Articles | Volume 23, issue 5
https://doi.org/10.5194/nhess-23-1947-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-1947-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improvements to the detection and analysis of external surges in the North Sea
Alexander Böhme
CORRESPONDING AUTHOR
Agency for Roads, Bridges and Waters Hamburg, Sachsenfeld 3–5, 20097 Hamburg, Germany
Birgit Gerkensmeier
Agency for Roads, Bridges and Waters Hamburg, Sachsenfeld 3–5, 20097 Hamburg, Germany
Benedikt Bratz
Leichtweiß-Institute for Hydraulic Engineering and Water
Resources, Technische Universität Braunschweig, Beethovenstraße 51a,
38106 Braunschweig, Germany
Clemens Krautwald
Leichtweiß-Institute for Hydraulic Engineering and Water
Resources, Technische Universität Braunschweig, Beethovenstraße 51a,
38106 Braunschweig, Germany
Olaf Müller
Agency for Roads, Bridges and Waters Hamburg, Sachsenfeld 3–5, 20097 Hamburg, Germany
Nils Goseberg
Leichtweiß-Institute for Hydraulic Engineering and Water
Resources, Technische Universität Braunschweig, Beethovenstraße 51a,
38106 Braunschweig, Germany
Coastal Research Center, Joint Research Facility of Leibniz University Hannover and Technische Universität Braunschweig, Merkurstraße 11, 30419 Hanover, Germany
Gabriele Gönnert
Agency for Roads, Bridges and Waters Hamburg, Sachsenfeld 3–5, 20097 Hamburg, Germany
Institute of Geography, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Related authors
No articles found.
Viktoria Kosmalla, Oliver Lojek, Jana Carus, Kara Keimer, Lukas Ahrenbeck, Björn Mehrtens, David Schürenkamp, Boris Schröder, and Nils Goseberg
Earth Surf. Dynam., 13, 791–825, https://doi.org/10.5194/esurf-13-791-2025, https://doi.org/10.5194/esurf-13-791-2025, 2025
Short summary
Short summary
This study analyzes seasonal biomechanical traits of marram grass at two coastal dune sites using monthly field and lab data from 2022. Observed differences in density, leaf length, and flower stems were found to be wind-independent and transferable across sites. The results support surrogate model development for numerical and physical experiments alike, where using live vegetation is impractical. Results address the knowledge gap on how vegetation influences dune stability and erosion resistance.
Malte Kumlehn, Oliver Lojek, Viktoria Kosmalla, Björn Mehrtens, Lukas Ahrenbeck, David Schürenkamp, and Nils Goseberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-4120, https://doi.org/10.5194/egusphere-2024-4120, 2025
Preprint archived
Short summary
Short summary
This publication presents a field study measuring sediment transport and wind velocities across a single dune, and provides an approximation of the annual volume of transported sediment for the entire dune systems on the East Frisian island of Spiekeroog. Data from the field study shows that sediment transport on a dune occurs deep into the vegetation. The approximation surpasses the actual volume changes of the dune systems as expected, with variations depending on the compared beach section.
Cited articles
ABPmer: Atlas of UK Marine Renewable Energy Resources,
http://www.renewables-atlas.info/ (last access: 3 June 2022), 2008.
Agency for Roads, Bridges and Waters Hamburg: Ermittlung des Sturmflutbemessungswasserstandes für den öffentlichen
Hochwasserschutz in Hamburg: Berichte des Landesbetriebes Straßen,
Brücken und Gewässer Nr. 12/2012, Hamburg, https://lsbg.hamburg.de/resource/blob/637726/e7a1a5d6f310d31 (last access: 30 August 2022), 2012.
Albrecht, F., Wahl, T., Jensen, J., and Weisse, R.: Determining sea level
change in the German Bight, Ocean Dynam., 61, 2037–2050,
https://doi.org/10.1007/s10236-011-0462-z, 2011.
Amin, M.: On analysis and prediction of tides on the west coast of Great
Britain, Geophys. J. Int., 68, 57–78, https://doi.org/10.1111/j.1365-246X.1982.tb06962.x, 1982.
Annutsch, R.: Wasserstandvorhersage und Sturmflutwarnung, Der Seewart, 38,
185–204, 1977.
Boesch, A. and Müller-Navarra, S.: Reassessment of long-period
constituents for tidal predictions along the German North Sea coast and its
tidally influenced rivers, Ocean Sci., 15, 1363–1379,
https://doi.org/10.5194/os-15-1363-2019, 2019.
