealand, Engineers Australia, Australia, 152–153, ISBN 978-0-473-64705-6, 2022. a
Carvajal, M., Sepúlveda, I., Gubler, A., and Garreaud, R.: Worldwide
signature of the 2022 Tonga volcanic tsunami, Geophys. Res. Lett.,
49, e2022GL098153, https://doi.org/10.1029/2022GL098153, 2022. a
Cohen, J. and Molemaker, M. J.: A fast double precision CFD code using CUDA, Parallel Computational Fluid Dynamics: Recent Advances and Future Directions, DEStech Publications, Inc., 414–429, ISBN 978-1-60595-022-8, 2009. a
Cole, J.: Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand, B. Volcanol., 52, 445–459, https://doi.org/10.1007/BF00268925, 1990. a
Cole, J. and Lewis, K.: Evolution of the Taupo-Hikurangi subduction system,
Tectonophysics, 72, 1–21, https://doi.org/10.1016/0040-1951(81)90084-6, 1981. a
Daramizadeh, A. and Ansari, M.: Numerical simulation of underwater explosion
near air–water free surface using a five-equation reduced model, Ocean
Eng., 110, 25–35, https://doi.org/10.1016/j.oceaneng.2015.10.003, 2015. a
Davy, B. W. and Caldwell, T. G.: Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand, J. Volcanol. Geoth. Res., 81, 69–89, https://doi.org/10.1016/s0377-0273(97)00074-7, 1998. a, b
De Ronde, C. E. J., Stoffers, P., Garbe-Schönberg, D., Christenson, B. W., Jones, B., Manconi, R., Browne, P. R. L., Hissmann, K., Botz, R., Davy, B. W., Schmitt, M., and Battershill, C. N.: Discovery of active hydrothermal venting in Lake Taupo, New Zealand, J. Volcanol. Geoth. Res., 115, 257–275, https://doi.org/10.1016/s0377-0273(01)00332-8, 2002. a
Duffy, D. G.: On the generation of oceanic surface waves by underwater volcanic explosions, J. Volcanol. Geoth. Res., 50, 323–344,
https://doi.org/10.1016/0377-0273(92)90100-r, 1992. a
East, H. K., Perry, C. T., Beetham, E. P., Kench, P. S., and Liang, Y.:
Modelling reef hydrodynamics and sediment mobility under sea level rise in
atoll reef island systems, Global Planet. Change, 192, 103196,
https://doi.org/10.1016/j.gloplacha.2020.103196, 2020. a
Egorov, Y.: Tsunami wave generation by the eruption of underwater volcano, Nat. Hazards Earth Syst. Sci., 7, 65–69, https://doi.org/10.5194/nhess-7-65-2007, 2007. a, b
Esposti Ongaro, T., de'Michieli Vitturi, M., Cerminara, M., Fornaciai, A., Nannipieri, L., Favalli, M., Calusi, B., Macías, J., Castro, M. J., Ortega, S., González-Vida, J. M., and Escalante, C.: Modeling Tsunamis Generated by Submarine Landslides at Stromboli Volcano (Aeolian Islands, Italy): A Numerical Benchmark Study, Front. Earth Sci., 9, 274, https://doi.org/10.3389/feart.2021.628652, 2021. a, b
Gamble, J., Woodhead, J., Wright, I., and Smith, I.: Basalt and sediment geochemistry and magma petrogenesis in a transect from oceanic island arc to rifted continental margin arc: the Kermadec–Hikurangi Margin, SW Pacific, J. Petrol., 37, 1523–1546, https://doi.org/10.1093/petrology/37.6.1523, 1996. a
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., and Løvholt, F.: Dispersion of tsunamis: does it really matter?, Nat. Hazards Earth Syst. Sci., 13, 1507–1526, https://doi.org/10.5194/nhess-13-1507-2013, 2013. a
Grilli, S. T. and Watts, P.: Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses, J. Waterw. Port C., 131, 283–297, https://doi.org/10.1061/(ASCE)0733-950X(2005)131:6(283), 2005. a
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin, M.: Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia, Sci. Rep., 9, 1–13, https://doi.org/10.1038/s41598-019-48327-6, 2019. a
Guyenne, P. and Grilli, S.: Computations of Three-Dimensional Overturning Waves In Shallow Water: Dynamics And Kinematics, in: The Thirteenth International Offshore and Polar Engineering Conference, 25–30 May 2003, Honolulu, Hawaii, USA, OnePetro, ISBN 1-880653-60−5, 2003. a
Harbitz, C. B., Løvholt, F., and Bungum, H.: Submarine landslide tsunamis:
how extreme and how likely?, Nat. Hazards, 72, 1341–1374,
https://doi.org/10.1007/s11069-013-0681-3, 2014. a
Hayward, M. W.: Data for figures of explosive volcanic tsunami generation, propagation and inundation around Lake Taupō, Zenodo [data set], https://doi.org/10.5281/zenodo.6867585, 2022. a
