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Abstract. In this study we present a model for the
global Probabilistic Hydrological Estimation of LandSlides
(PHELS). PHELS estimates the daily hazard of hydrolog-
ically triggered landslides at a coarse spatial resolution of
36 km, by combining landslide susceptibility (LSS) and (per-
centiles of) hydrological variable(s). The latter include daily
rainfall, a 7 d antecedent rainfall index (ARI7) or root-zone
soil moisture content (rzmc) as hydrological predictor vari-
ables, or the combination of rainfall and rzmc. The hazard es-
timates with any of these predictor variables have areas under
the receiver operating characteristic curve (AUC) above 0.68.
The best performance was found with combined rainfall and
rzmc predictors (AUC = 0.79), which resulted in the low-
est number of missed alarms (especially during spring) and
false alarms. Furthermore, PHELS provides hazard uncer-
tainty estimates by generating ensemble simulations based
on repeated sampling of LSS and the hydrological predictor
variables. The estimated hazard uncertainty follows the be-
haviour of the input variable uncertainties, is about 13.6 % of
the estimated hazard value on average across the globe and
in time and is smallest for very low and very high hazard
values.

1 Introduction

Landslides are mass movements of soil and rock triggered
by anthropogenic or seismic activity and, most frequently,
by rainfall (Froude and Petley, 2018; Nowicki Jessee et al.,
2018; Stanley et al., 2021). In order to limit human and eco-

nomic losses due to landslides, the prediction of where and
when they are likely to occur is crucial (Crozier, 2013). The
spatio-temporal probability of a landslide is generally re-
ferred to as “landslide hazard” and can be estimated based
on a range of static environmental (spatial) and dynamic
hydrological (temporal) data sources. The spatial and tem-
poral information can either be merged directly, e.g. via
machine learning techniques combining rainfall, soil mois-
ture, snow and slope angle in an ad hoc fashion (Stan-
ley et al., 2020, 2021), or in a two-step process that sepa-
rately evaluates where and when landsliding is likely to occur
(Kirschbaum and Stanley, 2018; Monsieurs et al., 2019a, b;
Bordoni et al., 2020). The last approach is more common and
traceable and requires that spatial and temporal probabilities
are estimated individually before combining them into one
prediction system.

The spatial probability, referred to as landslide suscep-
tibility (LSS), is estimated based on (static) environmental
features (Pourghasemi and Rossi, 2016; Reichenbach et al.,
2018). Most LSS maps are created at the local to regional
scale, where they are also used for mitigation and plan-
ning purposes (Guzzetti et al., 2005; Crozier, 2013). Oth-
ers are specifically developed to be used in a landslide early
warning system (Guzzetti et al., 2020) or “now-casting” ap-
proach: the global, categorized LSS assessment by Stan-
ley and Kirschbaum (2017), for instance, has been devel-
oped to allow severity thresholds within the first version of
the Landslide Hazard Assessment for Situational Awareness
(LHASA) model (Kirschbaum and Stanley, 2018).
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The temporal probability can either be calculated explic-
itly by physical models that compute the shear strength and
stress in slopes (Lu and Godt, 2013; Baum et al., 2010) or
approximated by statistical, empirical approaches (Guzzetti
et al., 2008, 2020). The latter relate one or more dynamic
hydrological predictor variables to a chance for a landslide
(Guzzetti et al., 2008, 2020). A simple yet effective binary
approach is to use thresholds for various measures of rainfall
and soil water content beyond which landslide occurrence is
expected (Segoni et al., 2018a). While univariate thresholds
in antecedent rainfall index (ARI) or surface soil moisture ex-
ist (Kirschbaum and Stanley, 2018; Zhuo et al., 2019), most
thresholds are based on two or more variables. The most fre-
quently used thresholds are based on rainfall intensity and
duration or variations thereof (Caine, 1980; Guzzetti et al.,
2008; Rossi et al., 2017; Rosi et al., 2021) and hydromete-
orological thresholds (Ponziani et al., 2012; Brocca et al.,
2016; Devoli et al., 2018; Mirus et al., 2018; Thomas et al.,
2019; Uwihirwe et al., 2020, 2022). Alternatively, it is possi-
ble to retrieve a continuous triggering probability based on
rainfall (Calvello and Pecoraro, 2019), soil moisture mea-
sures (Wicki et al., 2020) or a combination of both (Bor-
doni et al., 2020). The measures of soil moisture range from
antecedent soil moisture (Mirus et al., 2018; Wicki et al.,
2020) and increase in soil saturation (Wicki et al., 2020)
to soil moisture of the day (Bordoni et al., 2020) and re-
fer to different soil layers (surface: Ponziani et al., 2012;
Brocca et al., 2016; Thomas et al., 2019; Bordoni et al., 2020,
root zone: Brocca et al. (2016); Mirus et al. (2018); Thomas
et al. (2019); Wicki et al. (2020), groundwater: Uwihirwe
et al. (2022)). In comparison to purely rainfall-based land-
slide likelihood predictions, the inclusion of soil water con-
tent has been found to prevent false alarms, independent of
the data source (Ponziani et al., 2012; Segoni et al., 2018b;
Mirus et al., 2018; Stanley et al., 2021).

To estimate hazard using the two-step process, the tem-
poral probability assessment is combined with spatial LSS
information. Monsieurs et al. (2019a, b) for example devel-
oped combined ARI–LSS thresholds. Kirschbaum and Stan-
ley (2018) adapted the level of nowcasts (based on a global
univariate ARI-threshold) according to LSS. Bordoni et al.
(2020) updated LSS according to whether or not the tempo-
ral probability was above 0.5. We comprise all of the above-
mentioned approaches under the term “hazard modelling”,
while being aware that at smaller scales the size and mobility
of a landslide may also be an essential part of hazard predic-
tion.

The available landslide hazard modelling approaches
rarely consider the quantification of uncertainty. For LSS,
uncertainty information is sometimes provided (e.g. Broeckx
et al., 2018, Depicker et al., 2020 and Felsberg et al., 2022b).
For the temporal aspect, uncertainties have been assigned to
rainfall and rainfall–LSS thresholds (Rossi et al., 2017; Mon-
sieurs et al., 2019a). Hartke et al. (2020) created a probabilis-
tic adaptation of the first version of LHASA by using rainfall

distributions instead of deterministic values. This approach
increased the number of correctly predicted landslides and
decreased the number of false alarms from high nowcasts.
For a physically based hazard estimate, Canli et al. (2018)
proposed to use an ensemble of rainfall values as input, re-
sulting in an ensemble of predicted hazard values.