Bork, I. and Müller-Navarra, S.: MUSE Modellgestützte Untersuchungen
zu Sturmfluten mit sehr geringen Eintrittswahrscheinlichkeiten: Teilprojekt:
Sturmsimulation, BSH, Hamburg, https://izw.baw.de/publikationen/kfki-projekte-berichte/0/078_2_1_e35432.pdf (last access: 3 June 2022), 2005.
British Oceanographic Data Centre: UK tide gauge network: Stations
Aberdeen und Immingham, British Oceanographic Data Centre [data set], https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/ (last access: 1 December 2021), 2021.
Brown, J. M. and Wolf, J.: Coupled wave and surge modelling for the eastern
Irish Sea and implications for model wind–stress, Cont. Shelf Res., 29, 1329–1342, https://doi.org/10.1016/j.csr.2009.03.004, 2009.
Bruss, G., Gönnert, G., and Mayerle, R.: Extreme scenarios at the German
north sea coast – a numerical model study, Int. Conf. Coastal. Eng., 1, 26–38, https://doi.org/10.9753/icce.v32.currents.26, 2011.
Comer, J., Olbert, A. I., Nash, S., and Hartnett, M.: Development of
high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding, Nat. Hazards Earth Syst. Sci., 17, 205–224, https://doi.org/10.5194/nhess-17-205-2017, 2017.
Corkan, R. H.: Storm Surges in the North Sea: Vol. 1 and 2, London County Council, Hydrographic Office, Washington, DC, 1948.
Corkan, R. H.: The levels in the North Sea associated with the storm
disturbance of 8 January 1949, Philos. T. Roy. Soc. Lond. A, 242, 493–525,
https://doi.org/10.1098/rsta.1950.0008, 1950.
Dangendorf, S., Arns, A., Pinto, J. G., Ludwig, P., and Jensen, J.: The
exceptional influence of storm `Xaver' on design water levels in the German
Bight, Environ. Res. Lett., 11, 54001, https://doi.org/10.1088/1748-9326/11/5/054001, 2016.
Darbyshire, J. and Darbyshire, M.: Storm Surges in the North Sea during the
Winter 1953–4, P. Rpy. Soc. Lond. A, 235, 260–274, https://doi.org/10.1098/rspa.1956.0081, 1956.
de Jong, M. P. C.: Origin and prediction of seiches in Rotterdam harbour
basins, 119 pp., http://resolver.tudelft.nl/uuid:d7ce7779-bf81-47b7-bc14-e01ce5e6856b (last access: 30 August 2022), 2004.
Dibbern, S. and Müller-Navarra, S.: Wasserstände bei Sturmfluten
entlang der nordfriesischen Küste mit den Inseln und Halligen, Küste, 76, 205–224, 2009.
Dogan, G. G., Pelinovsky, E., Zaytsev, A., Metin, A. D., Ozyurt Tarakcioglu,
G., Yalciner, A. C., Yalciner, B., and Didenkulova, I.: Long wave generation
and coastal amplification due to propagating atmospheric pressure disturbances, Nat. Hazards, 106, 1195–1221, https://doi.org/10.1007/s11069-021-04625-9, 2021.
Dronkers, J. and Stojanovic, T.: Socio-economic Impacts – Coastal Management
and Governance, in: North Sea Region Climate Change Assessment, edited by:
Quante, M. and Colijn, F., Springer International Publishing, Cham, 475–488, https://doi.org/10.1007/978-3-319-39745-0_19, 2016.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM 2020), EMODnet Bathymetry Consortium [data set], https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a, 2020.
Federal Maritime and Hydrographic Agency: Predicted tidal data: Station
Cuxhaven–Steubenhöft, Federal Maritime and Hydrographic Agency [data set], https://www.bsh.de/DE/DATEN/Vorhersagen/Gezeiten/gezeiten_node.html (last access: 30 August 2022), 2021.
Fenoglio-Marc, L., Scharroo, R., Annunziato, A., Mendoza, L., Becker, M., and Lillibridge, J.: Cyclone Xaver seen by geodetic observations, Geophys. Res. Lett., 42, 9925–9932, https://doi.org/10.1002/2015GL065989, 2015.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea
Level Change, in: Climate Change 2021: The Physical Science Basis, in:
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Ganske, A., Fery, N., Gaslikova, L., Grabemann, I., Weisse, R., and Tinz, B.: Identification of extreme storm surges with high-impact potential along the German North Sea coastline, Ocean Dynam., 68, 1371–1382,
https://doi.org/10.1007/s10236-018-1190-4, 2018.
German Meteorological Service: Großwetterlagen ab 2003, Offenbach a. M.,
https://www.dwd.de/DE/leistungen/grosswetterlage/grosswetterlage.html (last access: 30 August 2022), 2021.
