Articles | Volume 23, issue 12
https://doi.org/10.5194/nhess-23-3805-2023
https://doi.org/10.5194/nhess-23-3805-2023
Research article
 | 
14 Dec 2023
Research article |  | 14 Dec 2023

Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling

Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy

Related authors

Improving the fire weather index system for peatlands using peat-specific hydrological input data
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024,https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022,https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger
Nat. Hazards Earth Syst. Sci., 25, 1425–1437, https://doi.org/10.5194/nhess-25-1425-2025,https://doi.org/10.5194/nhess-25-1425-2025, 2025
Short summary
Topographic controls on landslide mobility: modeling hurricane-induced landslide runout and debris-flow inundation in Puerto Rico
Dianne L. Brien, Mark E. Reid, Collin Cronkite-Ratcliff, and Jonathan P. Perkins
Nat. Hazards Earth Syst. Sci., 25, 1229–1253, https://doi.org/10.5194/nhess-25-1229-2025,https://doi.org/10.5194/nhess-25-1229-2025, 2025
Short summary
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Jonathan Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
Nat. Hazards Earth Syst. Sci., 25, 1037–1056, https://doi.org/10.5194/nhess-25-1037-2025,https://doi.org/10.5194/nhess-25-1037-2025, 2025
Short summary
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
Nat. Hazards Earth Syst. Sci., 25, 949–973, https://doi.org/10.5194/nhess-25-949-2025,https://doi.org/10.5194/nhess-25-949-2025, 2025
Short summary

Cited articles

Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the Timing and Location of Shallow Rainfall-Induced Landslides Using a Model for Transient, Unsaturated Infiltration, J. Geophys. Res.-Earth, 115, F03013, https://doi.org/10.1029/2009JF001321, 2010. a
Bordoni, M., Vivaldi, V., Lucchelli, L., Ciabatta, L., Brocca, L., Galve, J. P., and Meisina, C.: Development of a Data-Driven Model for Spatial and Temporal Shallow Landslide Probability of Occurrence at Catchment Scale, Landslides, 18, 1209–1229, https://doi.org/10.1007/s10346-020-01592-3, 2020. a, b, c, d, e
Brocca, L., Ciabatta, L., Moramarco, T., Ponziani, F., Berni, N., and Wagner, W.: Chapter 12 – Use of Satellite Soil Moisture Products for the Operational Mitigation of Landslides Risk in Central Italy, in: Satellite Soil Moisture Retrieval, edited by: Srivastava, P. K., Petropoulos, G. P., and Kerr, Y. H., Elsevier, 231–247, https://doi.org/10.1016/B978-0-12-803388-3.00012-7, 2016. a, b, c
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A Data-Based Landslide Susceptibility Map of Africa, Earth-Sci. Rev., 185, 102–121, https://doi.org/10.1016/j.earscirev.2018.05.002, 2018. a
Caine, N.: The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows, Geogr. Ann. A, 62, 23–27, https://doi.org/10.2307/520449, 1980. a
Download
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Share
Altmetrics
Final-revised paper
Preprint