Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lava flow hazard modeling during the 2021 Fagradalsfjall eruption, Iceland: applications of MrLavaLoba
Nordic Volcanological Center, Institute of Earth Sciences, University
of Iceland, Reykjavík, 102, Iceland
Melissa A. Pfeffer
Icelandic Meteorological Office, Reykjavík, 105, Iceland
Sara Barsotti
Icelandic Meteorological Office, Reykjavík, 105, Iceland
Simone Tarquini
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, 56125, Italy
Mattia de'Michieli Vitturi
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, 56125, Italy
Department of Geology, University at Buffalo, Buffalo, New York 14260,
USA
Bergrún A. Óladóttir
Nordic Volcanological Center, Institute of Earth Sciences, University
of Iceland, Reykjavík, 102, Iceland
Icelandic Meteorological Office, Reykjavík, 105, Iceland
Ragnar Heiðar Þrastarson
Icelandic Meteorological Office, Reykjavík, 105, Iceland
Related authors
No articles found.
Rachel C. W. Whitty, Evgenia Ilyinskaya, Melissa A. Pfeffer, Ragnar H. Thrastarson, Þorsteinn Johannsson, Sara Barsotti, Tjarda J. Roberts, Guðni M. Gilbert, Tryggvi Hjörvar, Anja Schmidt, Daniela Fecht, and Grétar G. Sæmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-937, https://doi.org/10.5194/egusphere-2025-937, 2025
Short summary
Short summary
Our work focuses on volcanic emissions, a poorly understood air pollution hazard in populated areas. We present a large dataset of reference-grade measurements of sulfur dioxide gas and aerosol particulate matter (PM1, PM2.5 and PM10) collected during a recent episode of eruptions in Iceland, which is still ongoing at the time of writing. We identified fine-scale fluctuations in ground-level concentrations of these pollutants and we discuss the implications of these for population exposures.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Cited articles
Adams, B. M., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy, J. P., Eldred,
M. S., Hooper, R. W., Hough, P. D., Hu, K. T., Jakeman, J. D., Khalil, M.,
Maupin, K. A., Monschke, J. A., Ridgway, E. M., Rushdi, A. A., Seidl, D. T.,
Stephens, J. A., Swiler, L. P., and Winokur, J. G.: Dakota, A Multilevel
Parallel Object-Oriented Framework for Design Optimization, Parameter
Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version
6.15 User's Manual, Sandia Technical Report SAND2020-12495, Sandia National Laboratories, 2021.
Andrésdóttir, Þ. B.: Eldfjallavá á Reykjanesi, Thesis, University of Iceland, Háskólaprent, Reykjavík,
2016.
Andrésdóttir, Þ. B.: Volcanic hazard and risk assessment at
Reykjanes, vulnerability of infrastructure, Thesis, University of Iceland, Háskólaprent, Reykjavík, 2018.
Barberi, F. and Villari, L.: Volcano monitoring and civil protection
problems during the 1991–1993 Etna eruption, Acta Vulcanol., 4,
157–165, 1994.
Barsotti, S., Parks, M. M., Pfeffer, M. A., Óladóttir, B. A.,
Barnie, T., Titos, M. M., Jónsdóttir, K., Pedersen, G. B. M.,
Hjartardóttir, Á. R., Stefansdóttir, G., Johannsson, T., Arason,
Þ., Gudmundsson, M. T., Oddsson, B., Þrastarson, R. H.,
Ófeigsson, B. G., Vogfjörd, K., Geirsson, H., Hjörvar, T., von
Löwis, S., Petersen, G. N., and Sigurðsson, E. M.: The eruption in
Fagradalsfjall (2021, Iceland): how the operational monitoring and the
volcanic hazard assessment contributed to its safe access, Nat. Hazards, 116,
3063–3092, https://doi.org/10.1007/s11069-022-05798-7, 2023.
Cappello, A., Ganci, G., Calvari, S., Pérez, N. M., Hernández, P.
A., Silva, S. V., Cabral, J., and Del Negro, C.: Lava flow hazard modeling
during the 2014–2015 Fogo eruption, Cape Verde, J. Geophys.
Res.-Sol. Ea., 121, 2290–2303, https://doi.org/10.1002/2015JB012666, 2016a.
Cappello, A., Hérault, A., Bilotta, G., Ganci, G., and Del Negro, C.:
MAGFLOW: a physics-based model for the dynamics of lava-flow emplacement,
Geol. Soc. Lond. Spec. Publ., 426, 357–373,
https://doi.org/10.1144/SP426.16, 2016b.