German Meteorological Service Climate Data Center: Hourly measurements of wind and air pressure for Gemany, Version v21.3: Station Cuxhaven, DWD Climate Data Center [data set], https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/ (last access: 11 October 2021), 2021.
Gönnert, G.: Storm tides and wind surge in the German Bight: Character
of height, frequency, duration, rise and fall in the 20th Century, Küste, 185–366, https://izw.baw.de/publikationen/die-kueste/0/k067108.pdf (last access: 30 August 2022), 2003.
Gönnert, G. and Gerkensmeier, B.: A Multi–Method Approach to Develop
Extreme Storm Surge Events to Strengthen the Resilience of Highly Vulnerable
Coastal Areas, Coast. Eng. J., 57, 1540002-1–1540002-26,
https://doi.org/10.1142/s0578563415400021, 2015.
Gönnert, G. and Müller, O.: Bemessung im Küstenschutz unter
Berücksichtigung von Risikominderung und Klimaänderung,
Geographische Rundschau, 66, 30–38, 2014.
Gönnert, G., Gerkensmeier, B., Müller, J.-M., Sossidi, K., and Thumm, S.: Zur hydrodynamischen Interaktion zwischen den Sturmflutkomponenten Windstau, Tide und Fernwelle: Zwischenbericht Teilprojekt 1a, 114 pp., https://docplayer.org/38656597-Zur-hydrodynamischen-interaktion-zwischen-den (last access: 30 August 2022), 2010.
Hess, P. and Brezowski, H.: Katalog der Großwetterlagen Europas 1881–1976, Berichte des Deutschen Wetterdienstes, Deutscher Wetterdienst, Offenbach a. M., https://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/113_pdf.pdf?__blob=publicationFile&v=3 (last access: 30 August 2022), 1977.
Horsburgh, K., Haigh, I. D., Williams, J., de Dominicis, M., Wolf, J., Inayatillah, A., and Byrne, D.: “Grey swan” storm surges pose a greater
coastal flood hazard than climate change, Ocean Dynam., 71, 715–730,
https://doi.org/10.1007/s10236-021-01453-0, 2021.
Jänicke, L., Ebener, A., Dangendorf, S., Arns, A., Schindelegger, M.,
Niehüser, S., Haigh, I. D., Woodworth, P., and Jensen, J.: Assessment of
Tidal Range Changes in the North Sea From 1958 to 2014, J. Geophys. Res.-Oceans, 126, e2020JC016456, https://doi.org/10.1029/2020JC016456, 2021.
Jensen, J., Mudersbach, C., and Dangendorf, S.: Untersuchungen zum Einfluss
der Astronomie und des lokalen Windes auf sich verändernde
Extremwasserstände in der Deutschen Bucht, Bundesanstalt für Gewässerkunde, https://doi.org/10.5675/Kliwas_25.2013_Extremwasserst�nde, 2013.
Kettle, A. J.: Storm Xaver over Europe in December 2013: Overview of energy
impacts and North Sea events, Adv. Geosci., 54, 137–147,
https://doi.org/10.5194/adgeo-54-137-2020, 2020.
Kim, H., Kim, M.-S., Lee, H. O.-J., Woo, S.-B., and Kim, Y.-K.: Seasonal
Characteristics and Mechanisms of Meteo-tsunamis on the West Coast of Korean
Peninsula, J. Coastal Res., 75, 1147–1151, https://doi.org/10.2112/SI75-230.1, 2016.
Kim, M. S., Woo, S. B., Eom, H., and You, S.-H.: Occurrence of pressure-forced meteotsunami events in the eastern Yellow Sea during 2010–2019, Nat. Hazards Earth Syst. Sci., 21, 3323–3337, https://doi.org/10.5194/nhess-21-3323-2021, 2021.
Koninklijk Nederlands Meteorologisch Instituut: Uurwarden van weerstations:
Station De Kooy, Koninklijk Nederlands Meteorologisch Instituut [data set], https://daggegevens.knmi.nl/ (last access: 1 October 2021), 2021.
Koopmann, G.: Wasserstandserhöhungen in der Deutschen Bucht infolge von
Schwingungen und Schwallerscheinungen und deren Bedeutung bei der Sturmflut
vom 16./17. Februar 1962, Deutsche Hydrographische Zeitschrift, 15, 181–198, 1962.
Kubota, T., Saito, T., Chikasada, N. Y., and Sandanbata, O.: Meteotsunami
Observed by the Deep-Ocean Seafloor Pressure Gauge Network Off Northeastern
Japan, Geophys. Res. Lett., 48, e2021GL094255, https://doi.org/10.1029/2021GL094255, 2021.
