
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, 2023
https://doi.org/10.5194/nhess-23-3125-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modelling extreme water levels using intertidal topography
and bathymetry derived from multispectral satellite images

Wagner L. L. Costa1, Karin R. Bryan1, and Giovanni Coco2

1School of Science, University of Waikato, Hamilton, Aotearoa / New Zealand
2School of Environment, University of Auckland, Auckland, Aotearoa / New Zealand

Correspondence: Wagner L. L. Costa (wc119@students.waikato.ac.nz)

Received: 14 December 2021 – Discussion started: 17 March 2022
Revised: 28 March 2023 – Accepted: 17 July 2023 – Published: 27 September 2023

Abstract. Topographic and bathymetric data are essential for
accurate predictions of flooding in estuaries because water
depth and elevation data are fundamental components of the
shallow-water hydrodynamic equations used in models for
storm surges and tides. Where lidar or in situ acoustic sur-
veys are unavailable, recent efforts have centred on using
satellite-derived bathymetry (SDB) and satellite-derived to-
pography (SDT). This work is aimed at (1) determining the
accuracy of SDT and (2) assessing the suitability of the SDT
and SDB for extreme water level modelling of estuaries. The
SDT was created by extracting the waterline as it tracks over
the topography with changing tides. The method was ap-
plied to four different estuaries in Aotearoa / New Zealand:
Whitianga, Maketū, Ōhiwa and Tauranga harbours. Results
show that the waterline method provides similar topography
to the lidar with a root-mean-square error equal to 0.2 m, and
it is slightly improved when two correction methods are ap-
plied to the topography derivations: the removal of statisti-
cal bias (0.02 m improvement) and hydrodynamic modelling
correction of waterline elevation (0.01 m improvement). The
use of SDT in numerical simulations of surge levels was as-
sessed for Tauranga Harbour in eight different simulation
scenarios. Each scenario explored different ways of incor-
porating the SDT to replace the topographic data collected
using non-satellite survey methods. In addition, one of these
scenarios combined SDT (for intertidal zones) and SDB (for
subtidal bathymetry), so only satellite information is used in
surge modelling. The latter SDB is derived using the well-
known ratio–log method. For Tauranga Harbour, using SDT
and SDB in hydrodynamic models does not result in signif-

icant differences in predicting high water levels when com-
pared with the scenario modelled using surveyed bathymetry.

1 Introduction

Coastal flooding has become increasingly concerning be-
cause of growing storm intensity (Emanuel, 2005; Webster
et al., 2005; Sobel et al., 2016) and sea-level rise, which will
potentially increase the risk exposure of coastal communities
(Nicholls and Cazenave, 2010; Oppenheimer et al., 2019). In
practice, predicting flooding depends on understanding the
contribution from the astronomical tide, storm surge, wave
run-up, changes in the sea level, and in some cases the fluvial
discharge and vertical land motion. In coastal zones, these
processes can interfere with each other, for example, in tide–
surge interactions (Spicer et al., 2019; Wankang et al., 2019).
In the case of estuaries, bathymetric and topographic data are
essential for coastal risk assessment (Parodi et al., 2020) be-
cause they influence the accuracy of water level predictions
(Cea and French, 2012; Pedrozo-Acuña et al., 2012; Falcão
et al., 2013; Mohammadian et al., 2022). Water depth is a
fundamental component in the shallow-water hydrodynamic
equations used in extreme water level modelling. Together
with the estuary’s geometry and length – which can cause
shoaling and choking – and bed shear stress – which reduces
energy due to its effect on friction – bathymetry and topog-
raphy control the amplitude and phase (timing) of the prop-
agating tide. The estuary’s morphology is also fundamental

Published by Copernicus Publications on behalf of the European Geosciences Union.



3126 W. L. L. Costa et al.: Modelling extreme water levels

for studying the tidal response to sea-level rise (Du et al.,
2018; Khojasteh et al., 2020, 2021).

The methods used to measure bathymetry and topogra-
phy in coastal zones have evolved rapidly. In estuaries, there
are permanently inundated areas and intertidal zones, which
are flooded and exposed to the tide. Here we define the
terms bathymetry and topography to reflect permanently in-
undated and intertidal areas, respectively. Currently, there are
four types of systems for measuring these: ship-based sys-
tems (e.g. single-beam and multibeam echo sounders), non-
imaging active remote sensing (e.g. lidar), imaging active re-
mote sensing (e.g. synthetic aperture radar – SAR) and imag-
ing passive remote sensing (e.g. optical systems) (Jawak et
al., 2015; Salameh et al., 2019; Ashphaq et al., 2021). Tradi-
tionally, the most commonly used systems are echo sounders
and lidar. Both produce highly accurate data; however, sev-
eral factors constrain their application, such as cost, labour,
inaccessibility of remote areas and environmental conditions
(e.g. low-tide navigational restrictions). Consequently, ac-
cording to IHO (2020), approximately 70 % of the world’s
coastal areas have bathymetric surveys that need updating or
are insufficiently detailed (e.g. are of a large scale of 1 : 100).

Space-borne remote-sensing techniques overcome the lim-
itations of traditional techniques and can provide topographic
and bathymetric data for a wide range of environments, in-
cluding areas that are more difficult to measure, such as
remote shallow coastal waters (Lyzenga, 1985; Ehses and
Rooney, 2015; Caballero and Stumpf, 2019) and extensive
intertidal areas (Bishop-Taylor et al., 2019; Fitton et al.,
2021). Several methods are used to derive bathymetric data –
hereafter called satellite-derived bathymetry (SDB) – in shal-
low waters (i.e. between 0–15 m depth) by applying different
algorithms to imaging passive remote sensing of reflectance
(Ashphaq et al., 2021). Most methods are developed around
the process of light attenuation through the water column and
can be categorised into two approaches. Empirical methods
use direct observations of water depth in the study area to
calibrate the reflectance-to-depth relationship (e.g. Stumpf et
al., 2003; Caballero and Stumpf, 2019), and physics-based
inversion algorithms use physical processes and models to
solve for water depth (e.g. radiative transfer models) without
the need for in situ calibration data (e.g. Lee et al., 1998; Kerr
and Purkis, 2018).

The present article focuses on empirical methods to obtain
the SDB, including the ratio–log method proposed by Stumpf
et al. (2003). The main limitations of the Stumpf method are
the requirement of in situ bathymetric data for calibration and
its sensitivity to environmental conditions that can change
bottom and water reflectance – e.g. high water turbidity and
variation in the benthic substrates – both of which often oc-
cur in enclosed seas, bays and estuaries (Morris et al., 2007).
Some studies have proposed techniques to tackle these em-
pirical issues (e.g. Geyman and Maloof, 2019; Caballero and
Stumpf, 2020). For example, Geyman and Maloof (2019)
implemented the cluster-based regression algorithm to deal

with different bottom substrates, first segmenting the satellite
image into zones of spectral homogeneity and then calibrat-
ing the log-linear colour-to-depth relationship separately for
each class. Caballero and Stumpf (2020) adjusted reflectance
ratios to reduce the effects of water turbidity and calculated
the maximum chlorophyll index prior to analysis to identify
pixels containing floating and submerged vegetation, allow-
ing them to remove these pixels before further implementa-
tion of the ratio–log formula.