In this study we (i) investigate the ability of different hy-
drological predictor variables for global landslide hazard es-
timation and (ii) use ensembles for an uncertainty assess-
ment. We develop the Probabilistic Hydrological Estimation
of LandSlides (PHELS) model. PHELS provides a global
coarse-scale (36 km) dynamic landslide hazard simulation
with a reliable uncertainty estimate at any time and location,
by combining ensembles of LSS (Felsberg et al., 2022a, b)
and daily information on hydrological predictor variables.
For the latter, we test ensembles of rainfall and an ARI based
on reanalysis precipitation data and root-zone soil moisture
content [m3 m−3] (rzmc) from a land surface model. The pa-
per is guided by the following research questions: (1) Which
hydrological variable (or combination of variables) performs
best at simulating global landslide hazards? (2) Is the esti-
mated uncertainty related to the magnitude of the simulated
hazard value?

2 Data, model and methods

2.1 Landslides

Despite the existence of many different types of landslides
and their manifold shapes and sizes, in this study the term
“landslide” refers to all types of hydrologically triggered
mass movements. We use landslide data from the most re-
cent version of the Global Landslide Catalog (GLC) (https:
//landslides.nasa.gov/viewer, last access: 20 January 2022).
This inventory is based on media reports (Kirschbaum et al.,
2010, 2015) and supplemented with the citizen science-based
Landslide Reporter Catalog (LRC) data (Juang et al., 2019);
see Stanley et al. (2021) for details. We select all land-
slides triggered by “continuous rain”, “downpour”, “mon-
soon”, “flooding”, “rain” and “tropical cyclone” (GLC clas-
sifiers). About 99 % of these landslides were collected in the
time period 2007 through 2020. We therefore select this time
period for the research conducted in this study. Note that the
known economic and English-language bias, as well as the
fact that media reports tend to focus on inhabited areas and
landslides with notable impact on infrastructure, will affect
the completeness of these inventories and reduce the reliabil-
ity of their “absence reporting”.

Landslide information from the GLC was already suc-
cessfully used for a number of global applications. Stan-
ley and Kirschbaum (2017), Lin et al. (2017), and Fels-
berg et al. (2022b) used the locations of landslides to cre-
ate global LSS maps. The first version of the global LHASA
model was evaluated with landslide data from the GLC
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(Kirschbaum and Stanley, 2018), and LHASA version 2.0
was trained with a gridded GLC version (Stanley et al.,
2021).

In this study, we additionally included 183 landslides from
Russian quarterly reports (FSBIH, 2018; Felsberg et al.,
2021) from 2010 to 2018, but for simplicity, we refer to the
combined landslide dataset as “GLC”. Multiple landslide oc-
currences on one day within one grid cell are merged into one
landslide event (LSE), resulting in a total number of 9367
LSEs for the study period as displayed in Fig. 1.

2.2 Landslide susceptibility (LSS)

LSS describes the spatial likelihood of landslide occurrence
(Crozier, 2013). In this study, we use the global LSS map
of Felsberg et al. (2022a, b), developed on the 36 km Equal-
Area Scalable Earth version 2 (EASEv2) grid for the pur-
pose of subsequent combination with coarse-scale (satellite-
or model-based) soil moisture data and with extended uncer-
tainty assessment. This data-driven LSS focuses on hydro-
logically triggered landslides, and the most prominent pre-
dictor variables are the compound topographic index, long-
term median surface soil moisture and evaporation, slope-
related variables, and the peak ground acceleration. The LSS
estimates consist of an ensemble of 2500 values per grid cell
to reflect the LSS probability distribution. To facilitate sub-
sequent flexible sampling from these ensembles, we fit a beta
distribution Bg(αg,βg) with shape parameters αg,βg to the
2500 ensemble LSS realizations at each grid cell g, using the
package fitdistrplus of R version 4.0.3 (R Core Team, 2020)
to estimate optimal parameters via maximum likelihood es-
timation.

2.3 Hydrological variables

To estimate the temporal likelihood of landslide occurrence,
we use various hydrological predictor variables. We derive
daily 36 km rainfall data (comprising convective and large-
scale liquid precipitation) and the associated 7 d antecedent
rainfall index (mm) (ARI7) from the global reanalysis data
product Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2) (Gelaro et al., 2017),
available from 1980 onward. The ARI7 for day t was intro-
duced by Kirschbaum and Stanley (2018) as a weighted (wt )
average of antecedent rainfall (rt ) during the preceding 7 d:

ARI7=
∑6
t=0 rt ·wt∑6
t=0wt

, where wt = (t + 1)−2. (1)

The MERRA-2 data have a native spatial resolution of
0.625◦ longitude× 0.5◦ latitude and are interpolated to the
36 km EASEv2 grid via bilinear interpolation. These inter-
polated MERRA-2 data are also used as input to the state-
of-the-art, physically based Catchment Land Surface Model
(CLSM) (Koster et al., 2000) to simulate rzmc [m3 m−3] (0–
100 cm) for the study period. The rzmc contains information

on both surface water content and groundwater and should
therefore be indicative not only of water content at landslide
shear planes < 1 m, which we consider a typical depth, but
also for more shallow or deep-seated landslides.

CLSM simulations are run with 24 ensemble members by
perturbing meteorological input (including rainfall) and se-
lect state variables (see Felsberg et al., 2021). The resulting
ensemble average of rainfall and rzmc is used for determin-
istic hazard modelling, whereas the ensemble average and
standard deviation are used to sample input values for the
ensemble hazard modelling.

In a next step, the sampled hydrological variables are
transformed into percentiles to detach their magnitudes from
the local climatological conditions. Felsberg et al. (2021)
moreover found that the transformation into percentiles of
soil water content enhanced the ability to distinguish between
LSE and sampled days with no landslide event (noLSE). The
climatological percentile thresholds are computed per grid
cell based on long-term (entire study period 2007–2020) time
series of ensemble mean simulations of soil water content,
similar as in Felsberg et al. (2021).

2.4 The PHELS model

The objective of PHELS is to obtain a measure of landslide
hazard in a probabilistic way. The probability of landslide
event occurrence (LSE= 1) given static environmental con-
ditions or dynamic variables xi can be described stochasti-
cally through conditional probabilities p(LSE= 1 | xi) (van
Westen et al., 2006; Calvello and Pecoraro, 2019; Uwihirwe
et al., 2020; Lombardo et al., 2020; Felsberg et al., 2021).
For the static condition we use LSS (xL), and for the dynamic
variable we use percentiles of daily rzmc, rainfall and ARI7
describing the hydrological conditions (xh). The probability
of a landslide event occurring conditioned on the susceptibil-
ity of the location and the hydrological state of the day can
be defined as follows using Bayes’ law:

p(LSE= 1 | xL,xh)

=
p(xL,xh | LSE= 1) ·p(LSE= 1)

p(xL,xh)
, (2)

or if two hydrological variables are taken into account,

p(LSE= 1 | xL,xh1,xh2)

=
p(xL,xh1,xh2 | LSE= 1) ·p(LSE= 1)

p(xL,xh1,xh2)
. (3)

