Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3125-2023
https://doi.org/10.5194/nhess-23-3125-2023
Research article
 | 
27 Sep 2023
Research article |  | 27 Sep 2023

Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images

Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco

Related authors

Development and Validation of an Early Warning System for Coastal Flooding on a Mediterranean Urban Beach
Antonis Chatzipavlis, Daniele Trogu, Andrea Ruju, Juan Montes, Antonio Usai, Marco Porta, Giovanni Coco, Sandro De Muro, and Paolo Ciavola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2292,https://doi.org/10.5194/egusphere-2025-2292, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
On the use of convolutional deep learning to predict shoreline change
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023,https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
A predictive equation for wave setup using genetic programming
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023,https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022,https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Parallel computing efficiency of SWAN 40.91
Christo Rautenbach, Julia C. Mullarney, and Karin R. Bryan
Geosci. Model Dev., 14, 4241–4247, https://doi.org/10.5194/gmd-14-4241-2021,https://doi.org/10.5194/gmd-14-4241-2021, 2021
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary

Cited articles

Almeida, L. P., Efraim de Oliveira, I., Lyra, R., Scaranto Dazzi, R. L., Martins, V. G., and Klein, A. H. F.: Coastal Analyst System from Space Imagery Engine (CASSIE): Shoreline management module, Environ. Model. Softw., 140, 105033, https://doi.org/10.1016/j.envsoft.2021.105033, 2021. 
Ashphaq, M., Srivastava, P. K., and Mitra, D.: Review of near-shore satellite-derived bathymetry: Classification and account of five decades of coastal bathymetry research, J. Ocean Eng. Sci., 6, 340–359, https://doi.org/10.1016/j.joes.2021.02.006, 2021. 
Bay of Plenty Regional Council: Bay of Plenty Environmental Data Portal, https://envdata.boprc.govt.nz/Data (last access: 19 September 2023), 2023. 
Bertin, X., Li, K., Roland, A., Bidlot, J. R.: The contribution of short-waves in storm surges: Two case studies in the Bay of Biscay, Cont. Shelf Res., 96, 1–15, https://doi.org/10.1016/j.csr.2015.01.005, 2015. 
Bertin, X., Mendes, D., Martins, K., Fortunato, A. B., and Lavaud, L.: The Closure of a Shallow Tidal Inlet Promoted by Infragravity Waves, Geophys. Res. Lett., 46, 6804–6810, https://doi.org/10.1029/2019GL083527, 2019. 
Download
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Share
Altmetrics
Final-revised paper
Preprint