Hayward, M. W., Whittaker, C. N., Lane, E. M., and Power, W. L.: Submarine explosive volcanism – numerical modelling of tsunami propagation and run-up, in: Proceedings of the 20th Australasian Coasts and Ports Conference, 20 November–3 December 2021, Christchurch, New Zealand, Engineers Australia, Australia, 280–285, ISBN 978-0-473-64705-6, 2022a. a
Hayward, M. W., Whittaker, C. N., Lane, E. M., Power, W. L., Popinet, S., and White, J. D. L.: Multilayer modelling of waves generated by explosive subaqueous volcanism, Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, 2022b. a, b, c, d
Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A. B.: Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia, Ocean Eng., 195, 106733, https://doi.org/10.1016/j.oceaneng.2019.106733, 2020. a
Houghton, B. F., Carey, R. J., Cashman, K. V., Wilson, C. J. N., Hobden, B. J., and Hammer, J. E.: Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: evidence from clast vesicularity, J. Volcanol. Geoth. Res., 195, 31–47, https://doi.org/10.1016/j.jvolgeores.2010.06.002, 2010. a
Irwin, J.: Lake Taupo, provisional bathymetry, 1 : 50 000, NZ Oceanographic Institute Chart, Lake Series, National Library of New Zealand, NLNZ ALMA 9912203103502836, 1972. a
Klein, A.: Tongan volcano erupts, New Sci., 253, 7, https://doi.org/10.1016/S0262-4079(22)00074-4, 2022. a
Kono, F., Nakasato, N., Hayashi, K., Vazhenin, A., and Sedukhin, S.: Evaluations of OpenCL-written tsunami simulation on FPGA and comparison with GPU implementation, J. Supercomput., 74, 2747–2775, https://doi.org/10.1007/s11227-018-2315-8, 2018. a
LeVeque, R. J., George, D. L., and Berger, M. J.: Tsunami modelling with adaptively refined finite volume methods, Acta Numer., 20, 211–289, 2011. a
Li, T., Wang, S., Li, S., and Zhang, A.-M.: Numerical investigation of an underwater explosion bubble based on FVM and VOF, Appl. Ocean Res., 74,
49–58, https://doi.org/10.1016/j.apor.2018.02.024, 2018. a
Liu, M., Liu, G., Lam, K., and Zong, Z.: Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30, 106–118, 2003. a
Liu, Y. L., Zhang, A. M., Tian, Z. L., and Wang, S. P.: Numerical investigation on global responses of surface ship subjected to underwater explosion in waves, Ocean Eng., 161, 277–290, https://doi.org/10.1016/j.oceaneng.2018.05.013, 2018. a
Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa’anunu, O., Bosserelle, C., Jaffe, B., La Selle, S., Ritchie, A, Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., and Cinar, G. E.: Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption, Nature, 609, 728–733, 2022. a
Lynett, P. J., Borrero, J. C., Weiss, R., Son, S., Greer, D., and Renteria, W.: Observations and modeling of tsunami-induced currents in ports and harbors, Earth Planet. Sc. Lett., 327, 68–74, https://doi.org/10.1016/j.epsl.2012.02.002, 2012. a, b
Mader, C. L.: Modeling the La Palma landslide tsunami, Science of Tsunami Hazards, 19, 150–170, 2001. a
Maeno, F. and Imamura, F.: Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia, J. Geophys. Res.-Sol. Ea., 116, B09205, https://doi.org/10.1029/2011JB008253, 2011. a
Nomanbhoy, N. and Satake, K.: Generation mechanism of tsunamis from the 1883 Krakatau eruption, Geophys. Res. Lett., 22, 509–512, https://doi.org/10.1029/94gl03219, 1995. a
Nosov, M. A., Moshenceva, A. V., and Kolesov, S. V.: Horizontal motions of water in the vicinity of a tsunami source, Pure Appl. Geophys., 170, 1647–1660, https://doi.org/10.1007/s00024-012-0605-2, 2013. a
Omira, R., Ramalho, R., Kim, J., González, P. J., Kadri, U., Miranda, J., Carrilho, F., and Baptista, M.: Global Tonga tsunami explained by a fast-moving atmospheric source, Nature, 609, 734–740, https://doi.org/10.1038/s41586-022-04926-4, 2022. a
Pakoksung, K., Suppasri, A., and Imamura, F.: Probabilistic Tsunami Hazard Analysis of Inundated Buildings Following a Subaqueous Volcanic Explosion Based on the 1716 Tsunami Scenario in Taal Lake, Philippines, Geosciences, 11, 92, https://doi.org/10.3390/geosciences11020092, 2021. a