Bayes’ theorem connects the prior probability p(LSE=
1) with a known likelihood function of the conditions
p(xL,xh | LSE= 1) to obtain a posterior probability. While
LSS could conceptually be considered a prior probability,
we opt to use it as a temporally static (but spatially vary-
ing) variable and implement it as a condition in a similar
way as the temporally dynamic soil moisture, ARI7 and rain-
fall. In this study, p(LSE= 1) thus remains an uninformative
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Figure 1. Spatial distribution of the number of reported landslide events per 36 km grid cell for the study period 2007 through 2020. Note
the irregular colour bar intervals. Dashed grey lines indicate the latitude stratifications between “north”, “the tropics” and “south”.

prior, which is assumed constant in space and time. Since we
use percentiles of rzmc, rainfall and ARI7 as hydrological
predictor variables, their respective distributions are (quasi-
)uniform, but their joint probability is not necessarily uni-
form. Nevertheless, for simplicity, we omit the normalizing
joint probability terms and use the following proportionality
approach:

p(LSE= 1 | xL,xh)∝ p(xL,xh | LSE= 1)

⇒H= f (xL,xh), (4)

or for multiple hydrological variables H=
f (xL,xh1,xh2), i.e. a function of the predictor variables xL,
xh1 and xh2. We refer to this posterior probability value as
landslide hazard [−] (H). By foregoing the normalization,
and because the absolute values of the distribution fits
(below) depend on the binning and dimensions (scale) of
the underlying data, the absolute values of H with one or
two hydrological variables will not be comparable. How-
ever, for hazard estimation, only a relative spatio-temporal
assessment is of importance.

To estimate p(xL,xh | LSE= 1), we extract values of LSS
and the hydrological variables for the 9367 LSE. Figure 2a
shows the bivariate histogram for percentiles of rzmc, with
the number of LSE indicated in colour. Distributions for the
other hydrological variables (not shown) generally exhibit
the same behaviour: LSEs are exponentially more likely to
occur where LSS is high and under wet hydrological con-
ditions, both individually and combined. At the same time,
low LSS or drier conditions do not exclude the possibility of
landslide occurrence. We find that 1.8 %/1.3 %/0.7 % of the
LSE occurs where LSS is below 0.5 [−] and percentiles of
rzmc/rainfall/ARI7 are below 50 [−]. For very susceptible
locations, LSEs also occur at much drier hydrological condi-
tions, whereas very wet conditions still require a certain level
of LSS. This results in a skewing of the distribution from the

upper right towards the upper left corner, which was also ob-
served by Monsieurs et al. (2019a).

Next, a two- or three-dimensional quadratic–exponential
function is fit through the extracted LSE data. This kind of fit
through the distribution of data points is a long-term and spa-
tially aggregated summary statistic, also referred to as sys-
tem signature (Vrugt and Sadegh, 2013). We tested different
forms of the fitting equation and found the lowest root mean
squared deviation (relative to the entire observed LSE distri-
bution) for the following exponential functions with one and
two hydrological predictor variables, respectively:

H= a · exp(b · x2
L+ c · x

2
h) (5)

and

H= a · exp(b · x2
L+ c · x

2
h1+ d · x

2
h2). (6)

These equations are the core of the PHELS model. Ensur-
ing

∑
xL,xh

H≡ 1 for xL ∈ {0,0.01, . . .,1} (binned continu-
ous values) and xh ∈ {1,2, . . .,100} (percentiles, discrete) re-
sults in the parameters shown in Table 1. Note that ensuring
the sum of 1 only offsets the scaling factor a and does not
affect the other parameters. For the fitting (“nls”) and sum-
ming, we use R version 4.0.3 (R Core Team, 2020), and opti-
mal parameters are obtained by minimizing the residual sum
of squares between observed and fitted counts.

The difference between the parameters b and c for x2
L and

x2
h reflects the observed skew in the bivariate histogram. The

skew in H is most pronounced as a function of rzmc, reduces
for rainfall and is least for ARI7. When having both rzmc
and rainfall as hydrological predictor variables (referred to
as rzmc&rainfall), rzmc and LSS become equally important
and rainfall slightly less. This indicates that both LSS and
soil wetness are necessary preconditions for LSE occurrence.
The different order of magnitude in the parameters of PHELS
based on Eqs. (5) and (6) is a result of extending the quadratic
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Figure 2. (a) Bivariate histogram of daily percentiles of rzmc (rzmcpctl) and LSS for landslide events between 2007 and 2020. These data
were used to fit the bivariate exponential of Eq. (5). (b) Hazard (H [−]) as a bivariate exponential fitted function of daily rzmcpctl and LSS.
Note the logarithmic colour bar intervals.

Table 1. Parameters of the exponential fit (Eqs. 5 and 6) for PHELS based on different hydrological variables (columnwise). Parameters are
given for the static xL (parameter b) and one hydrological variable xh (parameter c for rzmc, rainfall or ARI7) or two hydrological variables
xh1,xh2 namely rzmc (parameter c) and rainfall (parameter d). To simplify comparison between parameters b, c and d across the different
orders of magnitudes (O(x2

L)= 1 and O(x2
h )= 10000), c and d are shown as multiples of 10−4. Residual standard errors are shown for

all fits, as well as the theoretical maximum hazard values Hmax =H(xL = 1,xh = 100) and Hmax =H(xL = 1,xh1 = 100,xh2 = 100),
respectively. Note that the absolute H values are not to be compared for PHELS models with varying numbers of input variables.

Parameters Rainfall ARI7 rzmc rzmc&rainfall

a [×10−5] 5.33 3.32 3.45 6.10
b [1] 5.18 5.19 5.91 0.48
c [×10−4] 4.16 4.78 3.96 0.50
d [×10−4] – – – 0.41
Residual standard error 0.037 0.037 0.038 9.98× 10−5

Hmax 0.67 0.60 0.71 2.43× 10−4

exponential to a third predictor variable. Retaining the in-
tegral of 1 over the predictor space moreover reduces the
magnitude of resulting H from maximum values of ∼ 0.7 to
0.00024 (see Table 1). This effect can be avoided by using the
complete Bayesian theorem as in Eqs. (2)–(3) with inclusion
of a normalization of the probability instead of the propor-
tionality approach of Eq. (4). The average residual standard
error is∼ 0.04 when using only rzmc, rainfall or ARI7 as pre-
dictors along with LSS, and the error is relatively larger when
two hydrological variables are included. This is because a
multidimensional fit is harder to achieve (more variation to
account for). Nevertheless, the resulting distribution of H as
shown in Fig. 2b for rzmc percentiles represents the observed
patterns (Fig. 2a) well.

PHELS estimates can be obtained for single values of the
hydrological predictor variables and LSS. Such PHELS es-
timates are referred to as deterministic H. In order to prop-
agate uncertainties of these input variables, PHELS can also
be run as an ensemble with members i = 1, . . .,Nens. Fig-
ure 3 illustrates this approach for one grid cell (g) at one
time step (t [days]) for H based on rzmc, rainfall and LSS.

