Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1967-2023
https://doi.org/10.5194/nhess-23-1967-2023
Research article
 | 
31 May 2023
Research article |  | 31 May 2023

Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe

Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova

Related authors

Variable organic matter stoichiometry enhances the biological drawdown of CO2 in the Northwest European shelf seas
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3449,https://doi.org/10.5194/egusphere-2024-3449, 2024
Short summary
A three-quantile bias correction with spatial transfer for the correction of simulated European river runoff to force ocean models
Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann
Ocean Sci., 20, 1457–1478, https://doi.org/10.5194/os-20-1457-2024,https://doi.org/10.5194/os-20-1457-2024, 2024
Short summary
POPE: a Global Gridded Emission Inventory for PFAS 1950–2020
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236,https://doi.org/10.5194/essd-2024-236, 2024
Preprint under review for ESSD
Short summary
Parameterisation toolbox for physical-biogeochemical model compatible with FABM. Case study: the coupled 1D GOTM-ECOSMO E2E for the Sylt-Romo Bight, North Sea
Hoa T. T. Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2710,https://doi.org/10.5194/egusphere-2024-2710, 2024
Short summary
Recent Baltic Sea Storm Surge Events From A Climate Perspective
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2664,https://doi.org/10.5194/egusphere-2024-2664, 2024
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Regional modelling of extreme sea levels induced by hurricanes
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024,https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
New insights into combined surfzone, embayment, and estuarine bathing hazards
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024,https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024,https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024,https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024,https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, ISBN 92-5-104219-5, 1998. a
Bermúdez, M., Farfán, J., Willems, P., and Cea, L.: Assessing the effects of climate change on compound flooding in coastal river areas, Water Resour. Res., 57, e2020WR029321, https://doi.org/10.1029/2020WR029321, 2021. a
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a, b, c, d
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that drive compound coastal flooding are projected under climate change, Communications Earth & Environment, 1, 1–11, https://doi.org/10.1038/s43247-020-00044-z, 2020. a
Bilskie, M. and Hagen, S.: Defining flood zone transitions in low-gradient coastal regions, Geophys. Res. Lett., 45, 2761–2770, https://doi.org/10.1002/2018GL077524, 2018. a
Download
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Altmetrics
Final-revised paper
Preprint