In intertidal regions, remote sensing can also be used to
obtain satellite-derived topography (SDT), and the waterline
method is the most commonly applied. The method was first
applied to SAR images (Mason and Davenport, 1996) and
recently also to multispectral space-borne images (Khan et
al., 2019; Salameh et al., 2020; Fitton et al., 2021). The tech-
nique functions by detecting the edge between the flooded
and exposed intertidal zone in multiple images (i.e. the wa-
terline) and assigning a height to each waterline by using the
local tidal level at the time of image acquisition. The tidal
level can be acquired by a numerical tide model (e.g. Khan
et al., 2019; Kang et al., 2020; Salameh et al., 2020) or from
a local tide gauge (Mason and Davenport, 1996; Salameh et
al., 2020). The resulting collection of waterlines is interpo-
lated over the intertidal domain, generating a digital elevation
model (DEM). The approach assumes that estuary morphol-
ogy does not change between images and has a gentle slope.
The main disadvantages of this method are the dependence
of accuracy on the number of images used in the process-
ing and the reduced performance when applied to sites with
complex morphology, i.e. variable terrain slopes within the
intertidal zone (Liu et al., 2013; Salameh et al., 2019, 2020).
Other methods used to derive topography in intertidal zones
are the interferometric SAR (Li and Goldstein, 1990), satel-
lite radar altimetry (Salameh et al., 2018) and near-infrared
logistic approach (Bué et al., 2020).

As remote-sensing techniques have developed, cloud com-
putation and storage systems such as Google Earth Engine
(Gorelick et al., 2017) have also advanced considerably.
Consequently, scientists now have an enhanced capacity to
quickly manage large geographical datasets, allowing global-
scale studies in coastal science to evolve rapidly (e.g. Mur-
ray et al., 2019; Vos et al., 2019; Bishop-Taylor et al., 2019).
For instance, databases now exist on the distribution of and
changes to global tidal flats (Murray et al., 2019), as well as
a global estimate of coastline position (Almeida et al., 2021;
Vos et al., 2019). Satellite-derived bathymetry (SDB) and to-
pography (SDT) techniques are now routinely applied over
extensive areas (e.g. Traganos et al., 2018; Bishop-Taylor et
al., 2019; Fitton et al., 2021). Despite the vast and grow-
ing application of SDB and SDT methods to coastal sci-
ence and engineering (Turner et al., 2021), it is not yet clear
whether the accuracy of the resulting bathymetry/topography
is suitable for modelling extreme water levels in coastal ar-
eas (e.g. estuaries and bays). Only limited studies exist on
SDB, SDT and numerical modelling – generally aimed at
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using the model to assign the waterline height (Khan et al.,
2019; Salameh et al., 2020; Fitton et al., 2021). For instance,
Mason et al. (2010) used SDT to calibrate a morphodynami-
cal model.

The present study aims to evaluate whether SDT and SDB
can replace surveyed data as a boundary condition in hydro-
dynamic modelling – focusing on predicting high water lev-
els (surges and extreme high tides) in estuaries with complex
morphology. The study has three specific objectives:

1. to determine whether satellite imagery can be used to
extract accurate SDT

2. to investigate the main source of errors in the satellite-
derived techniques

3. to assess the use of SDT and SDB for hydrodynamic
modelling of estuaries as an alternative to data derived
from traditional methods.

This article is divided into two main parts, as illustrated by
the two grey panels in Fig. 1: (a) the SDT and SDB frame-
work and (b) the hydrodynamic modelling assessment. The
flowchart follows the numbered sections within the text, with
the two small left-side panels contributing to parts a and b.
The methods section begins with a description of the study
sites and database (blue box in Fig. 1). Following this, the op-
tical waterline (black box) and ratio–log (light-yellow box)
methods for generating SDT (waterline and ratio–log) and
SDB (ratio–log) are described. The hydrodynamic modelling
description is given in Sect. 2.4 (left-side box in Fig. 1).
In the following, the two correction methods are explained:
the dynamical correction (green box, Fig. 1) and the statis-
tical correction (red box, Fig. 1). The main workflow for
the modelling assessment of SDT/SDB is illustrated in part
b (Fig. 1) and consists of running simulation scenarios us-
ing different combinations of topo-bathymetry datasets and
hydrodynamic forcing conditions. Results for parts a and b
are shown in Sect. 3, including the waterline-derived and the
ratio–log-derived intertidal elevation, the proposed correc-
tion techniques, and the modelling assessment. In Sect. 4, the
main findings are discussed: the advantages and limitations
of our proposed SDT and SDB framework and correction ap-
proaches and the hydrodynamic modelling assessment. The
conclusion is in Sect. 5 (not shown in Fig. 1).

2 Methods

2.1 Study site and database

The study areas are four estuaries on the east coast of
Aotearoa / New Zealand’s North Island. Three are in the Bay
of Plenty region: Tauranga, Ōhiwa and Maketū harbours.
One is in the Coromandel: Whitianga Harbour (Fig. 2a).
The sites consist of barrier-enclosed sandy estuaries, which
are common in Aotearoa / New Zealand (Hume et al., 2007,

2016), and all have micro-tidal regimes. The spring tidal
range varies between 1.4 and 1.9 m, and spring tides com-
bined with severe storm surges drive the extreme sea levels
(Rueda et al., 2019; Stephens et al., 2020). In Aotearoa / New
Zealand, the storm surges usually add ≤ 0.5 m to the water
level; however, larger storm surges can occur occasionally
(Stephens et al., 2020). The extensive intertidal zones and
vegetation (e.g. seagrass and mangrove) that are present in
the majority of the estuaries in Aotearoa / New Zealand can
attenuate tides (Tay et al., 2013) and storm surges (Mont-
gomery et al., 2019). The water level inside the estuaries
is not considered to be substantially affected by waves (i.e.
wave set-up) because all of them are enclosed coastal lagoons
with restricted entrances. All four estuaries have large in-
tertidal areas covering 58 % to 84 % of the estuaries’ total
area (Hume et al., 2007, 2016); see Table 1. The extent of
the tidal flats is evident in Tauranga Harbour by comparing
low- and high-tide satellite images (Fig. 2b and c, respec-
tively). Mangrove forests can be observed in all the estuar-
ies, and seagrass banks are visible in Maketū, Ōhiwa and
Tauranga harbours. Detailed images of the intertidal zones in
Tauranga Harbour, showing seagrass banks and mangroves,
can be seen in Fig. S3.

Imagery, tidal levels and topography data (e.g. lidar) were
acquired to implement and validate the SDT techniques. For
the Bay of Plenty region, historical tide levels were down-
loaded from the Bay of Plenty Council data portal (https:
//envdata.boprc.govt.nz/, last access: 17 September 2023);
the topography data consisted of the lidar survey, with a spa-
tial resolution of 1× 1 m, available on the Land Information
New Zealand (LINZ) data portal (https://data.linz.govt.nz/,
last access: 17 September 2023). For Whitianga, water level
time series and elevation data (lidar) were acquired through
the Thames–Coromandel District Council’s website (http:
//www.tcdc.govt.nz/, last access: 17 September 2023). The
lidar data have an accuracy of ±0.2 m in the vertical and
±0.6 m in the horizontal with 95 % confidence for the Bay
of Plenty. All lidar data were converted to the local vertical
datum (i.e. Moturiki 1953), which is 0.13 m below mean sea
level (MSL), using the GEOID elevation grids available in
the LINZ data portal.

Satellite images from the European Space Agency (ESA)
Copernicus Sentinel were accessed through Google Earth
Engine (Gorelick et al., 2017) and consisted of spacecraft
Sentinel-2A and Sentinel-2B, level-2A product type. The
Sentinel-2 products are composed of elementary tiles, which
are 100× 100 km2 orthoimages in the UTM/WGS84 projec-
tion, with a revisit frequency of 5 d in the Aotearoa / New
Zealand region. The level-2A product type provides bottom-
of-atmosphere (BOA) images, which are already corrected
for the effects of the top of the atmosphere, terrain and cirrus
cloud using the Sen2Cor processing tool (ESA). Each image
has the spectral resolution of 12 bands with spatial resolution
differing between 10, 20 and 60 m, depending on the band.
The green (band 3, 560 nm), blue (band 2, 490 nm) and near-
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Figure 1. A flowchart showing the main structure of the article. Panel (a) shows the steps taken to derive the SDT/SDB and how the statistical
relationships and source of errors were investigated. Panel (b) summarises the framework to test the utility of SDT/SDB in modelling high
water levels.