Carracedo, J. C., Troll, V. R., Day, J. M. D., Geiger, H., Aulinas, M.,
Soler, V., Deegan, F. M., Perez-Torrado, F. J., Gisbert, G., Gazel, E.,
Rodriguez-Gonzalez, A., and Albert, H.: The 2021 eruption of the Cumbre
Vieja volcanic ridge on La Palma, Canary Islands, Geol. Today, 38,
94–107, https://doi.org/10.1111/gto.12388, 2022.
Chevrel, M. O., Labroquère, J., Harris, A. J. L., and Rowland, S. K.:
PyFLOWGO: An open-source platform for simulation of channelized
lavahermoso-rheological properties, Comput. Geosci., 111,
167–180, https://doi.org/10.1016/j.cageo.2017.11.009, 2018.
Chevrel, M. O., Favalli, M., Villeneuve, N., Harris, A. J. L., Fornaciai, A., Richter, N., Derrien, A., Boissier, P., Di Muro, A., and Peltier, A.: Lava flow hazard map of Piton de la Fournaise volcano, Nat. Hazards Earth Syst. Sci., 21, 2355–2377, https://doi.org/10.5194/nhess-21-2355-2021, 2021.
Clifton, A. E. and Kattenhorn, S. A.: Structural architecture of a highly
oblique divergent plate boundary segment, Tectonophysics, 419, 27–40,
https://doi.org/10.1016/j.tecto.2006.03.016, 2006.
Cubuk-Sabuncu, Y., Jónsdóttir, K., Caudron, C., Lecocq, T., Parks,
M. M., Geirsson, H., and Mordret, A.: Temporal Seismic Velocity Changes
During the 2020 Rapid Inflation at Mt. Þorbjörn-Svartsengi, Iceland,
Using Seismic Ambient Noise, Geophys. Res. Lett., 48,
e2020GL092265, https://doi.org/10.1029/2020GL092265, 2021.
de'Michieli Vitturi, M. and Tarquini, S.: MrLavaLoba: A new probabilistic
model for the simulation of lava flows as a settling process, J.
Volcanol. Geotherm. Res., 349, 323–334, https://doi.org/10.1016/j.jvolgeores.2017.11.016, 2018.
Dietterich, H. R., Lev, E., Chen, J., Richardson, J. A., and Cashman, K. V.:
Benchmarking computational fluid dynamics models of lava flow simulation for
hazard assessment, forecasting, and risk management, J. Appl.
Volcanol., 6, 9, https://doi.org/10.1186/s13617-017-0061-x, 2017.
Eibl, E. P. S., Thordarson, T., Höskuldsson, Á., Gudnason, E.
Á., Dietrich, T., Hersir, G. P., and Ágústsdóttir, T.:
Evolving shallow conduit revealed by tremor and vent activity observations
during episodic lava fountaining of the 2021 Geldingadalir eruption,
Iceland, Bull. Volcanol., 85, 10, https://doi.org/10.1007/s00445-022-01622-z,
2023.
Einarsson, P., Hjartardóttir, Á. R., Hreinsdóttir, S., and
Imsland, P.: The structure of seismogenic strike-slip faults in the eastern
part of the Reykjanes Peninsula Oblique Rift, SW Iceland, J.
Volcanol. Geotherm. Res., 391, 106372, https://doi.org/10.1016/j.jvolgeores.2018.04.029, 2020.
Einarsson, P. and Sæmundsson, K.: Earthquake epicenters 1982–1985 and
volcanic systems in Iceland = Upptok jardskjalfta 1982–1985 og
eldstodvakerfi a Islandi [Map], Menningarsjóður, 1987.
Einarsson, S.: Brennisteinsfjöll Alternative name: Bláfjöll, in:
Catalogue of Icelandic volcanoes, edited by: Óladóttir, B. A.,
Larsen, G., and Gudmundsson, M. T., IMO, UI and CPD-NCIP,
http://icelandicvolcanoes.is/?volcano=BRE (last access: 11 September 2023), 2019a.
Einarsson, S.: Krýsuvík-Trölladyngja Alternative name:
Krísuvík, in: Catalogue of Icelandic volcanoes, edited by:
Óladóttir, B. A., Larsen, G., and Gudmundsson, M. T., IMO, UI and
CPD-NCIP, http://icelandicvolcanoes.is/?volcano=KRY (last access: 11 September 2023), 2019b.