First, we sample LSS from the beta distribution Bg(αg,βg)
and obtain xL,g,i . Next, we sample rzmcg,t,i from a normal
distribution where µg,t and σg,t are the rzmc ensemble av-
erage and standard deviation diagnosed from 24 ensemble
CLSM simulations. The sampled rzmcg,t,i is subsequently
transformed into the corresponding percentile by compari-
son against long-term percentile thresholds for this grid cell
and used as xh,g,t,i from Eq. (5) or as xh1,g,t,i from Eq. (6).
The same way of sampling is used for rainfall or ARI7. Ap-
plying Eq. (6) to xL,g,i=1, xh1,g,t,i=1 and xh2,g,t,i=1 yields
the first hazard ensemble member Hg,t,i=1. The sampling is
repeated Nens = 100 times to retrieve a landslide hazard en-
semble (Hens). This allows us to obtain an ensemble average
H (H) with a connected uncertainty (ensemble standard de-
viation). Note that all ensemble sampling was performed in-
dependently in time and for each variable, without account-
ing for temporal autocorrelations or cross-correlations be-
tween variables. During hydrological extreme events such as
tropical storms, this may result in conservatively high H un-
certainty estimates in comparison to sampling from multi-
dimensional distributions of the hydrological variables (not
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shown). PHELS is coded in R version 4.0.3 (R Core Team,
2020). A 1 d simulation of the global Hens with Nens = 100
at 36 km spatial resolution takes ∼ 5 min on one core.

2.5 Evaluation

The evaluation of PHELS is performed both for deterministic
and ensemble H estimates. The strength of PHELS is that
it provides relative estimates of hazards in both space and
time. However, given the known strong spatial performance
of the LSS (Felsberg et al., 2022b), the focus will be on a
conservative evaluation of the performance in time.

More specifically, the PHELS hazard results are evaluated
at grid cells and days of LSE for the study period (2007–
2020, ntotal = 9367). For grid cells with at least one LSE,
we randomly sample an equal number of values for noLSE
from all other time steps. In order to account for possible
errors in the date reporting and time zone matching of ob-
servations and hydrological data (local time versus UTC),
3 d prior and after an LSE are excluded from the selection
as noLSE. For the same reasons we also evaluate the per-
formance for maximum hazard values within a 3 d window
around the LSE (±1 d, “LSE3”) as was done by Kirschbaum
and Stanley (2018) and Monsieurs et al. (2019a). To evalu-
ate the full spatio-temporal performance, we moreover test
the performance when ntotal noLSEs are randomly sampled
across the globe and in time, without restriction to the LSE
grid cells (“noLSEglobal”).

We evaluate the performance of the PHELS models
with various hydrological predictor variables (rzmc, rainfall,
ARI7 and rzmc&rainfall). The resulting H is compared for
LSE and noLSE in terms of receiver operation characteris-
tic (ROC) curve, where the true positive rate (TPR) is plotted
against the false positive rate (FPR) for different thresholds in
the continuous probability values of H. The TPR is the ratio
of correctly predicted LSE (“true positives”) to the total num-
ber of LSE (Wilks, 2011). An LSE is assumed to be predicted
when the probability is above a set threshold. The FPR is the
ratio of erroneously predicted LSE (“false positives”) to the
total number of noLSE, here being the same as LSE due to
our 1 : 1 ratio of sampling. For a perfect prediction, the area
under the ROC curve (AUC) is 1. A value of 0.5 on the other
hand indicates that the prediction is not better than a uniform
random prediction. We conduct the ROC analysis for the
full data sets of LSE and noLSE, and for LSE3 and noLSE-
global, as well as subsets stratified for latitude and season.
Latitudes are stratified at 30◦ N and 30◦ S into “north”, the
“tropics” and “south”, as indicated by the dashed lines in
Fig. 1. Note that the “south” subset contains much less data.
Stratification for seasons follows meteorological standards,
i.e. December–January–February (DJF), March–April–May
(MAM), June–July–August (JJA) and September-October-
November (SON). For additional insight, we compare num-
bers of false predictions, i.e. false alarms (“false positives”)
and missed alarms (“false negatives”) for the LSE grid cells

only. We set the 90th percentile of H within one grid cell over
all time steps as a threshold to distinguish between predicted
positive and negative.

3 Results

3.1 Deterministic hazard estimates

Figure 4 shows time series of PHELS H in a grid cell near
Seattle, USA, based on different ensemble mean predictor
variables as deterministic input. For rainfall, fast changes at
rainfall events induce a spiky pattern with frequent short-
term changes in H. For ARI7 fewer spikes are visible and
the rainy season stands out more. Seasonal patterns are even
more pronounced for rzmc reflecting longer-term transitions,
while the signal of the rainfall event spikes is strongly damp-
ened. H based on rzmc&rainfall shows both the general long-
term seasonality and short-term spikes of rainfall events. In
this grid cell, LSEs usually coincide with peaks or higher val-
ues in simulated H. The first LSE in autumn 2014 coincides
with a peak in H based on rainfall and ARI7. Based on rzmc,
H is however very small and would have resulted in a missed
alarm. The opposite is the case for two LSEs in March 2015
where H based on rzmc is still elevated, but close to zero
for rainfall and ARI7. When based on rzmc&rainfall, both
examples show elevated H.

Figure 5 shows ROC curves for H estimates from PHELS
with different hydrological predictor variables, yielding AUC
values between 0.68 and 0.79, only for grid cells with at least
one LSE in their time history, and only considering the H
estimates at the exact days of the LSE and noLSE samples.
H based on rzmc&rainfall performs better than based on one
single hydrological variable, closely followed by H based on
ARI7 (difference of only 0.02).

To disentangle these differences in performance, Fig. 6
shows AUC values for different subsets of the LSE–noLSE
validation data per latitude and season. The best performance
is typically found for the subset MAM–south across all hy-
drological variables. The second best performance is found
during DJF–north for rainfall, ARI7 and rzmc&rainfall and
during DJF–tropics for rzmc. In general, H based on rzmc
performs above average for the tropics throughout all sea-
sons. Apart from JJA–tropics based on rzmc, performances
for JJA are below average across all predictor variables
and latitude stratifications. During spring time (MAM–north,
SON–south), rainfall and ARI7 performances are largely be-
low average, rzmc performance is closer to the average and
for rzmc&rainfall performance is average.

Table 2a–b give an overview of the hits, misses and false
alarms for the LSE–noLSE validation data when setting a
threshold at the 90th temporal percentile of deterministic H
in the associated grid cells and individually per hydrologi-
cal predictor variable. Considering all LSE–noLSE reference
data, the number of hits (misses) is highest (lowest) when
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Figure 3. Schematic of the sampling setup within PHELS for the example of combined hydrological predictor variables rzmc&rainfall. i
refers to the ensemble member, g to the grid cell and t to the time [days]. Percentiles of rzmc and rainfall on day t are used to derive hazard
estimates H for the same day following Eq. (6). µ and σ are the ensemble average and standard deviation. The transformation into percentiles
is achieved by comparing rzmcg,t,i and rainfallg,t,i against long-term percentile thresholds of the corresponding grid cell g.