Table 1. Number of images in the image collection for each estuary.

Estuary Number of images Total intertidal Surface area Spring tidal
in the collection area (Hume et al., 2016) (Hume et al., 2016) range

Tauranga Harbour 9 77 % ∼ 200 km2 1.75 m
Ōhiwa 6 84 % ∼ 27 km2 1.9 m
Maketū 12 58 % ∼ 2.6 km2 1.4 m
Whitianga 8 72 % ∼ 15.5 km2 1.7 m

infrared (band 8, 842 nm) bands were used for this analysis,
all of them with 10 m spatial resolution.

In summary, a complete set of lidar data, tidal gauge ob-
servations and a satellite image was obtained for each estu-
ary. For example, the Tauranga Harbour dataset is shown in
Fig. 2, including the location of the tide gauges (Ōmokoroa,
Hairini, Ōruamatua and Moturiki) and the intertidal exposure
during low tide (Fig. 2b) and high tide (Fig. 2c). In Fig. 2d,
the corresponding water level records for the acquisition pe-
riod of the satellite images are shown (Moturiki time series
is not shown).

2.2 Satellite-derived topography: the waterline method

The framework to generate the SDT in intertidal zones us-
ing the waterline method (hereafter called waterline–SDT)
was composed of three stages, as illustrated in Fig. 3: Stage
1 was to query an image collection, Stage 2 was to identify
the intertidal zone, and Stage 3 was to determine the water-
line position and height. First, an image collection was ac-
quired for each estuary through the Google Earth Engine ap-
plication (Gorelick et al., 2017) using the Google Colabo-
ratory environment. Each image collection has images from
the satellites Sentinel-2A and Sentinel-2B, level-2A product
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Figure 2. The four estuaries where the SDT method was tested (a). Tauranga Harbour and tide gauge locations during low tide (b) and high
tide (c) with the background image from ESA Sentinel-2A. Water level time series from three of the local tide gauges shown in panels (b)
and (c) during the period over which satellite images were acquired (d). The water levels associated with images shown in panels (b) and (c)
are marked with a vertical dashed black line in (d) (vertical datum: mean sea level).

type, covering the estuary domain, in which less than 5 %
of the pixels are covered by clouds. A small number of im-
ages with low cloud coverage were included because of the
restricted number of available images; however, any irreg-
ularities from the small areas of clouds and their shadows
were removed manually in post-processing quality control.
The number of images corresponding to the collection and
environmental properties for each estuary (e.g. coverage of
intertidal zone in the estuary; spring tidal range) is shown in
Table 1.

In the second stage (Fig. 3), the intertidal zone was iden-
tified. The aim was to eliminate pixels that are not in the in-
tertidal area – thus avoiding needless image processing. For
that, the approach based on Bué et al. (2020) was used, in
which the intertidal extent was determined by calculating the
temporal variability of the Normalized Difference Water In-
dex (NDWI) (McFeeters, 1996) at each pixel over the entire
image collection, using Eqs. (1) and (2):

σ (x,y)=

√
1
n

∑n

i=1

(
NDWIi −NDWI

)2
, (1)

where

NDWI=
ρgreen− ρnir

ρgreen+ ρnir
, (2)

where x and y are the pixel coordinates, and n is the num-
ber of images in the collection. NDWI is determined as a
normalised difference between ρgreen and ρnir, which are the
reflectance of the green and near-infrared bands of Sentinel-
2 images, respectively. As a result, one single greyscale im-
age was generated representing the NDWI temporal standard
deviation (σ , Fig. 4a). Because of the consistent change be-
tween exposed (low-tide) and inundated (high-tide) condi-
tions, the highest standard deviation values were assumed to
occur in the intertidal zones. Thus, the pixels representing
the intertidal zone were the ones with a σ greater than the
threshold value. For instance, Fig. 4b shows that, for Tau-
ranga Harbour, the threshold is > 0.32. The threshold was
set using the Otsu (1979) approach, where its value depends
on the probability distribution of σ , as illustrated in Fig. 4b.
The Otsu method identifies the optimum threshold between
two data classes in the image distribution that maximises the
value of the within-class variance. The advantage of using
an adaptive threshold is that it can be objectively tailored to
each image collection and estuary.

In the third stage (Fig. 3), for each image in the collection,
the corresponding NDWI maps were clipped into the inter-
tidal zone (which was defined using the whole image collec-
tion in Stage 2). From the intertidal NDWI maps, the wa-
terline position in that image was extracted by applying the
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Figure 3. The framework for the application of the waterline method to derive topographic data in intertidal zones. First (1) an image
collection was acquired. Second (2), the intertidal zone was identified by calculating the temporal variability of NDWI. Note that NDWI
is the index used to detect the existence of water from satellite reflectance (see text). Third (3), the waterline position and height were
determined. This was done by identifying the boundary between wet and dry cells within the intertidal zone (i.e. waterline) and assigning a
height value for the waterline obtained from the local tide gauge observation at the time of the image acquisition.

Figure 4. (a) Intertidal areas identified using the temporal variability of NDWI (σ ) of the Tauranga Harbour image collection. Determination
of the Otsu threshold for the identification of the intertidal zone (b).
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algorithm “Finding_Contours” from the scikit.measure (Van
Der Walt et al., 2014) Python library. This contour extraction
method searches for a given value (i.e. threshold) in a two-
dimensional array of pixels, using the “marching squares”
algorithm (Lorensen and Cline, 1987) to identify contour
boundaries precisely by linearly interpolating between ad-
jacent pixel values; therefore, the method is able to define
the waterline with a subpixel resolution. The Otsu method
was used to determine the threshold that should be applied
to each image. Figure 5 illustrates the different thresholds
applied to each image in the Tauranga collection according
to the corresponding distribution of NDWI. Once the water-
line position was identified for a given image, a height value
was assigned to the waterline by finding the corresponding
observed tide level at the local tide gauge (Ōmokoroa for the
Tauranga Harbour case study, Fig. 2d). After all images in the
collection were processed, a collection of waterlines with dif-
ferent height values was created (see Fig. 3, Stage 3b), which
was gridded to create an SDT (i.e. waterline–SDT). The ac-
curacy of the waterline–SDT was assessed against the lidar
data by comparing the lidar at each point along the water-
line and by comparing the corresponding DEM. The module
DELFT-QUICKIN was used to create DEMs for each estu-
ary. The triangular interpolation method was applied in a grid
with a spatial resolution of 10 m.

2.3 Satellite-derived bathymetry: the ratio–log method

Additionally, the ratio–log method (Stumpf et al., 2003) was
applied in Tauranga Harbour separately for intertidal zones
(ratio–log–SDT) and shallow water (ratio–log–SDB). The
ratio–log and waterline methods were assessed in two dif-
ferent ways: first, to compare their approximation of topo-
graphic data in intertidal zones (Fig. 1a) and, second, to com-
pare their use in hydrodynamic models (Fig. 1b). The ratio–
log method is not limited by the number of satellite images
available covering the estuarine area and can be applied to
extract the SDT from a single image. In its original appli-
cation, the ratio–log empirical approach was used to derive
shallow-water bathymetry (SDB). However, because of the
relatively low turbidity of intertidal water in Tauranga Har-
bour, the method may also be suitable for deriving topog-
raphy (SDT) within intertidal zones. To compare, the ratio–
log method was applied to an image acquired at high tide,
where the intertidal zone was completely flooded. The nu-
merical assessment was built on a pilot study by Costa et
al. (2021), where the method was trialled in a small region
within the Tauranga Harbour. Detailed information about the
application of the ratio–log method and the results for tidal
flats and shallow water are provided in Supplement Sect. S1,
Figs. S1 and S2. Because the ratio–log method is based on
an empirical fit, additional bathymetric data were needed to
implement the ratio–log method for shallow water. For this,
multiple-source bathymetric data were used, which are de-
tailed in Sect. 2.4.