Favalli, M., Pareschi, M. T., Neri, A., and Isola, I.: Forecasting lava flow
paths by a stochastic approach, Geophys. Res. Lett., 32, L03305,
https://doi.org/10.1029/2004GL021718, 2005.
Favalli, M., Tarquini, S., Papale, P., Fornaciai, A., and Boschi, E.: Lava
flow hazard and risk at Mt. Cameroon volcano, Bull. Volcanol., 74, 423–439,
https://doi.org/10.1007/s00445-011-0540-6, 2012.
Felpeto, A., Martí, J., and Ortiz, R.:Automatic GIS-based system for
volcanic hazard assessment, J. Volcanol. Geotherm. Res.,
166, 106–116, https://doi.org/10.1016/j.jvolgeores.2007.07.008, 2007.
Flóvenz, Ó. G., Wang, R., Hersir, G. P., Dahm, T., Hainzl, S.,
Vassileva, M., Drouin, V., Heimann, S., Isken, M. P., Gudnason, E. Á.,
Ágústsson, K., Ágústsdóttir, T., Horálek, J.,
Motagh, M., Walter, T. R., Rivalta, E., Jousset, P., Krawczyk, C. M., and
Milkereit, C.: Cyclical geothermal unrest as a precursor to Iceland's 2021
Fagradalsfjall eruption, Nat. Geosci., 15, 397–404, https://doi.org/10.1038/s41561-022-00930-5, 2022.
Flynn, I. T., Chevrel, M. O., Crown, D. A., and Ramsey, M. S.: The effects
of digital elevation model resolution on the PyFLOWGO thermorheological lava
flow model, Environ. Model. Softw., 167, 105768,
https://doi.org/10.1016/j.envsoft.2023.105768, 2023.
Ganci, G., Vicari, A., Cappello, A., and Del Negro, C.: An emergent
strategy for volcano hazard assessment: From thermal satellite monitoring to
lava flow modeling, Remote Sens. Environ., 119, 197–207, https://doi.org/10.1016/j.rse.2011.12.021, 2012.
Gee, M. A. M.: Volcanology and geochemistry of Reykjanes Peninsula:
Plume-mid-ocean ridge interaction, PhD thesis, University of London, 1998.
Glaze, L. S. and Baloga, S. M.: Simulation of inflated pahoehoe lava flows,.
J. Volcanol. Geotherm. Res., 255, 108–123, https://doi.org/10.1016/j.jvolgeores.2013.01.018, 2013.
Greenfield, T., Winder, T., Rawlinson, N., Maclennan, J., White, R. S.,
Ágústsdóttir, T., Bacon, C. A., Brandsdóttir, B., Eibl, E.
P. S., Glastonbury-Southern, E., Gudnason, E. Á., Hersir, G. P., and
Horálek, J.: Deep long period seismicity preceding and during the 2021
Fagradalsfjall eruption, Iceland, Bull. Volcanol., 84, 101,
https://doi.org/10.1007/s00445-022-01603-2, 2022.
Harris, A. J. and Rowland, S.: FLOWGO: A kinematic hermos-rheological model
for lava flowing in a channel, Bull. Volcanol., 63, 20–44,
https://doi.org/10.1007/s004450000120, 2001.
Harris, A. J. L., Villeneuve, N., Di Muro, A., Ferrazzini, V., Peltier, A.,
Coppola, D., Favalli, M., Bachèlery, P., Froger, J.-L., Gurioli, L.,
Moune, S., Vlastélic, I., Galle, B., and Arellano, S.: Effusive crises
at Piton de la Fournaise 2014–2015: a review of a multi-national response
model, J. Appl. Volcanol., 6, 11, https://doi.org/10.1186/s13617-017-0062-9, 2017.
Harris, A. J. L., Chevrel, M. O., Coppola, D., Ramsey, M. S., Hrysiewicz, A.,
Thivet, S., Villeneuve, N., Favalli, M., Peltier, A., Kowalski, P., DiMuro,
A., Froger, J.-L., and Gurioli, L.: Validation of an integrated
satellite-data-driven response to an effusive crisis: the April–May 2018
eruption of Piton de la Fournaise, Ann. Geophys., 62, VO230, https://doi.org/10.4401/ag-7972, 2019.
Jakobsson, S. P., Jónsson, J., and Shido, F.: Petrology of the Western
Reykjanes Peninsula, Iceland, J. Petrol., 19, 669–705,
https://doi.org/10.1093/petrology/19.4.669, 1978.