Figure 4. Time series of daily PHELS hazard (H [−]) based on different hydrological predictor variables for a grid cell near Seattle, USA.
H is based on percentiles of (a) rainfall, (b) ARI7, (c) rzmc and (d) rzmc&rainfall. Note the different scale in magnitude for (d). Days with
LSE are indicated by the dashed red lines.

H is simulated using ARI7 or rzmc&rainfall. The number
of false alarms is lowest for H based on rzmc or second
lowest when using rzmc&rainfall. For the subset of MAM–
north, which showed the largest difference in performance
between the predictor variables (see above), the number of
hits (misses) is highest (lowest) for rzmc&rainfall. While this
comes at the cost of an increased number of false alarms, this
increase in FPR is outweighed by the increase in TPR.

When using the maximum hazard in a 3 d window around
the reported LSE (LSE3) and noLSE, performance in terms
of AUC strongly increases for rainfall (and ARI7) so that
they become similarly well-performing (see Table 2a–b). For
rzmc performance is less impacted, and hazard simulations
based on rzmc&rainfall are moderately improved. The or-
der of best to worst performing predictor variable(s) remains
the same. In contrast, the order is changed when noLSEs
are sampled globally without restriction to LSE grid cells
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Table 2. Performance of deterministic PHELS H based on different hydrological predictor variables xh for (a) all LSE and noLSE validation
data and (b) the subset during MAM north of 30◦ N. Shown are the AUC, numbers of hits, misses and false alarms, as well as the TPR and
FPR. Additional AUC values were calculated when accounting for possible temporal offset in the dating of the LSE within a 3 d window
(±1 d, LSE3) as well as for noLSE sampling without constraint to grid cells of LSE occurrence (noLSEglobal). For comparison (c) shows
performance of PHELS ensemble average H for original LSE and noLSE validation data. To distinguish between predicted positives and
negatives, we use the temporal 90th percentile of deterministic H (a, b) and H (c) as a threshold.

(a) Deterministic H, all data

xh Hits Misses False alarms TPR FPR AUC AUC LSE3 AUC noLSEglobal

Rainfall 4201 5163 943 0.449 0.101 0.731 0.804 0.944
ARI7 4597 4767 941 0.491 0.100 0.766 0.813 0.950
rzmc 3656 5708 905 0.390 0.097 0.675 0.691 0.930
rzmc&rainfall 4338 5026 931 0.463 0.099 0.791 0.836 0.936

(b) Deterministic H, MAM–north

xh Hits Misses False alarms TPR FPR AUC AUC LSE3 AUC noLSEglobal

Rainfall 507 688 104 0.424 0.100 0.697 0.778 0.939
ARI7 573 622 93 0.479 0.089 0.740 0.789 0.948
rzmc 669 526 167 0.560 0.161 0.655 0.666 0.941
rzmc&rainfall 736 459 173 0.616 0.166 0.785 0.837 0.943

(c) Ensemble average H, all data

xh Hits Misses False alarms TPR FPR AUC

rzmc&rainfall 4386 4978 940 0.468 0.100 0.792

Figure 5. ROC curves for PHELS H simulations using one hydro-
logical variable (rainfall, ARI7, rzmc) or both rzmc&rainfall based
on the original LSE and noLSE samples, i.e. for the reported dates
and only within LSE grid cells. AUC values are indicated in brack-
ets.

(noLSEglobal). For LSE–noLSEglobal, simulations based
on ARI7 perform best, followed by those based on rainfall,
rzmc&rainfall and finally rzmc. For all four, the AUC values
are however really high (> 0.93).

To summarize, PHELS H estimates are best in the (wet)
winter in the north, and based on LSE–noLSE PHELS per-

Figure 6. AUC values for PHELS hazard stratified per latitude and
season, for the different hydrological predictor variables. AUC of
the full data is indicated by the horizontal dashed line. Season strat-
ifications are shown from left to right (and dark to light colour) per
predictor variable: DJF, MAM, JJA and SON. This AUC analysis
is based on the LSE and noLSE samples for the reported dates and
only within LSE grid cells.

forms best when using both rzmc&rainfall as predictor vari-
ables. For the analysis of subsequent ensemble results, we
therefore focus on this model, unless noted otherwise.
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3.2 Ensemble hazard estimates

Figure 7a shows time series of Hens obtained by PHELS us-
ing ensembles of rzmc, rainfall and LSS. The 100 ensemble
members are shown in light grey, with H on top. The range
of H between ensemble members is largest for high H. This
translates into large ensemble standard deviations for high
H, shown in Fig. 7b. The ensemble standard deviation serves
as a measure of simulation uncertainty. We observe a peak
in the uncertainty for the first three LSEs that occur at peaks
in H. For the two LSEs observed in this grid cell in spring
2015, there is a peak neither in H nor in the uncertainty.

Table 2c gives the AUC values for H, as well as the hits,
misses and false alarms. Compared to deterministic PHELS
for the same hydrological predictor variables, we observe a
very minor increase in performance.

To understand the spatio-temporal behaviour of PHELS
simulations, Fig. 8 shows spatial distributions of PHELS in-
put data (ensemble average rzmc, rainfall and LSS) and the
resulting H for 15 September 2015. We find elevated H in
Central America, western sub-Saharan Africa, central India
and China. These hotspots are located where high values
of all three input variables coincide. Note that H uses per-
centiles of rzmc and rainfall, but that Fig. 8a and b show ab-
solute rzmc and rainfall values, not percentiles. Large rzmc
values do therefore not necessarily indicate extremely wet
conditions for a specific location. Example of this are the
northern hemispheric peat areas in central Siberia or close
to the Hudson Bay, which are generally wetter than other re-
gions but are not necessarily wetter than normal on the shown
date.

The ensemble standard deviations of PHELS input and
output are shown in Fig. 9 for the same day. As for the ensem-
ble averages, we find a high (low) ensemble standard devia-
tion of H, i.e. uncertainty, where high (low) uncertainties of
the input variables coincide. Example areas with high uncer-
tainty are Central America and China. Example areas with
low uncertainty are the central USA, the Amazon and the
Congo basin.

The relationship between H and its uncertainty in terms of
standard deviation is illustrated in Fig. 10a for all land grid
cells on 15 September 2015. A parabolic pattern between low
and high H values is found, where uncertainty is low at either
end and increased in the middle. Furthermore, a more linear
trend (“tail”) is found where uncertainty increases propor-
tionally to H. Figure 10b shows H and standard deviation of
Hens for all LSE and noLSE. Symbols and colour indicate
whether LSE and noLSE were correctly captured (true posi-
tive – TP; true negative – TN) or not (false positive – FP; false
negative – FN), again using the temporal 90th percentile of
H as threshold. The distributions of H for the positives (TP,
FP) are significantly different from that of the TN and they
have a peaked distribution. Whereas the distribution for the
FN is wider and largely overlaps with the distributions for
the positives and the TN. While median uncertainty for FN,

i.e. missed alarms, is larger than that for TN, median uncer-
tainty for FP, i.e. false alarm, is nearly identical to that of
TP. High uncertainty is therefore not necessarily an indicator
of a wrong prediction. Overall, across all time steps and all
grid cells globally, the uncertainty is between 5.2×10−6 %
and 37.5 % of the estimated hazard value, with an average of
13.6 %.

