Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3125-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3125-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Wagner L. L. Costa
CORRESPONDING AUTHOR
School of Science, University of Waikato, Hamilton, Aotearoa / New Zealand
Karin R. Bryan
School of Science, University of Waikato, Hamilton, Aotearoa / New Zealand
Giovanni Coco
School of Environment, University of Auckland, Auckland, Aotearoa / New Zealand
Related authors
No articles found.
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292, https://doi.org/10.5194/egusphere-2025-2292, 2025
Short summary
Short summary
This study evaluates the performance of an early warning system for coastal flooding operating at a beach scale. The system is found to effectively capture total water level exceedances based on predefined morphological thresholds and trigger timely warnings, particularly under energetic sea conditions. Its forecasts are found to align well with selected overwash/flood events of varying magnitude and duration, captured by an on-site coastal video monitoring station.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Christo Rautenbach, Julia C. Mullarney, and Karin R. Bryan
Geosci. Model Dev., 14, 4241–4247, https://doi.org/10.5194/gmd-14-4241-2021, https://doi.org/10.5194/gmd-14-4241-2021, 2021
Short summary
Short summary
The simulation of ocean waves is important for various reasons, e.g. ship route safety and coastal vulnerability assessments. SWAN is a popular tool with which ocean waves may be predicted. Simulations using this tool can be computationally expensive. The present study thus aimed to understand which typical parallel-computing SWAN model set-up will be most effective. There thus do exist configurations where these simulations are most time-saving and effective.
Cited articles
Almeida, L. P., Efraim de Oliveira, I., Lyra, R., Scaranto Dazzi, R. L.,
Martins, V. G., and Klein, A. H. F.: Coastal Analyst System from Space Imagery
Engine (CASSIE): Shoreline management module, Environ. Model. Softw., 140,
105033, https://doi.org/10.1016/j.envsoft.2021.105033, 2021.
Ashphaq, M., Srivastava, P. K., and Mitra, D.: Review of near-shore
satellite-derived bathymetry: Classification and account of five decades of
coastal bathymetry research, J. Ocean Eng. Sci., 6, 340–359,
https://doi.org/10.1016/j.joes.2021.02.006, 2021.
Bay of Plenty Regional Council: Bay of Plenty Environmental Data Portal, https://envdata.boprc.govt.nz/Data (last access: 19 September 2023), 2023.
Bertin, X., Li, K., Roland, A., Bidlot, J. R.: The contribution of
short-waves in storm surges: Two case studies in the Bay of Biscay, Cont.
Shelf Res., 96, 1–15,
https://doi.org/10.1016/j.csr.2015.01.005, 2015.
Bertin, X., Mendes, D., Martins, K., Fortunato, A. B., and Lavaud, L.: The
Closure of a Shallow Tidal Inlet Promoted by Infragravity Waves, Geophys.
Res. Lett., 46, 6804–6810, https://doi.org/10.1029/2019GL083527, 2019.
Bishop-Taylor, R., Sagar, S., Lymburner, L., and Beaman, R. J.: Between the
tides: Modelling the elevation of Australia's exposed intertidal zone at
continental scale, Estuar. Coast. Shelf S., 223, 115–128,
https://doi.org/10.1016/j.ecss.2019.03.006, 2019.
Bué, I., Catalão, J., and Semedo, Á.: Intertidal bathymetry
extraction with multispectral images: A logistic regression approach, Remote
Sens., 12, 1311, https://doi.org/10.3390/RS12081311, 2020.
Caballero, I. and Stumpf, R. P.: Retrieval of nearshore bathymetry from
Sentinel-2A and 2B satellites in South Florida coastal waters, Estuar.
Coast. Shelf S., 226, 106277, https://doi.org/10.1016/j.ecss.2019.106277,
2019.
Caballero, I. and Stumpf, R. P.: Towards routine mapping of shallow
bathymetry in environments with variable turbidity: Contribution of
sentinel-2A/B satellites mission, Remote Sens., 12, 1451,
https://doi.org/10.3390/rs12030451, 2020.
Cea, L. and French, J. R.: Bathymetric error estimation for the calibration
and validation of estuarine hydrodynamic models, Estuar. Coast. Shelf S.,
100, 124–132, https://doi.org/10.1016/j.ecss.2012.01.004, 2012.
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab
Functions, Technical Report 2011-01, Graduate School of Oceanography,
University of Rhode Island, Narragansett, RI, 59 pp.,
https://doi.org/10.13140/RG.2.1.3761.2008, 2011.