Jones, J. G.: Intraglacial volcanoes of the Laugarvatn region, south-west
Iceland – I, Q. J. Geol. Soc., 124,
197–211, https://doi.org/10.1144/gsjgs.124.1.0197, 1969.
Jónsson, J.: Jarðfræðikort af Reykjanesskaga (Geological map
of the Reykjanes Peninsula), Orkustofnun Jarðhitadeilsd 7831, 1978.
Jóhannesson, T., Björnsson, H., Magnusson, E., Gudmundsson, S.,
Palsson, F., Sigurdsson, O., Throsteinsson, T., and Berthier, E.: Ice-volume
changes, bias estimation of mass-balance measurements and changes in
subglacial lakes derived by lidar mapping of the surface ofhermosnc
glaciers, Ann. Glaciol., 54, 63–74, 2013.
Kauahikaua, J.: Lava flow hazard assessment, as of August 2007, for Kilauea
east rift zone eruptions, Hawaii island, U.S. Geological Survey Open-File
Report 2007-1264, August, 9 pp., http://www.usgs.gov/pubprod (last access: 5 September 2023),
2007.
Klein, F. W., Einarsson, P., and Wyss, M.:The Reykjanes Peninsula, Iceland,
earthquake swarm of September 1972 and its tectonic significance, J.
Geophys. Res., 82, 865–888, https://doi.org/10.1029/JB082i005p00865, 1977.
Lowenstern, J. B., Wallace, K., Barsotti, S., Sandri, L., Stovall, W.,
Bernard, B., Privitera, E., Komorowski, J.-C., Fournier, N., Balagizi, C.,
and Garaebiti, E.: Guidelines for volcano-observatory operations during
crises: recommendations from the 2019 volcano observatory best practices
meeting, J. Appl. Volcanol., 11, 3,
https://doi.org/10.1186/s13617-021-00112-9, 2022.
Martí, J., Becerril, L., and Rodríguez, A.: How long-term hazard
assessment may help to anticipate volcanic eruptions: The case of La Palma
eruption 2021 (Canary Islands), J. Volcanol. Geotherm.
Res., 431, 107669, https://doi.org/10.1016/j.jvolgeores.2022.107669,
2022.
Mossoux, S., Saey, M., Bartolini, S., Poppe, S., Canters, F., and Kervyn,
M.: Q-LAVHA: A flexible GIS plugin to simulate lava flows, Comput.
Geosci., 97, 98–109, https://doi.org/10.1016/j.cageo.2016.09.003, 2016.
Neal, C. A., Brantley, S. R., Antolik, L., Babb, J. L., Burgess, M., Calles,
K., Cappos, M., Chang, J. C., Conway, S., Desmither, L., Dotray, P., Elias,
T., Fukunaga, P., Fuke, S., Johanson, I. A., Kamibayashi, K., Kauahikaua,
J., Lee, R. L., Pekalib, S., Miklius, A.,
Million, W., Moniz, C. J., Nadeau, P. A., Okubo, P., Parcheta, C., Patrick, M. R., Shiro, B.,
Swanson, D. A., Tollett, W., Trusdell, F., Younger, E. F., Zoeller, M. H.,
Montgomery-Brown, E. K., Anderson, K. R., Poland, M. P., Ball, J. L., Bard, J.,
Coombs, M., Dietterich, H. R., Kern, C., Thelen, W. A., Cervelli, P. F., Orr, T.,
Houghton, B. F., Gansecki, C., Hazlett, R., Lundgren, P., Diefenbach, A. K., Lerner, A. H.,
Waite, G., Kelly, P., Clor, L., Werner, C., Mulliken, K., Fisher G., and Damby, D.: The 2018 rift eruption
and summit collapse of Kīlauea Volcano, Science, 363, 367–374,
https://doi.org/10.1126/science.aav7046, 2019.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Óladóttir, B. A., Óladóttir, B. A., Larsen, G., and
Gudmundsson, M. T.: Fagradalsfjall Also known as part of
Krýsuvík-Trölladyngja volcanic system, in: Catalogue of
Icelandic volcanoes, IMO, UI and CPD-NCIP, http://icelandicvolcanoes.is/?volcano=FAG (last access: 11 September 2023), 2022.