4 Discussion

We evaluate PHELS against the set of LSE that was also used
to derive optimal parameter values for Eqs. (5)–(6), which
describe the signature relationships (Vrugt and Sadegh,
2013) between predictor variables and H. This fit was hence
based on a long-term and spatially aggregated frequency
distribution of LSE and not on individual LSE conditions,
and has the advantage of robustness because a maximum
amount of data was used. In the subsequent evaluation, the
match between individual simulated and reported LSE and
noLSE is measured in terms of e.g. AUC values, and this
focuses on different aspects than the fit on a summary dis-
tribution of LSE. A similar procedure has been followed by
Calvello and Pecoraro (2019) and Guzzetti et al. (2007) to
obtain and evaluate their probabilistic respectively intensity–
duration thresholds. Other options could have been to sepa-
rate the LSE data into a training and a test subset as was done
by Stanley et al. (2021), but this would reduce the number of
data points both for fitting and validation.

PHELS performance increased when accounting for pos-
sible errors in the dating of LSE as well as time zone shifts
(LSE3), i.e. PHELS often simulates hazard peaks within
3 d windows around LSE, regardless of the predictor vari-
able(s). This is in line with findings of Kirschbaum and Stan-
ley (2018). For LSE3, H performance based on rainfall ap-
proaches that of ARI7, because offsets between the timing of
short-term rainfall and LSE are less penalized. The H perfor-
mance based on rzmc is least impacted by the extended time
window, because rzmc is typically slowly varying in time
(seasonal). For this assessment, noLSE were only sampled
within grid cells of reported LSE to emphasize the temporal
aspect in the evaluation. When sampling noLSE globally ran-
domly (noLSEglobal), we find very good H performance for
all predictor variables, i.e. global spatio-temporal patterns of
hazard are equally well captured, reinforcing the quality of
the (LSS) estimates by Felsberg et al. (2022b).

As hydrological predictor variables we investigated daily
rainfall, ARI7 from MERRA-2 and rzmc from CLSM. Other
datasets could be used (e.g. rzmc estimates from satellite-
based data assimilation, as in Felsberg et al., 2021; Stanley
et al., 2021), the predictors could be preprocessed differently,
e.g. into daily or 3-hourly rainfall maximum (Patton et al.,
2023), monthly rainfall (Luna and Korup, 2022), antecedent
soil moisture (Mirus et al., 2018), soil moisture changes
(Wicki et al., 2020), or short- and long-term anomaly val-
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Figure 7. Time series of daily PHELS hazard ensembles (Hens) based on rzmc&rainfall for a grid cell near Seattle, USA (same as in Fig. 4).
(a) Ensemble members as well as ensemble average H, 75th percentile and maximum, (b) ensemble standard deviation. Days with LSE are
indicated by the dashed red lines.

Figure 8. Spatial distribution of PHELS input and output for 15 September 2015. Shown are the grid cell’s ensemble average (a) rzmc
[m3 m−3], (b) rainfall [mm], (c) static LSS [−] and (d) hazard H [−].

ues. Furthermore different combinations of the predictors
could be tested, e.g. rzmc and ARI7. Percentile thresholds
could moreover be derived for shorter time periods (seasonal,
pentad), allowing for intra-seasonal hazard estimations. Note
that if the connection of any of these predictor variables with
LSE would differ from the exponential behaviour found for
all predictor variables used in this study, the form of the
fitted Eqs. (5)–(6) would need to be adapted. Furthermore,
when multiple time-varying hydrological predictors are used,
it could be recommended to implement the normalization
factor in Eq. (3): given the use of percentile values for the
time-varying predictors, the probability for a single predictor
variable is uniform (and normalization would not alter the re-
sults), but the joint probability of multiple percentile predic-
tors is not uniform (and would alter the temporal behaviour
of PHELS).

PHELS can combine any hydrological variables or even
other triggering sources (e.g. seismic). Inclusion of a third
predictor variable changed H output characteristics from ex-
ponential to quasi-normal (see Appendix A), which allowed
the use of a simple ensemble standard deviation as a met-
ric for the H uncertainty. Any further or renewed extension
requires a check of distribution characteristics and the sta-
tistical measures to quantify uncertainty should be chosen
accordingly.

The Hens uncertainty in terms of ensemble standard devi-
ation follows a parabolic pattern and a linear upward trend
with increasing H. The first is induced by the characteris-
tics of rzmc and LSS, which also show parabolic relation-
ship between ensemble average and standard deviation (Fels-
berg et al., 2022b). The second reflects the behaviour of rain-
fall and its standard deviation. However, the uncertainty de-
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Figure 9. Spatial distribution of PHELS input and output for 15 September 2015. Shown are the grid cell’s ensemble standard deviations of
(a) rzmc [m3 m−3], (b) rainfall [mm], (c) static LSS [−] and (d) hazard H [−].

creases again for very large H which is likely a result of
the design and boundedness of the input variables xh (per-
centiles). The sampling (and resampling) of the predictor
variable values at the lower (upper) edge of the definition
range, i.e. at percentile 1 (percentile 100), will inevitably lead
to smaller ensemble standard deviations.

This connection of Hens uncertainty with the uncertainty
of the input variables generates a spatial pattern that is
closely following the input patterns. As examples for low
Hens uncertainty on 15 September 2015 we found central
USA, the Amazon and the Congo basin (see Fig. 8). These
regions have low LSS, and they exhibit dry conditions at
this time (low rzmc and low or no rainfall) with small con-
nected uncertainty: consequently, low H values and Hens un-
certainties are found. Since these regions have nearly no ob-
served LSE (see Fig. 1), sampled grid cells would probably
be true negatives (TNs). For the complete study period TN
also showed lowest H and Hens uncertainty (see Fig. 10b).
As examples for high Hens uncertainty on 15 September
2015 we found Central America and China. Both record a
large number of observed LSE and high LSS with low uncer-
tainty. However, rzmc is intermediately high with increased
uncertainty and rainfall is high with large uncertainty, result-
ing in Hens uncertainty also being high. Sampled grid cells
would probably be positive predictions (TP, FP), which for
the complete study period also showed highest H and Hens
uncertainty (see Fig. 10b).

The spatial resolution in this study (36 km) is much coarser
than a typical landslide extent. This helps to improve (not
degrade) the hazard estimates, because it is easier to estimate
the chance for a landslide in a large pixel than at a specific lo-
cation (scaling effect). The 36 km simulated H thus describes
spatio-temporal patterns of landslide probability for a larger
area rather than for a single slope. Similar to LSS, spatial
variation of H within one grid cell extent can be expected

where the environment is very heterogeneous, and this will
be partly captured in the Hens uncertainty. The temporal evo-
lution of H, on the other hand, is governed by hydrology and
meso-scale meteorology, which are attributed with autocor-
relation lengths of up to 40 km even in strongly mountainous
terrain such as the Swiss Alps (Mittelbach and Seneviratne,
2012). A 36 km grid cell time series will thus adequately rep-
resent the temporal H variability.