Liu, X., Jiang, W., Yang, B., and Baugh, J.: Numerical study on factors
influencing typhoon-induced storm surge distribution in Zhanjiang Harbor,
Estuar. Coast. Shelf Sci., 215, 39–51, https://doi.org/10.1016/j.ecss.2018.09.019, 2018.
Lotze, H. K., Reise, K., Worm, B., van Beusekom, J., Busch, M., Ehlers, A.,
Heinrich, D., Hoffmann, R. C., Holm, P., Jensen, C., Knottnerus, O. S.,
Langhanki, N., Prummel, W., Vollmer, M., and Wolff, W. J.: Human transformations of the Wadden Sea ecosystem through time: a synthesis, Helgol. Mar. Res., 59, 84–95, https://doi.org/10.1007/s10152-004-0209-z, 2005.
Mehra, P., Prabhudesai, R. G., Joseph, A., Kumar, V., Aga, Y., Luis, R.,
Damodaran, S., and Viegas, B.: A one year comparison of radar and pressure
tide gauge at Goa, west coast of India, in: 2009 International Symposium on
Ocean Electronics (SYMPOL 2009), 18–20 November 2009, Cochin, India, 2009, 173–183, https://doi.org/10.1109/SYMPOL.2009.5664190, 2009.
Mikhailova, M. V.: Interaction of tides and storm surges at the Elbe River
mouth, Water Resour., 38, 284–297, https://doi.org/10.1134/S0097807811030079, 2011.
Müller-Navarra, S.: On Tidal Predictions by Mean of Harmonic Representation of Inequalities, Hamburg, Reports of the Federal Maritime and
Hydrographic Agency (BSH) no. 50, 27 pp., https://www.bsh.de/DE/PUBLIKATIONEN/_Anlagen/Downloads/Meer_und_Umwelt/Berichte-des-BSH/Berichte-des-BSH_50_de.pdf?__blob=publicationFile&v=13/ (last access: 30 August 2022), 2013.
Müller-Navarra, S. and Bork, I.: Development Of An Operational Elbe Tidal Estuary Model, Int. Conf. Coast. Eng., 1, 48, https://doi.org/10.9753/icce.v32.management.48, 2011.
Müller-Navarra, S. and Giese, H.: Improvements of an empirical model to
forecast wind surge in the German Bight, Deutsche Hydrographische Zeitschrift, 51, 385–405, 1999.
Olabarrieta, M., Valle-Levinson, A., Martinez, C. J., Pattiaratchi, C., and
Shi, L.: Meteotsunamis in the northeastern Gulf of Mexico and their possible
link to El Niño Southern Oscillation, Nat. Hazards, 88, 1325–1346,
https://doi.org/10.1007/s11069-017-2922-3, 2017.
Olbert, A. I. and Hartnett, M.: Storms and surges in Irish coastal waters,
Ocean Model., 34, 50–62, https://doi.org/10.1016/j.ocemod.2010.04.004, 2010.
Oppenheimer, M., Glavivic, B. C., Hinkel, J., v. d. Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: The Ocean and Cryosphere in a Changing Climate, IPCC, Cambridge University Press, 321–446, https://doi.org/10.1017/9781009157964.006, 2019.
OSPAR Comission 2000: Quality Status Report 2000: Region II – Greater North
Sea, London, https://qsr2010.ospar.org/media/assessments/QSR_2000.pdf (last access: 30 August 2022), 2000.
Ponte, R. M. and Gaspar, P.: Regional analysis of the inverted barometer
effect over the global ocean using TOPEX/POSEIDON data and model results, J.
Geophys. Res., 104, 15587–15601, https://doi.org/10.1029/1999JC900113, 1999.
Prandle, D.: Storm Surges in the Southern North Sea and River Thames, P. Roy. Soc. Lond. A, 344, 509–539, 1975.
Proudman, J.: The Effects on the Sea of Changes in Atmospheric Pressure, Geophys. J. Int., 2, 197–209, https://doi.org/10.1111/j.1365-246X.1929.tb05408.x, 1929.
Proudman, J. and Doodson, A. T.: Time–Relations in Meteorological Effects on the Sea, P. Lond. Math. Soc., s2–24, 140–149, https://doi.org/10.1112/plms/s2-24.1.140, 1926.
Pullen, T., Allsop, N. W. H., Bruce, T., Kortenhaus, A., Schüttrumpf, H., and van der Meer, J. W.: EurOtop: Wave Overtopping of Sea Defences and Related Structures: Assessment Manual, Küste, 78, 1–178, 2007.