Pallister, J., Papale, P., Eichelberger, J., Newhall, C., Mandeville, C.,
Nakada, S., Marzocchi, W., Loughlin, S., Jolly, G., Ewert, J., and Selva,
J.: Volcano observatory best practices (VOBP) workshops – A summary of
findings and best-practice recommendations, J. Appl. Volcanol.,
8, 2, https://doi.org/10.1186/s13617-019-0082-8, 2019.
Pedersen, G. B. M. and Grosse, P.: Morphometry of subaerial shield
volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of
eruption environment, J. Volcanol. Geotherm. Res., 282,
115–133, https://doi.org/10.1016/j.jvolgeores.2014.06.008,
2014.
Pedersen, G. B. M., Belart, J. M. C. Óskarsson, B. V., Gudmundsson, M.
T., Gies, N., Högnadóttir, Th., Hjartardóttir, A. R., Pinel, V.,
Berthier, E., Dürig, T., Reynolds, H. I., Hamilton, C. W., Valsson, G.,
Einarsson, P., Ben-Yehosua, D., Gunnarsson, D., and Oddsson, B.: Volume,
effusion rate, and lava transport during the 2021 Fagradalsfjall eruption:
Results from near real-time photogrammetric monitoring, Geophis. Res.
Lett., 49, 13, https://doi.org/10.1029/2021GL097125, 2022a.
Pedersen, G. B. M., Belart, J. M.C., Óskarsson, B. V., Gudmundsson, M.
T., Gies, N., Högnadóttir, Th., Hjartadótti, Á. R. Pinel,
V., Berthier, E., Dürig, T., Reynolds, H. I., Hamilton, C. W., Valsson,
G., Einarsson, P., Ben-Yehosua, D., Gunnarsson, A., and Oddsson, B.: Digital
Elevation Models, orthoimages and lava outlines of the 2021 Fagradalsfjall
eruption: Results from near real-time photogrammetric monitoring (Version
v1.2), Zenodo [data set], https://doi.org/10.5281/zenodo.7866738,
2022b.
Peltier, A., Ferrazzini, V., Di Muro, A., Kowalski, P., Villeneuve, N.,
Richter, N., Chevrel, M. O., Froger, J.-L., Hrysiewicz, A., Gouhier, M.,
Coppola, D., Retailleau, L., Beauducel, F., Boissier, P., Brunet, C., Catherine, P.,
Fontaine, F., Lauret, F., Garavaglia, L., Lebreton, J., Canjamale, K., Desfete, N.,
Griot, C., Arellano, S., and Liuzzo, M. G. S.: Volcano crisis management during
COVID-19 lockdown at Piton de la Fournaise (La Réunion), Seismol.
Res. Lett., 92, 38–52, https://doi.org/10.1785/0220200212, 2020.
Peltier, A, Chevrel, M. O., Harris, A. J. L., and Villeneuve, N.:
Reappraisal of gap analysis for effusive crises at Piton de la Fournaise,
J. Appl. Volcanol., 11, 1–17, https://doi.org/10.1186/s13617-021-00111-w, 2022.
Pfeffer, M. A., Barsotti, S., Karlsdóttir, S., Jensen, E. H., Pagneux,
E. P., Björnsson, B. B., Jóhannesdóttir, G., Höskuldsson,
Á., Sandri, L., Selva, J., and Tarquini, S.: An initial volcanic hazard
assessment of the Vestmannaeyjar Volcanic System, Icelandic Meterological
Office, Iceland, 73 pp., Veðurstofa Íslands
The report has the following numbers:
VÍ 2020-011,
ISSN 1670-8261, 2020.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington Jr., M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM. Harvard Dataverse, V1. Polar Geospatial Center, University
of Minnesota, Polar Geospatial Center (PGC), https://doi.org/10.7910/DVN/OHHUKH, 2018.
Richter, N., Favalli, M., de Zeeuw-van Dalfsen, E., Fornaciai, A., da Silva Fernandes, R. M., Pérez, N. M., Levy, J., Victória, S. S., and Walter, T. R.: Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption, Nat. Hazards Earth Syst. Sci., 16, 1925–1951, https://doi.org/10.5194/nhess-16-1925-2016, 2016.
Rossi, M. J.: Morphology and mechanism of eruption of postglacial shield
volcanoes in Iceland, Bull. Volcanol., 57, 530–540, https://doi.org/10.1007/BF00304437, 1996.