The comparison of hydrological predictor variables shows
that PHELS based on ARI7 or rainfall performs best when
rainfall is above average (above 50th percentile, not shown),
and PHELS based on rzmc performs best when rzmc is
above average. As a compromise, the hydrometeorological
approach using rzmc&rainfall performs slightly worse than
rzmc (or rainfall) alone for elevated rzmc (rainfall) but much
better for conditions of dry soil (no rainfall). This is also vis-
ible in the stratified AUC analysis, where AUC values range
much closer together for rzmc&rainfall. Including rzmc on
top of rainfall as a predictor variable specifically improves
the performance in spring when other water sources (e.g.
meltwater) may be present. We found that including rzmc re-
duced missed alarms (on wet soils even small rainfall events
may induce an LSE) and false alarms (where the soil is dry,
LSE occurrence is less likely) for the full data set. The re-
duction in false alarms was also reported by Ponziani et al.
(2012); Mirus et al. (2018); Segoni et al. (2018a); Stanley
et al. (2021). While the number of missed alarms is lower
for PHELS based on rainfall&rzmc than for PHELS based
on rainfall alone, it is even lower for PHELS based on ARI7.
A possible reason for this can be that (intensive) antecedent
rainfall prepares failure by progressively destabilizing the
slope.

PHELS can be compared to different versions of LHASA
(Kirschbaum and Stanley, 2018; Stanley et al., 2021) while
keeping in mind the large discrepancy in spatial resolution
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Figure 10. Bivariate histogram of ensemble average H against en-
semble standard deviation (a) for all grid cells on 15 September
2015 and (b) for LSE and noLSE during the complete study time
period. Colours and shapes indicate whether the predictions are cor-
rect (true negative: TN, true positive: TP) or not (false negative: FN,
false positive, FP). The marginal distributions of the ensemble av-
erage and standard deviation are shown on the top and side panels.
Median values are indicated by the larger symbols on top of the
scatter cloud and on the marginal distributions. As a threshold for
H predictions to count as LSE or noLSE, we use the 90th percentile
of H per grid cell.

(36 km vs. 1 km), the ratio of LSE to noLSE sampling (1 : 1
vs. roughly 1 : 10000), the method of LSE and noLSE sam-
pling (see LSE3, noLSEglobal), and the thresholds in prob-
abilistic H where applicable. The following skill values for
PHELS and LHASA refer to an evaluation of the hazard on
the reported day of LSE. The first setup of LHASA combined
ARI7 and LSS into categorical “nowcasts” (Kirschbaum and
Stanley, 2018) and is comparable to PHELS using ARI7 as
hydrological predictor variable. The latter yields a TPR of
0.49, which is above the range of reported TPR for LHASA
(0.13 for an earlier version of GLC, 0.23 for LRC, and
0.38–0.45 with additional large-scale rainfall event invento-
ries) (Stanley et al., 2021). LHASA version 2.0 has a differ-
ent setup (probabilistic combination of different input vari-
ables, among these slope, rainfall, soil moisture; see Stan-

ley et al., 2021), which is comparable to PHELS based on
rzmc&rainfall. For the latter, we find a TPR of 0.46, whereas
Stanley et al. (2021) find TPR values of 0.17 (GLC, also used
as training data), 0.32 (LRC, test data) and up to 0.93 with
additional inventories. For PHELS, using the 90th temporal
percentile within a grid cell as a threshold results in 10 %
positive predictions. Because landslides are rare events, the
FPR also ranges close to this (0.1) but may differ for tem-
poral subsets (see Table 2). Due to the choice in threshold
and the larger LSE–noLSE sampling ratio (see above), this
FPR is by design much higher than those for LHASA pre-
dictions (between 0.002 and 0.01, Kirschbaum and Stanley
(2018); Stanley et al. (2021)). For both models, FPR might
however be erroneously high due to known underreporting
in the GLC, even within well-reported areas. Figure 4 for ex-
ample misses mid–late January events of 2016 in the Seattle
area that were reported by Mirus et al. (2018).

This known incompleteness of the inventory not only in-
fluences the performance evaluation, but also adds to the un-
certainty of the model fitting process (i.e. Eqs. 5–6). While
the goodness of fit can be quantified (see Table 1) and the-
oretically propagated, it is still relative to the available in-
ventory. Quantification of inventory-induced uncertainty re-
quires very detailed or synthetic landslide inventories and has
been subject of many studies for LSS (Steger et al., 2017;
Lin et al., 2021) but less so for hazard assessment. PHELS
does not account for such inventory-induced uncertainty, but
it does include the uncertainties and within-grid-cell hetero-
geneity of input variables by using an ensemble approach.
The latter allows one to easily account for, for example, the
uncertainty in rainfall, which is directly available from en-
semble weather prediction systems. Or to account for mod-
elled soil moisture uncertainties, which can be obtained from
ensemble land surface model simulations that are usually op-
timized to match to the variations in observations. Neverthe-
less, models are always a simplification of real-world condi-
tions, and the downscaling of coarse-scale model estimates
to fine-scale applications remains a challenge.

PHELS provides reliable insights into spatio-temporal pat-
terns of landslide hazard but has limitations in the context of
actual early warning systems. These usually require higher
spatial resolution and temporal accuracy. The coarse spatial
resolution would hence call for downscaling methods to ob-
tain within grid-box distributions. And although we use the
evaluation approach LSE3 because of time shifts and possi-
ble observation errors, the fact that peaks of hazard are of-
ten simulated within a 3 d window around a recorded LSE
may also indicate a low temporal accuracy, which might be
mainly associated with the coarse-scale global re-analysis in-
put of precipitation. For early warning systems the question
moreover remains how to interpret or use the hazard uncer-
tainty. Low-enough uncertainty could be used as a secondary
condition before warnings are issued to the public or the un-
certainty could be directly communicated as is. However,
ensemble measures such as the maximum predicted hazard
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(“worst-case scenario”) or the 90th quantile of ensemble haz-
ard prediction might be easier to understand. While this study
used PHELS with specific spatio-temporal resolution and in-
put data, its adjustable, modular character makes PHELS a
general framework for hazard estimation that can be tailored
to specific purposes. If adequate landslide and hydrological
data are available, it would therefore be possible to create a
PHELS setup that is more suitable for local to regional land-
slide early warning systems.