2.4 Hydrodynamic modelling: the baseline model

A baseline hydrodynamic model was set up for Tauranga
Harbour. The modelling study was only undertaken in this es-
tuary (rather than all four sites) because a calibrated and vali-
dated DELFT3D-FLOW model was already available (Stew-
art, 2021). The baseline model was first used to account for
the tidal propagation within the estuary as a way of improv-
ing the waterline SDT (Sect. 2.5.2). Secondly, it was used
as a base case against which to assess the use of SDT and
SDB as the topography and bathymetry for modelling ex-
treme water levels in estuaries (Sect. 2.6). The grid domain
and interpolated bathymetry are shown in Fig. S4 (Sect. S2),
and they cover the central to the southern part of the harbour
with a 20×20 m resolution grid. The north and south bound-
aries were set as open boundaries (free Neumann), and the
model was forced with water level along the seaward bound-
ary with the astronomical components of the tide. For the lat-
ter, harmonic astronomical tidal analysis was undertaken on
the Moturiki Island tide gauge using U_tide (Codiga, 2011).
The topographic and bathymetric data used in the baseline
hydrodynamic model were assembled using a combination
of data from multiple sources: multibeam survey (Port of
Tauranga 2017), lidar (2008 from AAM HATCH and 2016
from LINZ) and LINZ hydrological charts NZ 5411 for 2016.
These data were all converted to mean sea level (MSL) ver-
tical reference.

The model was validated to ensure the bed roughness pa-
rameters were appropriate by simulating an equinoctial tidal
period from 1 to 31 March 2019. The details of the model
set-up, calibration and validation are presented in Sect. S2.
The vertical datum in the simulation was the MSL, and the
time step was 0.5 min; the advection scheme for calculating
the flooded and dried cells is cyclic, using the water level av-
eraged on the grid cells. The model was calibrated against
three tide gauge observation points (Ōmokoroa, Hairini and
Ōruamatua). For details on the model calibration and valida-
tion, see Sect. S2.

2.5 The SDT correction approaches

2.5.1 Correcting SDT using the bias between lidar data
and SDT: the statistical correction

The first method to correct the waterline–SDT trialled was
to remove the statistical bias – potentially caused by condi-
tions that can interfere with the pixel reflectance and, as a
consequence, the waterline position at different tide levels
within the tidal flats. Conditions that can interfere with de-
tection include complex intertidal zone morphology, water
turbidity, variation of the benthic substrates (sand, seagrass)
and groundwater seepage. Specifically, groundwater seepage
leaves a film of moisture on the exposed intertidal detectable
in images (Huisman et al., 2011). Because the studied estuar-
ies have similar characteristics – i.e. morphology complexity
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Figure 5. Otsu threshold (THLD) applied to identify the waterline position for each image in the Tauranga Harbour collection. The observed
water level from the Ōmokoroa tide gauge at the moment of the image acquisition (i.e. waterline height relative to mean sea level) is also
shown in each panel (marked WL).

(extensive intertidal zones and channelisation), tidal range,
white sand and presence of seagrass – a statistical correction
was developed for all four estuaries on the basis that the de-
tected waterline is consistently further seaward or landward
than the actual waterline across all sites. For the statistical
correction, a linear equation was fitted to the relationship be-
tween the value of the Otsu threshold – used to position the
waterline within the intertidal zone (see Sect. 2.2) – and the
bias between the waterline–SDT and the lidar data in all the
estuaries (i.e. Tauranga, Maketū, Ōhiwa and Whitianga har-
bours).

2.5.2 Correcting SDT using the hydrodynamic model:
the dynamical correction

The second method to correct the waterline SDT was using
the hydrodynamic model (Sect. 2.4); this correction approach
is hereafter called the dynamical correction. The water level

is not homogeneous throughout a large estuary at one instant
in time because of the time it takes for the tide to propa-
gate around the estuary and the potential tidal wave deforma-
tions induced by the estuarine morphology, such as shoaling,
reflection and dampening. Thus, for every image processed
by the waterline method, the detected waterline height might
vary spatially, and assigning a waterline height using infor-
mation from one tide gauge (as in Sect. 2.2) may not be ap-
propriate. The dynamical correction uses the hydrodynamic
model to assign a spatially varying height to each waterline.

The dynamical correction was implemented as follows.
First, the model bathymetry was replaced in the intertidal
zones with the waterline–SDT (with the original bathymetry
retained in the shallow-water areas), and a new depth file was
created. Using this new depth file, nine independent simula-
tion cases were performed corresponding to the acquisition
times of the nine images in the Tauranga Harbour image
collection. Each case had a simulation period starting 10 d
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prior to the date and time that the satellite image was ac-
quired to allow for model spin-up. The spatially varying wa-
ter level model output was extracted along each of the corre-
sponding waterlines (one waterline is detected in each image,
Sect. 2.2). The waterline height was assigned by interpolat-
ing the position of each waterline onto the gridded model
output.

2.6 Assessing extreme water level simulations with
SDB and SDT

To properly assess the use of satellite-derived topo-
bathymetric data in hydrodynamic modelling, scenarios were
designed with different combinations of SDB, SDT and hy-
drodynamic forcing conditions. Table 2 shows the specifi-
cations of the eight simulation scenarios: the source of ele-
vation data, the physical forcing and the simulation period.
Note that the “surveyed topo-bathymetry” data refer to the
multiple-source data described in Sect. 2.4.

The four first scenarios (i.e. S1–S4) test different combi-
nations of topo-bathymetric data to be used in hydrodynamic
modelling. Here, the model was forced with the astronomical
constituents extracted from the Moturiki tide gauge record,
as described in Sect. 2.4, varying only the topo-bathymetric
data. For instance, our baseline model (S1) represents the
condition when the modeller depends only on the in situ-
measured elevation. In the S2 and S3 scenarios, the intertidal
zone bathymetry was replaced with the SDT generated by us-
ing the waterline (waterline–SDT) and the ratio–log (ratio–
log–SDT) methods, respectively. The S4 scenario was de-
veloped to assess the use of only SDB and SDT in the en-
tire model domain (so only satellite-derived data). Thus, the
waterline–SDT was used for the tidal flat and the ratio–log–
SDB for the shallow areas within the harbour.

The simulation scenarios S5–S8 were designed to investi-
gate the potential of SDT and SDB as a replacement for the
surveyed topo-bathymetry in modelling more extreme wa-
ter level events, where the interactions between storm surge
and astronomical tides are important. For that, two extreme
events were selected based on the water level observations at
the Moturiki tide gauge in the period ranging from the years
2002 to 2018 (see Fig. S10). Trends of sea-level rise were
first filtered from the water level observations by applying a
1-year running average, which resulted in a filtered time se-
ries hereafter called total water level. Both extreme events
represented the highest water levels for the period and con-
sisted of peaks of a total water level of ∼ 1.4 m. However,
the contribution of the storm surge is different for each event.
The definition of storm surge used here is the difference be-
tween astronomical tide and the detrended water level for a
given time series. The first event occurred on 16 April 2003
and consisted of a storm surge= 0.55 m, which represents
∼ 40 % of the observed total water level. The second event
occurred on 5 January 2018 and consisted of a storm surge=
0.32 m, which represents ∼ 22 % of the observed total water Ta
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level. Ultimately, these two events were modelled using only
surveyed topo-bathymetry (S5 and S7) and only satellite-
derived data (S6 and S8).

To assess the simulations, the tide levels extracted from
each scenario were compared to the astronomic tide at
three points for S1–S4 (Ōmokoroa, Hairini and Ōruamatua),
the total water level at two points for S5–S8 (Hairini and
Ōruamatua), and the tide and total water level output maps
from each simulated scenario. Note that the Ōmokoroa tide
gauge was not used to assess S5–S8 because its records do
not cover the period of the first storm event.