Sigmundsson, F., Parks, M., Hooper, A., Geirsson, H., Vogfjörd, K. S.,
Drouin, V., Ófeigsson, B. G., Hreinsdóttir, S., Hjaltadóttir,
S., Jónsdóttir, K., Einarsson, P., Barsotti, S., Horálek, J.,
and Ágústsdóttir, T.: Deformation and seismicity decline before
the 2021 Fagradalsfjall eruption, Nature, 609, 523–528,
https://doi.org/10.1038/s41586-022-05083-4, 2022.
Sigurgeirsson, M. A. and Einarsson, S.: Reykjanes and Svartsengi volcanic
systems, in: Catalogue
of Icelandic Volcanoes, edited by: Oladottir, B., Larsen, G., and Guðmundsson, M. T., IMO, UI and CPD-NCIP,
http://icelandicvolcanoes.is/?volcano=REY (last access: 11 Septeber 2013), 2016.
Sæmundsson, K.: Hengill, in: Catalogue of Icelandic volcanoes, edited
by: Óladóttir, B. A., Larsen, G., and Gudmundsson, M. T., IMO, UI
and CPD-NCIP, http://icelandicvolcanoes.is/?volcano=HEN (last access: 11 Septeber 2013), 2019.
Sæmundsson, K. and Sigurgeirsson, M. Á.: Reykjanesskagi, in:
Náttúruvá, edited by: Sólnes, J., Sigmundsson, F., and
Bessason, B., Viðlagatrygging Íslands/Háskólaútgáfa, 379–401, 2013.
Sæmundsson, K., Jóhanneson, H., Hjartarson, Á., Kristinsson, S.
G., and Sigurgeirsson, M. Á.: Geologic map of Southwest Iceland, Map,
Iceland Geosurvey, 2010.
Sæmundsson, K., Sigurgeirsson, M. Á., and Friðleifsson, G.
Ó.: Geology and structure of the Reykjanes volcanic system, Iceland,
J. Volcanol. Geotherm. Res., 391, 106501,
https://doi.org/10.1016/j.jvolgeores.2018.11.022, 2020.
Tarquini, S. and Favalli, M.: Uncertainties in lava flow hazard maps
derived from numerical simulations: The case study of Mount Etna, J.
Volcanol. Geotherm. Res., 260, 90–102, https://doi.org/10.1016/j.jvolgeores.2013.04.017, 2013.
Tarquini, S., Vitturi, M. de' M., Jensen, E., Pedersen, G., Barsotti, S.,
Coppola, D., and Pfeffer, M. A.: Modeling lava flow propagation over a flat
landscape by using MrLavaLoba: The case of the 2014–2015 eruption at
Holuhraun, Iceland, Ann. Geophys., 62, VO228, https://doi.org/10.4401/ag-7812, 2019.
Thorkelsson, B. (Ed.): The 2010 Eyjafjallajökull eruption, Iceland.
Report to ICAO – June 2012, Icelandic Meteorological Office, University of
Iceland. Institute of Earth Sciences, The National Commissioner of the
Icelandic Police, Reykjavík. IVATF 4-IP/3, 206 s, Steering and
editorial committee: Sigrún Karlsdóttir (chair), Ágúst
Gunnar Gylfason, Ármann Höskuldsson, Bryndís Brandsdóttir,
Evgenia Ilyinskaya, Magnús Tumi Guðmundsson and Þórdís
Högnadóttir, ISBN 978-9979-9975-4-2, 2012.
Vicari, A., Ganci, G., Behncke, B., Cappello, A., Neri, M., and Del Negro,
C.: Near-real-time forecasting of lava flow hazards during the 12–13
January 2011 Etna eruption, Geophys. Res. Lett., 38, L13317, https://doi.org/10.1029/2011GL047545, 2011.
Wright, R., Garbeil, H., and Harris, A. J. L.: Using infrared satellite data
to drive a hermos-rheological/stochastic lava flow emplacement model: A
method for near-real-time volcanic hazard assessment, Geophys. Res.
Lett., 35, 1–5, https://doi.org/10.1029/2008GL035228,
2008.
Short summary
The lava eruption at Fagradalsfjall in 2021 was the most visited eruption in Iceland, with thousands of visitors per day for 6 months. To address the short- and long-term danger of lava inundating infrastructure and hiking paths, we used the lava flow model MrLavaLoba before and during the eruption. These simulations helped communicate lava hazards to stakeholders and can be used as a case study for lava hazard assessment for future eruptions in the area, which are likely to be more destructive.
The lava eruption at Fagradalsfjall in 2021 was the most visited eruption in Iceland, with...
Altmetrics
Final-revised paper
Preprint