Pararas-Carayannis, G.: Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii, Science of Tsunami Hazards, 20,
251–277, 2002. a
Paris, R.: Source mechanisms of volcanic tsunamis, Philos. T. Roy. Soc. A, 373, 20140380, https://doi.org/10.1098/rsta.2014.0380, 2015. a, b, c
Paris, R. and Ulvrová, M.: Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines, B. Volcanol., 81, 14, https://doi.org/10.1007/s00445-019-1272-2, 2019. a, b
Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L., and Ulvrova, M.: Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea), Nat. Hazards, 70, 447–470, https://doi.org/10.1007/s11069-013-0822-8, 2014. a, b, c
Paris, R., Ulvrová, M., Selva, J., Brizuela, B., Costa, A., Grezio, A., Lorito, S., and Tonini, R.: Probabilistic hazard analysis for tsunamis generated by subaqueous volcanic explosions in the Campi Flegrei caldera, Italy, J. Volcanol. Geoth. Res., 379, 106–116, https://doi.org/10.1016/j.jvolgeores.2019.05.010, 2019. a, b
Popinet, S.: Quadtree-adaptive tsunami modelling, Ocean Dynam., 61,
1261–1285, https://doi.org/10.1007/s10236-011-0438-z, 2011. a, b
Popinet, S.: A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys., 302, 336–358,
https://doi.org/10.1016/j.jcp.2015.09.009, 2015. a
Popinet, S.: A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows, J. Comput. Phys., 148, 109609, https://doi.org/10.1016/j.jcp.2020.109609, 2020. a, b, c
Rowe, D. K., Shankar, U., James, M., and Waugh, B.: Use of GIS to predict effects of water level on the spawning area for smelt, Retropinna retropinna,
in Lake Taupo, New Zealand, Fisheries Manag. Ecol., 9, 205–216, https://doi.org/10.1046/j.1365-2400.2002.00298.x, 2002. a
Sato, H. and Taniguchi, H.: Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: Implications for energy partitioning, Geophys. Res. Lett., 24, 205–208,
https://doi.org/10.1029/96gl04004, 1997. a
Schilperoort, B., Coenders-Gerrits, M., Rodríguez, C. J., van Hooft, A., van de Wiel, B., and Savenije, H.: Detecting nighttime inversions in the interior of a Douglas fir canopy, Agr. Forest Meteorol., 321, 108960, https://doi.org/10.1016/j.agrformet.2022.108960, 2022. a
Self, S.: The effects and consequences of very large explosive volcanic eruptions, Philos. T. Roy. Soc. A, 364, 2073–2097,
https://doi.org/10.1098/rsta.2006.1814, 2006. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous volcanic eruptions. Part 1: Free surface disturbances, J. Geophys. Res.-Oceans, 126, e2020JC016588, https://doi.org/10.1029/2020jc016588, 2021a. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous volcanic eruptions. Part 2: Properties of generated waves, J. Geophys. Res.-Oceans, 126, e2020JC016587, https://doi.org/10.1029/2020jc016587, 2021b. a
Shin, Y. S.: Ship shock modeling and simulation for far-field underwater explosion, Comput. Struct., 82, 2211–2219, https://doi.org/10.1016/j.compstruc.2004.03.075, 2004. a
Stirling, M. and Wilson, C.: Development of a volcanic hazard model for New Zealand: first approaches from the methods of probabilistic seismic hazard analysis, Bulletin of the New Zealand Society for Earthquake Engineering, 35, 266–277, https://doi.org/10.5459/bnzsee.35.4.266-277, 2002. a, b
Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., and Shi, F.: Far-field tsunami impact in the North Atlantic basin from large scale flank collapses of the Cumbre Vieja Volcano, La Palma, Pure Appl. Geophys., 172, 3589–3616, https://doi.org/10.1007/s00024-015-1135-5, 2015. a
Torsvik, T., Paris, R., Didenkulova, I., Pelinovsky, E., Belousov, A., and Belousova, M.: Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia, Nat. Hazards Earth Syst. Sci., 10, 2359–2369, https://doi.org/10.5194/nhess-10-2359-2010, 2010. a
Ulvrová, M., Paris, R., Kelfoun, K., and Nomikou, P.: Numerical simulations of tsunamis generated by underwater volcanic explosions at Karymskoye lake (Kamchatka, Russia) and Kolumbo volcano (Aegean Sea, Greece), Nat. Hazards Earth Syst. Sci., 14, 401–412, https://doi.org/10.5194/nhess-14-401-2014, 2014.