2.7 Assessment of framework performance

The accuracy of the SDB, SDT, the hydrodynamic model
and the dynamical and statistical corrections was assessed
by calculating the following error metrics: root mean square
error (RMSE), maximum absolute error (MAXE), relative
error (RE), coefficient correlation (R2) and bias (Eqs. 3–7
respectively). In the corresponding equations, hest is the esti-
mated value (e.g. SDT, SDB, hydrodynamic model output),
and hobs is the observed value (e.g. lidar data, tide gauge
measurements).

In the case of SDB and SDT evaluation, the RE can be
either negative or positive. For the results derived from the
ratio–log method (SDT and SDB), the RE reflects only the
vertical difference between the estimate and the in situ data
(i.e. lidar data for SDT and surveyed bathymetry for SDB).
For the waterline–SDT, the RE reflects both vertical and hor-
izontal accuracies. For instance, Fig. 6 shows a schematic
topo-bathymetric profile illustrating the error calculation for
the waterline–SDT. Although the error is evaluated as a
height difference, it can originate from either horizontal (δx)
or vertical (δz) inaccuracies. Thus, negative (positive) RE
means that the estimate is shallower (deeper) or located fur-
ther landward (seaward) than the lidar data.

RMSE=

√∑n

i=1

(hest−hobs)
2

n
; (3)

MAXE= |hesti−hobsi|; (4)
RE= hobs−hest; (5)

R2
=

∑n
i=1(hesti−hobs)

2∑n
i=1(hobsi −hesti )

2+ (hesti −hobs)2
; (6)

bias= hobs−hest. (7)

3 Results

3.1 The waterline satellite-derived topography
(waterline–SDT)

The waterline–SDT accuracy, compared to the lidar data,
for all the studied estuaries is shown in Table 3; the av-

Figure 6. Schematic showing the error calculation. The circle shows
the actual location of the water line, and triangles show the location
of the remotely sensed shoreline. There are two ways that an error
can be caused. The waterline can be detected landward or seaward
of its actual location (δx), or the waterline is assigned an elevation
that is too high or too low (δz).

erage RMSE across all estuaries was 0.33 m, and the av-
erage MAXE was 1.74 m. The technique’s worst perfor-
mance was in the Maketū Estuary (RMSE= 0.41 m and
MAXE= 2.38 m; Fig. S6). Ōhiwa and Whitianga Estuary
have similar performance (Figs. S5 and S7). Tauranga Har-
bour was associated with the best estimates with an RMSE=
0.20 m. Note that the error parameters calculated for the cor-
responding DEMs are lower, especially in terms of MAXE.
The details of the images that were acquired and the corre-
sponding water level for each estuary are shown in Sect. S3.

Although the SDT accuracy differed depending on the es-
tuary, the bias increased at high and low tide for all estuaries,
and the lowest errors occurred at mid-tide. Figure 7 shows
the linear correlation found between the bias, the waterline
height (Z), and the Otsu adaptive threshold (THLD), which
also demonstrates the aforementioned dependence on the tide
level. For instance, the THLD and the bias have a goodness
of fit of R2

= 0.58 (Fig. 7b), the THLD and the Z have a
goodness of fit of R2

= 0.83 (Fig. 7a), and bias and Z have
a goodness of fit of R2

= 0.68 (Fig. 7c). However, whether
a waterline is extracted on the flooding or the ebbing tide
cycles does not affect the waterline–SDT accuracy. Equa-
tion (8) (also shown in Fig. 7c) was used as the basis of the
statistical correction (where the statistical bias was removed
from the waterline–SDT for Tauranga Harbour; Sect. 2.4.1).

bias=−0.49 ·Z− 0.088 (8)

3.2 The statistical and dynamical corrections

The waterline–SDT (Sect. 2.2) and the statistically
(Sects. 2.4.1 and 3.1) and the dynamically (Sect. 2.4.2)
corrected waterline–SDT showed an overall RMSE equal to
0.20, 0.18 and 0.19 m, respectively (Fig. 8). The statistical
correction was effective where the SDT was strongly biased
(e.g. Fig. 8, images 4 and 9). However, for the cases where
the uncorrected SDT showed good results (Fig. 8, images
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Table 3. Waterline–SDT errors for every studied estuary. DEM is the digital elevation model obtained by interpolating the corresponding
waterline–SDT in the intertidal zone with a spatial resolution of 20 m and triangulation method. The elevation range in the lidar data within
the intertidal zone is also shown. Vertical datum: mean sea level.

SDT DEM Lidar

Estuary RMSE (m) MAXE (m) RMSE (m) MAXE (m) Elevation range (m)

Maketū 0.41 2.38 0.47 2.19 −0.63 | +1.90
Ōhiwa 0.35 2.00 0.34 1.61 −0.98 | +2.98
Tauranga Harbour 0.20 1.60 0.23 1.14 −1.11 | +1.44
Whitianga 0.35 1.00 0.28 1.17 −1.12 | +1.92
Average 0.33 1.74 0.33 1.53

Figure 7. Statistical relationships at all estuaries (Ōhiwa, Whitianga, Tauranga, Maketū): (a) water level Otsu threshold (THLD) and observed
water level (Z), (b) THLD and the SDB mean error (bias) and (c) Z and the SDB mean relative error (bias). The relationship shown in (c) was
used in the statistical correction (see Sect. 3.3).

1–3), the statistical correction causes bathymetry estimates
to be less accurate by increasing the corresponding bias. The
dynamical correction was more effective when the waterline
was extracted from images collected at mid-tides to high
tides (Fig. 8; images 4–9) compared to at low tides (Fig. 8;
images 1–3), improving the RMSE values by 0.05 m on

average. However, the estimates during low tides are less
accurate (a reduction of 0.10 m on average).

3.3 Prediction of extreme water level using the SDB

The simulation scenarios showed that the combined use of
SDB and SDT can be used to obtain water level predictions
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Figure 8. Histograms of the waterline-derived SDT relative error (RE) for each image in the collection for Tauranga Harbour: waterline–SDT
(blue), statistically corrected waterline–SDT (red) and dynamically corrected waterline–SDT (green). RMSE, bias, waterline height (WL)
and number of waterline samples (n) are shown.

of similar accuracy to those predicted using only surveyed
bathymetry (although the log–ratio method requires some in
situ calibration data). To simplify the interpretation of the
results, Fig. 9 illustrates the average error parameters calcu-
lated when comparing the model output with the record of
the three tide gauges. A detailed assessment of each of the
gauges is provided in Sect. S4. In S4, the waterline–SDT
for intertidal zones combined with the ratio–log–SDB for
shallow waters can predict the astronomical tide more ac-
curately (RMSE ∼ 0.07 m). In the S1 results, the model uses
surveyed bathymetry (S1) with poorer performance (RMSE
∼ 0.09 m). S4 also performs better than S1 when assessed
with the maximum absolute error (MAXE): ∼ 0.25 and
∼ 0.31 m, respectively. In addition, Fig. S9 (Sect. S4) shows
that at the location of the Ōruamatua tide gauge, the pre-
dictions were improved in the S4 scenario (RMSE= 0.05 m)
compared to S1 (RMSE= 0.13 m). Regarding the scenarios
where SDTs replace only the intertidal topography (S2 and
S3), the waterline–SDT (S2) provided superior performance
(RMSE ∼ 0.07 m). The model that uses ratio–log–SDT (S3)
showed poorer performance (RMSE ∼ 0.09 m).