Costa, W. L. L.: Intertidal zones satellite derived topography, Zenodo [code], https://doi.org/10.5281/zenodo.8357351, 2021.
Costa, W., Bryan, K. R., and Coco, G.: Assessing the use of satellite derived
bathymetry in estuarine storm surge models – study case: Tauranga Harbour,
Proceedings of The Australasian Coasts and Ports, Christchurch, New Zealand,
https://www.coastsandports.org/papers/2021/106_costa_finalpaper.pdf (last access: 8 March 2023), 2021.
Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., and van de
Giesen, N.: A 30 m resolution surfacewater mask including estimation of
positional and thematic differences using landsat 8, SRTM and OPenStreetMap:
A case study in the Murray-Darling basin, Australia, Remote Sens., 8, 386,
https://doi.org/10.3390/rs8050386, 2016.
Du, J., Shen, J., Zhang, Y. J., Ye, F., Liu, Z., Wang, Z., Wang, Y. P., Yu,
X., Sisson, M., and Wang, H. V.: Tidal Response to Sea-Level Rise in
Different Types of Estuaries: The Importance of Length, Bathymetry, and
Geometry, Geophys. Res. Lett., 45, 227–235,
https://doi.org/10.1002/2017GL075963, 2018.
Ehses, J. S. and Rooney, J. J.: Depth Derivation Using Multispectral
WorldView-2 Satellite Imagery, NOAA Tech. Memo. NMFS-PIFSC-46, 24,
https://doi.org/10.7289/V5668B40, 2015.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past
30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
European Space Agency Copernicus Program: Sentinel-2 Multispectral Image SciHub, https://scihub.copernicus.eu/ (last access: 19 September 2023), 2023.
Falcão, A. P., Mazzolari, A., Gonçalves, A. B., Araújo, M. A. V.
C., and Trigo-Teixeira, A.: Influence of elevation modelling on hydrodynamic
simulations of a tidally- dominated estuary, J. Hydrol., 497, 152–164,
https://doi.org/10.1016/j.jhydrol.2013.05.045, 2013.
Fitton, J. M., Rennie, A. F., Hansom, J. D., and Muir, F. M. E.: Remotely
sensed mapping of the intertidal zone: A Sentinel-2 and Google Earth Engine
methodology, Remote Sens. Appl. Soc. Environ., 22, 100499,
https://doi.org/10.1016/j.rsase.2021.100499, 2021.
Geyman, E. C. and Maloof, A. C.: A Simple Method for Extracting Water Depth
From Multispectral Satellite Imagery in Regions of Variable Bottom Type,
Earth Space Sci., 6, 527–537, https://doi.org/10.1029/2018EA000539, 2019.
Google Earth Engine: Sentinel-2 Copernicus Multispectral Image Catalog, Google Earth Engine [data set], https://earthengine.google.com/ (last access: 19 September 2023), 2023.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Ha, N. T., Manley-Harris, M., Pham, T. D., and Hawes, I.: A comparative
assessment of ensemble-based machine learning and maximum likelihood methods
for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New
Zealand, Remote Sens., 12, 355, https://doi.org/10.3390/rs12030355, 2020.
Hare, R., Eakins, B. W., and Amante, C. J.: Modelling bathymetric uncertainty, Int. Hydrogr. Rev., 6, 455–462, 2011.
Hedley, J. D., Harborne, A. R., and Mumby, P. J.: Simple and robust removal
of sun glint for mapping shallow-water benthos, Int. J. Remote Sens., 26,
2107–2112, https://doi.org/10.1080/01431160500034086, 2005.
Huisman, C. E., Bryan, K. R., Coco, G., and Ruessink, B. G.: The use of
video imagery to analyse groundwater and shoreline dynamics on a dissipative
beach, Cont. Shelf Res., 31, 1728–1738,
https://doi.org/10.1016/J.CSR.2011.07.013, 2011.
Hume, T., Snelder, T., Weatherhead, M., and Liefting, R.: A controlling
factor approach to estuary classification, Ocean Coast. Manage., 50,
905–929, https://doi.org/10.1016/j.ocecoaman.2007.05.009,
2007.
Hume, T., Gerbeaux, P., Hart, D., Kettles, H., and Neale, D.: A
classification of New Zealand's coastal hydrosystems, NIWA client report no
HAM2016-062120,
https://www.researchgate.net/publication/314091940_A_classification_of_NZ_coastal_hydrosystems_for_management_purpose (last access: 28 March 2023), 2016.