5 Conclusions

In this study, we created the global Probabilistic Hydrolog-
ical Estimation of LandSlides (PHELS) model, which pro-
duces daily landslide hazard [−] (H) estimates at a coarse
36 km resolution. The PHELS model combines landslide
susceptibility (LSS) and (percentiles of) hydrological predic-
tor variables such as rainfall, a 7 d antecedent rainfall index
(ARI7) or root-zone soil moisture content (rzmc). Apart from
deterministic H simulations, PHELS supports landslide haz-
ard ensemble (Hens) simulations based on repeated sampling
of LSS and the hydrological predictor variables. The result-
ing spread among the ensemble members is a measure of the
uncertainty of the simulations. To our knowledge, this is the
first global landslide hazard model with uncertainty quantifi-
cation. We conclude the following:

1. Deterministic H estimates with PHELS yield area under
the ROC curve (AUC) values above 0.68, with the best
performance (AUC= 0.79) based on the combination
of rainfall and rzmc as hydrological predictor variables
and second best based on ARI7 (AUC= 0.77). Includ-
ing rzmc on top of rainfall can reduce missed alarms
(especially during spring) and false alarms. The perfor-
mance of ensemble average H (H) is similar.

2. Hens uncertainty follows the behaviour of the input vari-
able uncertainties (rainfall, rzmc and LSS) and is about
13.6 % of the daily simulated H value globally and for
the study period. The uncertainty follows a parabolic
pattern introduced by the characteristics of rzmc and
LSS where rainfall uncertainty is small and a positive
linear relationship where rainfall uncertainty is large.
Overall, the uncertainty of H simulations is small for
very low and very high ensemble average H and larger
for intermediate values.

The PHELS model is a flexible framework that allows the
inclusion of other hydrological predictors or data sources
(satellite data products, data assimilation) in future research.
The approach can also be promising at smaller scales with
local (in situ) data or for seasonal modelling and offers a
scaleable way to propagate uncertainties of various contribut-
ing predictors to traceable H uncertainty estimates.

Appendix A: Distribution comparison

In addition to the ROC analysis, we evaluate the performance
of deterministic PHELS for all hydrological predictor vari-
ables (rzmc, rainfall, ARI7 and rzmc&rainfall) in terms of
H distributions for LSE and noLSE. Specifically, we calcu-
late the area between the quantile–quantile (Q–Q) line and
the bisector (AQQ) normalized by the total area underlying
the bisector, as described in Felsberg et al. (2021). The larger
AQQ, the more different the two distributions. A large dif-
ference between the distributions implies that the variable in
question is able to distinguish well between LSE and noLSE
conditions, as discussed in Felsberg et al. (2021). To better
highlight the long-term capability of PHELS, we also anal-
yse H relative to the temporal average within a grid cell:

Hrel =
H− avgt(H)

maxt(H)−mint(H)
, (A1)

where avgt, mint and maxt denote the temporal average, min-
imum and maximum for this grid cell across the complete
time period. For an assessment of the short-term capability,
time steps are limited to ±15 d (around the LSE or noLSE
in question) across all years to obtain an average, minimum
and maximum H within this time window. This relative H is
referred to as Hrel,15.

Table A1. Differences between LSE and noLSE distributions of
hazard values for PHELS based on different hydrological variables
(rainfall, ARI7, rzmc, rzmc&rainfall) measured in terms of normal-
ized Aqq. The corresponding distributions are shown in Fig. A1.
Results are shown for the deterministic H, H relative to the tem-
poral range within a grid cell (Hrel) and relative to the long-term
average hazard for ±15 d (Hrel,15).

xh
Aqq based on

H Hrel Hrel,15

Rainfall 0.60 0.76 0.42
ARI7 0.65 0.83 0.48
rzmc 0.58 0.75 0.36
rzmc&rainfall 0.24 0.60 0.39

Extracting H for LSE and noLSE results in distributions as
displayed in Fig. A1. It illustrates that the inclusion of a sec-
ond hydrological predictor variable changes results from ex-
ponential distributions to quasi-normal distributions. While
differences between the distributions of LSE and noLSE can
be captured by AQQ, it is difficult to compare AQQ across
such different types of distributions. Table A1 summarizes
AQQ of all predictor variables for H, Hrel and Hrel,15. ARI7
shows highest AQQ, i.e. discrimination ability, for H predic-
tions based on one hydrological predictor variable, and rzmc
has lowest AQQ. AQQ is generally higher (lower) for Hrel
(Hrel,15) than for H. For PHELS based on rzmc&rainfall,
AQQ is smaller than for single variable PHELS. At the same
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Figure A1. Distribution of PHELS H for known LSE (right, dark
value) and sampled noLSE (left, light colour), shown in histograms
(background) and boxplots (foreground). Distributions are shown
for PHELS based on (a) rainfall percentiles, (b) ARI7 percentiles,
(c) rzmc percentiles (xh in Eq. 5) and (d) rzmc&rainfall percentiles
(xh1 and xh2 in Eq. 6).

time, AQQ increases for both Hrel and Hrel,15, indicating im-
provements in the discrimination abilities both for long- and
short-term patterns.

Appendix B: Abbreviations

AQQ: area between the quantile–quantile (Q–Q) line and the
bisector
ARI: antecedent rainfall index
ARI7: 7 d antecedent rainfall index [mm]
AUC: area under the ROC curve
CLSM: Catchment Land Surface Model
DJF: December–January–February
EASEv2: Equal-Area Scalable Earth version 2
FPR: false positive rate
GLC: Global Landslide Catalog
H: landslide hazard [−]
Hens: landslide hazard ensemble
H: ensemble average H
JJA: June–July–August
LHASA: Landslide Hazard Assessment for Situational
Awareness
LRC: Landslide Reporter Catalog
LSE: landslide event
LSS: landslide susceptibility
MAM: March–April–May
MERRA-2: Modern-Era Retrospective analysis for Research
and Applications, Version 2
noLSE: no landslide event
PHELS: Probabilistic Hydrological Estimation of Land-
Slides
rzmc: root-zone soil moisture content [m3 m−3]
ROC: receiver operation characteristic
SON: September–October–November
TPR: true positive rate

Code availability. Code of the PHELS model setup can be
found here: https://doi.org/10.5281/zenodo.7194280 (Felsberg et
al., 2022c). Code for the figures can be obtained upon request to
the contact author.

Data availability. Landslide data is taken from the most
recent version of the Global Landslide Catalog (GLC)
(https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/
index.html?appid=574f26408683485799d02e857e5d9521, Land-
slides @ NASA, 2022). The supplementary data of Russian
landslides can be obtained upon request to the contact author.
ARI7, rainfall and rzmc data from CLSM simulations (ensemble av-
erage and standard deviation) in NetCDF format can be found here:
https://doi.org/10.5281/zenodo.7194280 (Felsberg et al., 2022c).
Hazard output in NetCDF format for deterministic results (ARI7,
rainfall, rzmc, rzmc&rainfall) and ensemble results (rzmc&rainfall)
can be found here: https://doi.org/10.5281/zenodo.7188355
(Felsberg et al., 2022d).
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Video supplement. An animation of global ensemble average haz-
ard (rzmc&rainfall) for the year 2015 can be found here:
https://doi.org/10.5281/zenodo.7882809 (Felsberg et al., 2023).
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