Similar accuracies were shown in the simulation tests
using two distinct extreme events (scenarios S5–S8); see
Fig. S11. The averaged error parameters for the scenarios
using satellite-derived data (i.e. S6 and S8) are close to the
ones for scenarios using only surveyed topo-bathymetry (i.e.
S5 and S7), as shown in Fig. 9. The RMSEs of these sce-
narios range from 0.07 to 0.09 m and the MAXE from 0.29
to 0.35 m. At the time of the most extreme total water level,
the scenarios using surveyed topo-bathymetry and satellite-
derived data showed agreement on their accuracy, with some
differences depending on which extreme event and location
were analysed (i.e. Hairini and Ōruamatua). For the first
event, scenarios S5 and S6 underestimated the total water
level at Hairini by −0.05 and −0.07 m and at Ōrumatua by
−0.33 and −0.23 m, respectively (Fig. S9). For the second
event, the scenarios S7 and S8 overestimated the total water
level by 0.27 and 0.21 m at Hairini and by 0.07 and 0.12 m at
Ōruamatua, respectively. Note that the assessment here is not
aimed at assessing whether the model accurately predicted
the total water level but rather whether the satellite-derived
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Figure 9. The average parameter errors calculated considering the results at the three tide gauge locations (Ōmokoroa, Hairini, Ōruamatua)
for each simulation scenario (S1, S2, S3 and S4) – RMSE (blue bar), MAXE (red bar).

topo-bathymetry prediction accuracy is similar to that of the
surveyed topo-bathymetry.

The good agreement between scenarios using surveyed
topo-bathymetry and satellite-derived data is also shown over
the entire model domain. For example, Fig. 10 shows the dif-
ference at the maximum (a) and minimum (b) astronomical
tide/total water level at each grid cell over the entire simu-
lation between the scenarios S1×S4 (I), S5×S6 (II), and
S7×S8 (III). The differences are >−0.10 and <+0.10 m
at the maximum astronomical tide/total water level (a). Fig-
ure 10 (aII and aIII) shows that these differences intensify
across the estuary when storm surge is considered in the
model forcing. The north-western (i.e. above Ōmokoroa)
and the south-eastern (i.e. Hairini and Ōruamatua) estuar-
ine regions are the most affected, showing slightly stronger
red colours for S5×S6 (aII) and S7×S8 (aIII) than in
S1×S4 (aI) comparisons. Major differences (≤−0.10 and
≥+0.10 m) in the astronomical tide/total water level predic-
tions occur in the estuary’s inner channels at the minimum
(low tide) total water level at each grid cell (b).

4 Discussion

4.1 The proposed waterline method for deriving
topography from space-borne images and its
limitations

Topography estimated using the waterline method compares
well to lidar data in our study sites – considering that the
topography in the intertidal zone ranges between −1.12 and
+2.98 m relative to MSL (see Table 3) and the vertical and
horizontal accuracy of the lidar data are 0.20 and 0.60 m, re-
spectively. Although it is hard to directly compare studies
conducted in different coastal areas, our results show a sim-
ilar bias to other studies performed in similar estuarine en-
vironments. For example, Salameh et al. (2020) applied the
waterline method to Arcachon Bay in France, with the esti-
mated DEM accuracy of RMSE= 0.27 m; Bué et al. (2020)
generated SDTs for Azinheira Estuary (Portugal) based on
logistic regression with an RMSE= 0.6 m.

Despite the encouraging results of waterline–SDT in
Aotearoa / New Zealand’s estuaries, the method is sensitive
to the correct positioning and height-assigning of the wa-
terline. Environmental conditions such as the complex mor-
phology, varied bed substrates and groundwater seepage
could reduce the accuracy of the waterline position. Also, the
location of the tide gauge used to assign the waterline height
is important. For instance, Maketū Estuary is a small estuary
with complex morphology, and the tide gauge of Moturiki
is located approximately 27 km from the estuarine entrance,
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Figure 10. Spatial difference between the hydrodynamic model output using surveyed topo-bathymetry (S1, S5, S7) and the waterline-
derived plus ratio–log-derived SDB (S4, S6, S8). The differences in the maximum (a) and minimum (b) astronomical tide/total water level
per grid cell over the simulation period are compared for S1×S4 (I), S5×S6 (II) and S7×S8 (III). Red (blue) colours represent positive
(negative) differences, which means that the resulting water level from scenarios using only topo-bathymetric surveyed data (i.e. S1, S5, S7)
is higher (lower) than the resulting water levels from the scenarios using only satellite-derived topo-bathymetric data. Background image:
ESA Sentinel-2A. Date and time of the image acquisition: 18 December 2018, 10:15 local time (UTC+12).

which likely explains the low accuracy of SDT for that loca-
tion. Furthermore, using just one tide gauge to assign the wa-
terline height can add vertical error to the estimates because
it does not account for the tide deformation and propagation
in such a complex environment. Maketū is currently under-
going staged engineering works to remove former flood pro-
tection, which could have caused changes to the bathymetry
between images and after the lidar survey was undertaken.

Complex morphology affects the estimates differently
over different parts of the topographic profile – waterlines
closer to the MSL (water level∼ 0 m) are more accurate, and
waterlines closer to the peak of the high and low tides are
less accurate (see Sect. 3.3). Our results corroborate those of
Liu et al. (2013), who quantitatively analysed the waterline
method in Dongsha Sandbank, China (an exposed coastal
area). In their study, the authors have found that the main
error source in the waterline method is linearly correlated to
the slope and area of the intertidal zone. These can be directly
linked to the tidal range (micro, meso- and macro-regimes).
Assuming the same intertidal slope, the area of the tidal flats
would increase with the tidal range, which would, in turn,
require more images to adequately represent the topographic
profile. Furthermore, having enough images to characterise
the morphology of the study site is a commonly limiting fac-
tor in the waterline method, as highlighted by previous stud-
ies (e.g. Liu et al., 2013; Salameh et al., 2019). Our results

are also clearly affected by the number of images in our col-
lection. For example, gaps where no topographic data could
be derived can be seen between waterlines, shown in Fig. 7
(Sect. 3.2). Although the Sentinel-2 images are acquired ev-
ery 5 d, they are often not useable due to cloud coverage.

The bed substrate can directly affect the waterline po-
sitioning, especially in Aotearoa / New Zealand’s estuaries,
where clear water is common. For example, in Tauranga Har-
bour, the seagrass banks (Ha et al., 2020) and the groundwa-
ter seepage (shown to cause an error in water line detection
in Huisman et al., 2011) can abruptly change the reflectance
of the pixels around the waterline, especially in the centre
part of the estuary, where the seagrass banks occur (Fig. S3).
The adaptive Otsu method (Otsu, 1979) was used to detect
the edges between water and intertidal zones. The method
showed good performance in determining the waterline loca-
tion in estuaries, corroborating studies on lakes, rivers, water
reservoirs (Donchyts et al., 2016) and coastlines (Vos et al.,
2019). Other edge detection techniques were also tested in
the present study, such as by calculating the mean or the me-
dian of NDWI distribution following approaches in previous
studies (Sagar et al., 2017; Bishop-Taylor et al., 2019). How-
ever, these did not perform as well (not shown). The Otsu
method defines a threshold by detecting the value that max-
imises the within-class variance between two classes of a
grey-scale distribution, which has two limitations: first, there
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is the inability to correctly detect waterlines in images with
complex conditions (i.e. where the water is clear, and the bed
substrates reflectance can be seen in the satellite images),
and, second, the Otsu threshold method will detect water-
lines even when all intertidal pixels are flooded (at high tide)
or exposed (at low tide), adding bias in the extremes of the
topographical profiles.

There are currently several methods for edge detection that
have been implemented in waterline–SDT that can poten-
tially overcome the issues highlighted above. One practical
solution would be the manual identification of the waterline;
however, it is subjective and labour-intensive when applied
over a large area and in multiple study sites. Another way
would be to apply image segmentation techniques, for in-
stance, K-means clustering techniques applied to edge detec-
tion (Salameh et al., 2020). Alternatively, the identification
of seagrass banks could be used to remove areas where the
waterline is poorly detected prior to analysis. Simple algo-
rithms could be used for this, such as Ha et al (2020), who
identified seagrass using ensemble-based machine learning
algorithms. Caballero and Stumpf (2020) identified algae and
seagrass by using an empirical formula to calculate the max-
imum chlorophyll index, which uses three different optical
bands to explain the radiance peak at the red-edge band.