International Hydrographic Organization (IHO): IHO C-55 Publication Status of
Hydrographic Surveying and Charting Worldwide, Monaco, https://iho.int/uploads/user/pubs/cb/c-55/c55.pdf (last access: 8 March 2023), 2020.
Jawak, S. D., Vadlamani, S. S., and Luis, A. J.: A Synoptic Review on
Deriving Bathymetry Information Using Remote Sensing Technologies: Models,
Methods and Comparisons, Adv. Remote Sens., 4, 147–162,
https://doi.org/10.4236/ars.2015.42013, 2015.
Kang, Y., Ding, X., Xu, F., Zhang, C., and Ge, X.: Topographic mapping on
large-scale tidal flats with an iterative approach on the waterline method,
Estuar. Coast. Shelf S., 190, 11–22,
https://doi.org/10.1016/j.ecss.2017.03.024, 2017.
Kang, Y., Lv, W., He, J., and Ding, X.: Remote sensing of time-varying tidal
flat topography, Jiangsu Coast, China, based on the waterline method and an
artificial neural network model, Appl. Sci., 10, 3645,
https://doi.org/10.3390/app10103645, 2020.
Kerr, J. M. and Purkis, S.: An algorithm for optically-deriving water depth
from multispectral imagery in coral reef landscapes in the absence of
ground-truth data, Remote Sens. Environ., 210, 307–324,
https://doi.org/10.1016/j.rse.2018.03.024, 2018.
Khan, M. J. U., Ansary, M. N., Durand, F., Testut, L., Ishaque, M., Calmant,
S., Krien, Y., Saifu, A. K. M., and Papa, F.: High-resolution intertidal
topography from sentinel-2 multi-spectral imagery: Synergy between remote
sensing and numerical modeling, Remote Sens., 11, 1–20,
https://doi.org/10.3390/rs11242888, 2019.
Khojasteh, D., Hottinger, S., Felder, S., DeCesare, G., Heimhuber, V.,
Hanslow, D. J., and Glamore, W.: Estuarine tidal response to sea level rise:
The significance of entrance restriction, Estuar. Coast. Shelf S., 244,
106941, https://doi.org/10.1016/j.ecss.2020.106941, 2020.
Khojasteh, D., Glamore, W., Heimhuber, V., and Felder, S.: Sea level rise
impacts on estuarine dynamics: A review, Sci. Total Environ., 780, 146470,
https://doi.org/10.1016/j.scitotenv.2021.146470, 2021.
Land Information New Zealand: National Lidar Survey, https://data.linz.govt.nz/ (last access: 19 September 2023), 2023.
Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., and Patch, J. S.:
Hyperspectral remote sensing for shallow waters I A semianalytical model,
Appl. Opt., 37, 6329, https://doi.org/10.1364/ao.37.006329, 1998.
Li, F. K. and Goldstein, R. M.: Studies of Multibaseline Spaceborne
Interferometric Synthetic Aperture Radars, IEEE T. Geosci. Remote,
28, 88–97, https://doi.org/10.1109/36.45749, 1990.
Liu, Y., Li, M., Zhou, M., Yang, K., and Mao, L.: Quantitative analysis of
the waterline method for topographical mapping of tidal flats: A case study
in the dongsha sandbank, china, Remote Sens., 5, 6138–6158,
https://doi.org/10.3390/rs5116138, 2013.
Lorensen, W. E. and Cline, H. E.: Marching cubes: A high resolution 3D
surface construction algorithm, Proc. 14th Annu. Conf. Comput. Graph.
Interact. Tech. SIGGRAPH 1987, 21, 163–169,
https://doi.org/10.1145/37401.37422, 1987.
Lyzenga, D. R.: Shallow-water bathymetry using combined lidar and passive
multispectral scanner data, Int. J. Remote Sens., 6, 115–125,
https://doi.org/10.1080/01431168508948428, 1985.
Mason, D. C. and Davenport, L. J.: Accurate and efficient determination of
the shoreline in ERS-1 SAR images, IEEE Trans. Geosci. Remote, 34,
1243–1253, https://doi.org/10.1109/36.536540, 1996.
Mason, D. C., Scott, T. R., and Dance, S. L.: Remote sensing of intertidal
morphological change in Morecambe Bay, U.K., between 1991 and 2007, Estuar.
Coast. Shelf S., 87, 487–496, https://doi.org/10.1016/j.ecss.2010.01.015,
2010.
McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in
the delineation of open water features, Int. J. Remote Sens., 17,
1425–1432, https://doi.org/10.1080/01431169608948714, 1996.
Mohammadian, A., Morse, B., and Robert, J. L.: Calibration of a 3D
hydrodynamic model for a hypertidal estuary with complex irregular
bathymetry using adaptive parametrization of bottom roughness and eddy
viscosity, Estuar. Coast. Shelf S., 265, 107655,
https://doi.org/10.1016/j.ecss.2021.107655, 2022.
Montgomery, J. M., Bryan, K. R., Mullarney, J. C., and Horstman, E. M.:
Attenuation of storms by coastal mangroves, Geophys. Res. Lett., 46, 2680–2689,
https://doi.org/10.1029/2018GL081636, 2019.
Morris, A. B. D., Coco, G., Bryan, K. R., Turner, I. L., Street, K., and Vale, M.: Video derived mapping of estuarine evolution, J. Coast. Res., 410, 410–414, 2007.
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons,
M. B., Clinton, N., Thau, D., and Fuller, R. A.: The global distribution and
trajectory of tidal flats, Nature, 565, 222–225,
https://doi.org/10.1038/s41586-018-0805-8, 2019.
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal
zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782,
2010.
Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, IEEE
T. Sys. Man Cyb., 9, 62–66, 1979.
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., De Conto, R. M., Ghosh, T.,
Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea
Level Rise and Implications for Low Lying Islands, Coasts and Communities,
IPCC Spec. Rep. Ocean Cryosph. a Chang. Clim., 355, 126–129,
https://doi.org/10.1126/science.aam6284, 2019.
Parodi, M. U., Giardino, A., van Dongeren, A., Pearson, S. G., Bricker, J. D., and Reniers, A. J. H. M.: Uncertainties in coastal flood risk assessments in small island developing states, Nat. Hazards Earth Syst. Sci., 20, 2397–2414, https://doi.org/10.5194/nhess-20-2397-2020, 2020.
Pedrozo-Acuña, A., Ruiz de Alegria-Arzaburu, A., Mariño-Tapia, I.,
Enriquez, C., and González Villareal, F. J.: Factors controlling
flooding at the Tonalá river mouth (Mexico), J. Flood Risk Manag., 5,
226–244, https://doi.org/10.1111/j.1753-318X.2012.01142.x, 2012.
Pereira-Sandoval, M., Ruescas, A., Urrego, P., Ruiz Verdú, A., Delegido, J., Tenjo, C., Soria Perpinyà, X., Vicente, E., Soria, J., and Moreno, J.: Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel 2 Multi Spectral Imagery Data, Remote Sens., 11, 1469, https://doi.org/10.3390/rs11121469, 2019.
Rueda, A., Cagigal, L., Antolínez, J. A. A., Albuquerque, J. C.,
Castanedo, S., Coco, G., and Méndez, F. J.: Marine climate variability
based on weather patterns for a complicated island setting: The New Zealand
case, Int. J. Climatol., 39, 1777–1786, https://doi.org/10.1002/joc.5912,
2019.
Sagar, S., Roberts, D., Bala, B., and Lymburner, L.: Extracting the
intertidal extent and topography of the Australian coastline from a 28-year
time series of Landsat observations, Remote Sens. Environ., 195, 153–169,
https://doi.org/10.1016/j.rse.2017.04.009, 2017.
Salameh, E., Frappart, F., Marieu, V., Spodar, A., Parisot, J. P., Hanquiez,
V., Turki, I., and Laignel, B.: Monitoring sea level and topography of
coastal lagoons using satellite radar altimetry: The example of the Arcachon
Bay in the Bay of Biscay, Remote Sens., 10, 1–22,
https://doi.org/10.3390/rs10020297, 2018.
Salameh, E., Frappart, F., Almar, R., Baptista, P., Heygster, G., Lubac, B.,
Raucoules, D., Almeida, L. P., Bergsma, E. W. J., Capo, S., De Michele, M.
D., Idier, D., Li, Z., Marieu, V., Poupardin, A., Silva, P. A., Turki, I.,
and Laignel, B.: Monitoring Beach Topography and Nearshore Bathymetry Using
Spaceborne Remote Sensing: A Review, Remote Sens., 11, 2212,
https://doi.org/10.3390/rs11192212, 2019.
Salameh, E., Frappart, F., Turki, I., and Laignel, B.: Intertidal topography
mapping using the waterline method from Sentinel-1 & -2 images: The
examples of Arcachon and Veys Bays in France, ISPRS J. Photogramm. Remote
Sens., 163, 98–120, https://doi.org/10.1016/j.isprsjprs.2020.03.003, 2020.