a, b, c
Ulvrova, M., Paris, R., Nomikou, P., Kelfoun, K., Leibrandt, S., Tappin, D., and McCoy, F.: Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece), J. Volcanol. Geoth. Res., 321, 125–139, https://doi.org/10.1016/j.jvolgeores.2016.04.034, 2016. a
Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H., Southon, J., Barrell, D. J., Wilson, C. J., McGlone, M. S., Allan, A. S., Almond, P. C., Petchey, F., Dabell, K., Dieffenbacher-Krall, A. C., and Blaauw, M.: A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand, Quaternary Sci. Rev., 74, 195–201, https://doi.org/10.1016/j.quascirev.2012.11.006, 2013. a
Wang, S.-P., Zhang, A.-M., Liu, Y.-L., Zhang, S., and Cui, P.: Bubble dynamics and its applications, J. Hydrodyn., 30, 975–991,
https://doi.org/10.1007/s42241-018-0141-3, 2018. a
Ward, S. N. and Day, S.: Cumbre Vieja volcano–potential collapse and tsunami at La Palma, Canary Islands, Geophys. Res. Lett., 28, 3397–3400,
https://doi.org/10.1029/2001GL013110, 2001. a, b
Ward, S. N. and Day, S.: Tsunami thoughts, CSEG Recorder, 38–44, https://csegrecorder.com/articles/view/tsunami-thoughts (last access: 1 March 2023), 2005. a
Whalin, R. W., Pace, C. E., and Lane, W. F.: Mono Lake Explosion Test Series, 1965: Analysis of Surface Wave and Wave Runup Data, Waterways Experiment Station, US Army Technical Report N-70-12, 1970. a
Williams, R., Rowley, P., and Garthwaite, M. C.: Reconstructing the Anak
Krakatau flank collapse that caused the December 2018 Indonesian tsunami,
Geology, 47, 973–976, https://doi.org/10.1130/g46517.1, 2019. a
Wilson, C. J. N.: Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand, Philos. T. Roy. Soc. A, 343, 205–306, https://doi.org/10.1098/rsta.1993.0050, 1993. a, b, c, d
Wilson, C. J. N.: The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview, J. Volcanol. Geoth. Res., 112, 133–174, https://doi.org/10.1016/s0377-0273(01)00239-6, 2001. a
Wilson, C. J. N. and Walker, G. P. L.: The Taupo eruption, New Zealand I. General aspects, Philos. T. Roy. Soc. A, 314, 199–228, https://doi.org/10.1098/rsta.1985.0019, 1985. a
Xu, L.-Y., Wang, S.-P., Liu, Y.-L., and Zhang, A.-M.: Numerical simulation on the whole process of an underwater explosion between a deformable seabed and a free surface, Ocean Eng., 219, 108311, https://doi.org/10.1016/j.oceaneng.2020.108311, 2020. a
Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D., and Satake, K.: The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption, Sci. Adv., 6, eaaz1377, https://doi.org/10.1126/sciadv.aaz1377, 2020. a
Short summary
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are...
Altmetrics
Final-revised paper
Preprint