4.2 The proposed correction methods for
waterline–SDTs

Our proposed correction methods (i.e. statistical and dy-
namic) for the SDT only resulted in a 1–2 cm improvement
across the case-study estuary. However, our insights into why
and where the correction resulted in improvements provide
the basis for further work (e.g. when more imagery becomes
available to test error sources more thoroughly). The statis-
tical relationship between the error and the waterline height,
the elevation on the tidal flat (lidar), and the waterline detec-
tion threshold in all four studied estuaries allowed us to set
a semi-independent framework to correct the vertical level
in the waterline-derived SDT. For example, the relation be-
tween THLD and bias could be learned in similar estuaries
and subsequently used to correct to an entirely different study
area with similar intertidal zone properties, such as estuar-
ies with similar sediment colour, water turbidity, spring tidal
range and intertidal area coverage.

The dynamical correction should give more realistic wa-
terline heights because it accounts for the tide propagation
within the estuary. However, the approach did not signifi-
cantly improve the SDT as expected. There are four possible
reasons for the limited improvement. First, inaccuracies in
horizontal waterline position may be more important than in-
accuracies in the waterline height. This can be demonstrated
by examining the location of waterlines on lidar-derived pro-
files. Figure 11 (m1) shows three different waterline posi-
tions (red, blue and green lines) and three different lidar-
derived profiles that intersect these waterlines (p1, p2 and

p3) in Tauranga Harbour. In panels p1, p2 and p3, the three
profiles are shown in detail. The horizontal location of the
three uncorrected waterline–SDTs is represented on the pro-
files by the coloured circles (red, green, blue) with their cor-
responding tide-gauge-derived heights (solid line). The cor-
responding dynamically corrected waterline heights are also
plotted, represented by the dashed lines. Note that in the dy-
namical correction, just the waterline height is corrected, and
the observed waterline position remains unchanged. Because
the numerical model is expected to give more realistic water
levels – that account for the tidal propagation within the es-
tuary – the correct position of the waterline should be where
the dynamically corrected waterline height (dashed lines) in-
tersects the topographic profile (continuous black line) in the
Fig. 11 (panels p1, p2, and p3). Thus, all the waterlines in
p1 would need to be further seaward than they are to inter-
sect with the profile at the correct location. In p2, waterline
3 (blue circle) should be slightly landwards and waterline
1 (green circle) and 2 (red circle) further seaward. In p3,
all corrected waterlines should be further seaward. However,
when the waterline is well positioned, waterline heights are
similar to the lidar data, for instance, in p2 for all waterlines
(all dashed lines).

The second factor that can influence the performance of
the dynamical correction is the hydrodynamic model accu-
racy – especially at low tide, as can be seen in Fig. 10.
The spatial resolution of the numerical grid (20 m) can limit
the model’s ability to correctly solve the flooding and dry-
ing within grid cells around narrow channels, potentially
adding horizontal bias to the waterline heights. Furthermore,
the tidal wavelength is hundreds of kilometres, which means
that the water level should not be affected significantly by
smaller-scale bathymetric features. Moreover, the fourth lim-
iting factor is the lidar data horizontal and vertical accuracy,
which limits the potential correction. The use of hydrody-
namic modelling to assign the waterline heights is a common
practice when generating SDTs (e.g. Liu et al., 2013; Khan
et al., 2019; Salameh et al., 2020; Fitton et al., 2021). How-
ever, in most cases, the studies cover extensive areas with ex-
posed coastlines or sand banks, in which regional tide models
are used where there are not enough tide gauges to provide
tide levels (Liu et al., 2013; Khan et al., 2019; Fitton et al.,
2021). In just a few of these studies, enclosed estuaries were
studied by setting up local-scale hydrodynamic modelling
(e.g. Liu et al., 2013; Salameh et al., 2020). In Arcachon
Bay (France), Salameh et al. (2020) compared the waterline–
SDTs that were generated by assigning waterline heights ac-
cording to single-location tide gauges, single-location model
point output and grid hydrodynamic model output. Similar
to our results, they found that the waterline heights assigned
by using grid model output did not improve the SDTs com-
pared with using a single-location tide gauge within the estu-
ary. They explained the unexpected result as due to the slope
of the tidal flat and the model’s inability to provide accu-
rate sea level heights over the intertidal area. Similarly, Liu
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Figure 11. Analysis of the dynamical correction in three different profiles (p1, p2, p3). [m1] shows the location of the lidar-derived profiles
in Tauranga Harbour. The panels (p1), (p2) and (p3) show the location of the three waterlines along the three profiles (black line). Each
panel highlights the waterline height (WLH) extracted from the tide gauges and the horizontal position of three different waterlines (green
(waterline 1), red (waterline 2) and blue (waterline 3)). The corresponding dynamically corrected waterline height (dyn. corr. WLH) is also
shown (dashed lines). Considering that the hydrodynamical model should give more accurate water levels, the correct waterline positioning
should be where the dyn. corr. WLH intersects the lidar profile. Background image: ESA Sentinel-2A. Date and time of the background
image acquisition: 18 December 2018, 10:15 local time (UTC+12) .

et al. (2013) used a regional tide model for the South Yellow
Sea (China) to assign waterline heights to a local-scale study
in Dongsha Sandbank (an exposed tidal flat), which limited
the vertical accuracy of the SDT up to 30 cm (corresponding
to the model’s accuracy).

4.3 Comparison between the waterline method and
ratio–log for intertidal zones

The results show that, for Tauranga Harbour, the waterline
and the ratio–log techniques performed similarly for the task
of deriving topography over intertidal zones using satellite
images. Thus, for estuaries with low water column turbidity,
pre-existing surveyed topo-bathymetric data and low num-
bers of available satellite images covering its area – as is
the case of Tauranga Harbour – the ratio–log method could
potentially replace the waterline method for deriving eleva-
tion data for intertidal zones. However, the waterline method
shows better performance when considering the RMSE – ei-
ther evaluated on a point-to-point basis (0.20 m) or evaluated
using the DEM (0.23 m) (see Table 3) – than the ratio–log
method (0.25 m). Evaluating RMSE using the DEM provides
more information for comparison. Figure 12 shows the den-
sity SDT points and distribution of the relative vertical error
(RE) for Tauranga Harbour’s waterline–SDT and ratio–log–

SDT for intertidal zones, where the colour represents posi-
tive (red) or negative (blue) errors. Positive (negative) errors
indicate that SDT estimates are deeper (shallower) or fur-
ther landward (seaward) than the lidar data (see Sect. 2.7).
The waterline–SDT (Fig. 12: a1, b1, c1, d1) provides esti-
mates that are generally shallower or further seaward than
the lidar – as the negative RE indicates – with the worst esti-
mates in the tidal flat’s upper region (bluer colour dots). The
positive RE values (redder colour dots) are concentrated in
the estuary’s wide flat centre region (Fig. 12b1) and indicate
that the estimates are deeper or further landward than the li-
dar data. As discussed in Sect. 4.1, the waterline method is
mainly limited by the number of images required to properly
define the morphology of the study site. In the case of Tau-
ranga Harbour, as a consequence of the high complexity of
its morphology, the SDT provided by the present framework
could be substantially improved with more images, making
the waterline method even more accurate than the ratio–log
method.