Smith, M. J., Stevens, C. L., Gorman, R. M., McGregor, J. A., and Neilson, C. G.: Wind-wave development across a large shallow intertidal estuary: A case
study of Manukau Harbour, New Zealand, New Zeal. J. Mar. Freshw., 35,
985–1000, https://doi.org/10.1080/00288330.2001.9517058, 2001.
Sobel, A. H., Camargo, S. J., Hall, T. M., Lee, C., Tippett, M. K., and Wing, A. A.: Human influence on tropical cyclone intensity, Science, 353, 242–246,
https://doi.org/10.1126/science.aaf6574, 2016.
Spicer, P., Huguenard, K., Ross, L., and Rickard, L. N.: High-Frequency
Tide-Surge-River Interaction in Estuaries: Causes and Implications for
Coastal Flooding, J. Geophys. Res.-Oceans, 124, 9517–9530,
https://doi.org/10.1029/2019JC015466, 2019.
Stephens, S. A., Bell, R. G., and Haigh, I. D.: Spatial and temporal analysis of extreme storm-tide and skew-surge events around the coastline of New Zealand, Nat. Hazards Earth Syst. Sci., 20, 783–796, https://doi.org/10.5194/nhess-20-783-2020, 2020.
Stewart, B.: Investigating groundwater derived nutrient fluxes within Tauranga Harbour, Doctoral dissertation, The University of Waikato, Hamilton, Waikato, New Zealand, https://hdl.handle.net/10289/14405 (last access:
18 September 2023), 2021.
Stumpf, R. P., Holderied, K., and Sinclair, M.: Determination of water depth
with high-resolution satellite imagery over variable bottom types, Limnol.
Oceanogr., 48, 547–556, https://doi.org/10.4319/lo.2003.48.1_part_2.0547, 2003.
Tay, H. W., Bryan, K. R., De Lange, W. P., and Pilditch, C. A.: The
hydrodynamics of the southern basin of Tauranga Harbour, New Zeal. J. Mar.
Freshw., 47, 249–274, https://doi.org/10.1080/00288330.2013.778300,
2013.
Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N., and Reinartz,
P.: Estimating satellite-derived bathymetry (SDB) with the Google Earth Engine and sentinel-2, Remote Sens., 10, 859, https://doi.org/10.3390/rs10060859, 2018.
Turner, I. L., Harley, M. D., Almar, R., and Bergsma, E. W. J.: Satellite
optical imagery in Coastal Engineering, Coast. Eng., 167, 103919,
https://doi.org/10.1016/j.coastaleng.2021.103919, 2021.
Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: Scikit-image: Image
processing in python, PeerJ, 2014, 1–18, https://doi.org/10.7717/peerj.453,
2014.
Vanhellemont, Q. and Ruddick, K.: Atmospheric correction of metre-scale
optical satellite data for inland and coastal water applications, Remote
Sens. Environ., 216, 586–597, https://doi.org/10.1016/j.rse.2018.07.015,
2018.
Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., and Turner, I. L.:
CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines
from publicly available satellite imagery, Environ. Model. Softw., 122,
104528, https://doi.org/10.1016/j.envsoft.2019.104528, 2019.
Waikato Regional Council: Waikato Environmental Data Hub, https://www.waikatoregion.govt.nz/environment/envirohub/ (last access: 19 September 2023), 2023.
Wankang, Y., Baoshu, Y., Xingru, F., Dezhou, Y., Guandong, G., and Haiying,
C.: The effect of nonlinear factors on tide-surge interaction: A case study
of Typhoon Rammasun in Tieshan Bay, China, Estuar. Coast. Shelf S., 219,
420–428, https://doi.org/10.1016/j.ecss.2019.01.024, 2019.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R.: Atmospheric
science: Changes in tropical cyclone number, duration, and intensity in a
warming environment, Science, 309, 1844–1846,
https://doi.org/10.1126/science.1116448, 2005.
Zheng, P., Li, M., Wang, C., Wolf, J., Chen, X., De Dominicis, M., Yao, P., and Hu, Z.: Tide Surge Interaction in the Pearl River Estuary: A Case Study of Typhoon Hato, Front. Mar. Sci., 7, 236, https://doi.org/10.3389/fmars.2020.00236, 2020.
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
For predicting flooding events at the coast, topo-bathymetric data are essential. However,...
Altmetrics
Final-revised paper
Preprint