The ratio–log–SDT (Fig. 12: a2, b2, c2, d2) allows the
water depth to be assessed on a pixel-by-pixel basis, with a
resolution of 10 m in the case of Sentinel Copernicus data.
However, the application of this method has several lim-
itations. In our application, the intertidal topography was
flattened; the positive and negative errors are in the upper
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Figure 12. Estimated SDT and corresponding relative vertical error (LiDAR-SDT) for the intertidal zone in Tauranga Harbour using
waterline-derived (a1, b1, c1 and d1) and ratio–log (a2, b2, c2 and d2) methods. The root-mean-square error for the waterline method
is 0.20 m, and for the ratio–log method is 0.25 m (not shown in the figure). However, the waterline method results in less density of estimates
(due to imagery constraints), while the ratio–log method results in a pixel-by-pixel estimate density. Background image: ESA Sentinel-2A.
Date and time of the background image acquisition: 18 December 2018, 10:15 local time (UTC+12) .

and lower parts of the tidal flats, respectively. In the mid-
dle of the topographic profile, the estimates are more accu-
rate (whiter colour dots). The low data variability (pixels re-
flectance) probably causes the lower accuracy of the ratio–
log–SDT in comparison to the waterline–SDT (the ratio–log
method depends on calibration data covering the range of
conditions). The ratio–log method (green / blue band ratio)
poorly explains the depth (lidar data), which leads to a low
correlation coefficient (R2

= 0.12). This assumption is con-
firmed by the higher correlation coefficient (R2

= 0.24) ob-
tained when the same method is applied to the shallow waters
within Tauranga Harbour. In addition, the presence of sea-
grass in the intertidal zones and shallow water (Fig. S3) can
potentially worsen the ratio–log–SDT and SDB by affecting
the reflectance (Geyman and Maloof, 2019; Caballero and
Stumpf, 2020).

Many estuaries have turbid water, which would reduce
the quality of SDBs and SDTs derived from both ratio–log

and waterline methods. The ratio–log derivations would be
affected by the interference of the suspended material on
the light absorption rate through the water column – which
could be improved by using methods that adjust the ratio–log
method for turbid water (e.g. Caballero and Stumpf, 2020).
The waterline derivations would be affected by intertidal
zone identification. The NDWI of the pixels in shallow water
with a high concentration of suspended materials could have
similar values to those in the intertidal zone. Consequently,
determining the intertidal areas would be less accurate in en-
vironments with high concentrations of suspended material.

In addition, image pre- and post-processing are other fac-
tors that may improve the accuracy of the SDT and SDB
of waterline and ratio–log methods. In the present arti-
cle, available Sentinel images were used, which are already
pre-processed by using Sen2Cor, which creates surface-
reflectance images (see Sect. 2.1). However, several pre-
processing tools are available (Pereira-Sandoval et al., 2019).
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Some of these are designed specifically for use in coastal
areas – where water is often turbid, containing a high con-
centration of suspended sediments and other materials. For
instance, the ACOLITE tool (Vanhellemont and Ruddick,
2018) has been widely applied in estuaries (e.g. Bué et al.,
2020; Salameh et al., 2020; Fitton et al., 2021). In the case
of exposed coastal areas or where local wind waves can in-
crease the rugosity of the water surface, filters to eliminate
sun glint can be applied (Hedley et al., 2005).

4.4 Hydrodynamic modelling assessment

The bathymetric and topographic data quality is fundamen-
tal for reliable hydrodynamic modelling. Despite the limited
accuracy of the SDT and SDB (see Sect. 4.1–4.3), our re-
sults show that hydrodynamic models using satellite-derived
elevation can predict water level with similar accuracy to
models using only surveyed data (see Sect. 3.4, Figs. 9 and
10). Thus, water level modelling may not be sensitive to
small uncertainties in the bathymetric data but rather to the
larger-scale characteristics of the estuary, such as the width
of entrances and overall geometry. Bathymetric uncertainties
can arise from the interpolation technique used to create the
DEMs (Hare et al., 2011; Kang et al., 2017, 2020; Salameh
et al., 2020) – e.g. spline, kriging, inverse distance weight-
ing, nearest neighbour and triangulation. However, previous
studies have found that uncertainties in the elevation data
lead to minor differences in the water level predictions (Cea
and French, 2012; Falcão et al., 2013). For instance, Cea and
French (2012) showed that water level predictions do not sig-
nificantly change with vertical uncertainties of up to 1 m in
the bathymetry. Similarly, Falcão et al. (2013) have shown
that the DEMs created with the same interpolation technique
(i.e. kriging) but with a different spatial resolution (i.e. 5 and
50 m) did not significantly affect the water level prediction.
Corroborating our results, Falcão et al. (2013) also found that
the worst predictions are for grid cells where the water level
is at a minimum when comparing these two scenarios. The
stream current magnitude and direction predictions are af-
fected the most by the uncertainties in the bathymetric and
topographic data (Cea and French, 2012; Falcão et al., 2013).

Despite the uncertainties in the estimates, SDT and SDB
can generate a fair approximation of estuary relief, which
can be helpful in long-term predictions for coastal manage-
ment applications. In idealistic numerical studies, the exten-
sion and slope of the intertidal zone, the estuary’s length and
the width of the mouth are the main factors causing changes
in the tidal range within harbours Du et al., 2018; Khojasteh
et al., 2020, 2021). For instance, Du et al. (2018) show that
the length of an estuary and intertidal zone slope strongly
influence the tidal range. However, the entrance restriction
drives the estuarine response to sea-level rise (Khojasteh et
al., 2020); the smaller the cross-sectional area of the estuary
mouth, the smaller the tidal range within the estuary would
be. Moreover, SDT and SDB could be used for data assim-

ilation in numerical modelling, as in Mason et al. (2010),
who used the SDT to calibrate a morphodynamic model. Ul-
timately, the SDTs and SDBs can decrease the uncertainties
of flood-risk management in the present and future scenar-
ios of sea-level rise where studies are limited due to a lack
of elevation data in remote areas such as small islands in de-
veloping states (Parodi et al., 2020) and coastal lagoons in
developing countries (Pedrozo-Acuña et al., 2012).

Although the differences in the resulting water level be-
tween the SDT, SDB, and surveyed bathymetry simulation
scenarios show that satellite techniques compare well, our
simulations were only conducted in one estuary, albeit a
large and relatively complex estuary – where the astronom-
ical spring tides are the main driver for estuarine flooding.
Therefore, studies are required at sites with different phys-
ical conditions, which would be useful to validate the use
of SDT and SDB more broadly (e.g. estuaries where storm
surge is the main driver for flooding or/and exposed estuaries
where the wave forces can increase the water level (i.e. wave
set-up); e.g. Bertin et al., 2019). Many such effects can be
strongly dependent on the topography, for example, the wind
effect on the storm surge (wind surface stress) and generation
of local waves (e.g. Smith et al., 2001; Bertin et al., 2015) and
tide–surge interactions (Spicer et al., 2019; Wankang et al.,
2019; Zheng et al., 2020).

5 Conclusions

A waterline technique for deriving topography from multi-
spectral satellite images was developed, and its use in hydro-
dynamic modelling was assessed. The simple pre-processing
required for the satellite images combined with the use of
cloud computing and storage makes the present framework
highly applicable to regional-scale studies. Our main find-
ings show that the accuracy of the waterline SDT is simi-
lar or even superior to other techniques applied in previous
studies to comparable sites and similar to the vertical error in
the lidar dataset used to assess accuracy. In addition, optical
empiric methods such as the ratio–log could potentially re-
place the waterline–SDT in the case of imagery constraints
and when applied to an estuary with low water turbidity.
The main source of error for the waterline–SDT is whether
the number of satellite images is adequate to cover the in-
tertidal zone and the accuracy of the waterline positioning.
Statistical and dynamical corrections were trailed but pro-
vided limited improvements. The hydrodynamic modelling
assessment was encouraging and showed that SDT and SDB
techniques have the potential for use in predictions for ex-
treme water levels (such as those associated with spring tides
and severe storm surges). Scenarios using different applica-
tions of the SDT and SDB did not show major high water
level differences over most of the numerical domains for Tau-
ranga Harbour. The use of SDT and SDB for hydrodynamic
modelling in estuaries can make flooding assessment for re-
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mote coastal areas feasible and provides a pathway around
the need for expensive surveys for economically depressed
vulnerable areas.

Code availability. The code used in this work is available
as Python notebooks at https://github.com/CostaAndCoasts/
Intertidalzonessatellitederivedbathymetry (last access: 22 Septem-
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