Reise, K., Baptist, M., Burbridge, P., Dankers, N., Fischer, L., Flemming,
B., Oost, A. P., and Smit, C.: The Wadden Sea – A universally outstanding
tidal wetland: Wadden Sea Ecosystem No. 29, Commen Wadden Sea Secretariat,
Wilhelmshaven, https://epic.awi.de/id/eprint/23744/1/Rei2010j.pdf (last access: 30 August 2022), 2010.
Rijkwaterstaat: Waterinfo: Water level and astronomical tide in cm above
NAP: Tide gauge Texel Noordzee, Rijkwaterstaat [data set], https://waterinfo.rws.nl/#!/nav/publiek/ (last access: 11 October 2021), 2021.
Rossiter, J. R.: Storm Surges in the North Sea, 11 to 30 December 1954, Philos. T. Roy. Soc. Lond. A, 251, 139–160, 1958.
Rossiter, J. R.: Research on methods of forecasting storm surges on the east
and south coasts of Great Britain, Q. J. Roy. Meteorol. Soc., 85, 262–277,
https://doi.org/10.1002/qj.49708536508, 1959.
Schmitz, H. P., Habicht, D., and Volkert, H.: Barotropic numerical experimens
on external surge generation at the edge of the north-western European
shelf, Gerland Beitr. Geophysik, Akademische Verlagsgesellschaft, 422–437, 1988.
Serafin, K. A., Ruggiero, P., Barnard, P. L., and Stockdon, H. F.: The
influence of shelf bathymetry and beach topography on extreme total water
levels: Linking large-scale changes of the wave climate to local coastal
hazards, Coast. Eng., 150, 1–17, https://doi.org/10.1016/j.coastaleng.2019.03.012, 2019.
Sibley, A., Cox, D., Long, D., Tappin, D., and Horseburgh, K.: Meteorologically generated tsunami-like waves in the North Sea on 1/2 July 2015 and 28 May 2008, Weather, 71, 68–74, https://doi.org/10.1002/wea.2696,
2016.
Siefert, W.: Ober Eintrittswahrscheinlichkeiten von Windstau, Oberwasser und
örtlichem Wind in einem Tidefluß am Beispiel der Elbe, Küste, 52, 171–190, 1991.
Spencer, T., Brooks, S. M., Evans, B. R., Tempest, J. A., and Möller, I.: Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts, Earth-Sci. Rev., 146, 120–145,
https://doi.org/10.1016/j.earscirev.2015.04.002, 2015.
Steffelbauer, D. B., Riva, R. E. M., Timmermans, J. S., Kwakkel, J. H., and
Bakker, M.: Evidence of regional sea-level rise acceleration for the North Sea, Environ. Res. Lett., 17, 74002, https://doi.org/10.1088/1748-9326/ac753a, 2022.
Tomczak, G.: Verification of a progressive wave in the southern north sea,
Deutsche Hydrographische Zeitschrift, 11, 129–138, 1958.
Treloar, P., Taylor, D., and Prenler, P.: Investigation of Wave induced Storm Surge within a large Coastal Embayment – Moreton Bay (Australia), in: Proceeding of the Coastal Engineering Conference, 30 June–5 July 2010, Shanghai, China, https://doi.org/10.9753/icce.v32.currents.22, 2010.
Vennell, R.: Long Barotropic Waves Generated by a Storm Crossing Topography,
J. Phys. Oceanogr., 37, 2809–2823, https://doi.org/10.1175/2007JPO3687.1, 2007.
Vennell, R.: Resonance and trapping of topographic transient ocean waves
generated by a moving atmospheric disturbance, J. Fluid Mech., 650, 427–442, https://doi.org/10.1017/S0022112009993739 2010.
Vilibić, I.: Numerical simulations of the Proudman resonance, Cont. Shelf Res., 28, 574–581, https://doi.org/10.1016/j.csr.2007.11.005, 2008.
Wahl, T., Haigh, I. D., Woodworth, P. L., Albrecht, F., Dillingh, D.,
Jensen, J., Nicholls, R. J., Weisse, R., and Wöppelmann, G.: Observed
mean sea level changes around the North Sea coastline from 1800 to present,
Earth-Sci. Rev., 124, 51–67, https://doi.org/10.1016/j.earscirev.2013.05.003, 2013.
Wasserstraßen- und Schifffahrtsverwaltung des Bundes: Water level data:
Tide gauge Cuxhaven–Steubenhöft, Years 1995–1997, Federal Waterways
and Shipping Administration (WSV), provided by Bundesanstalt für
Gewässerkunde [data set], available upon request to the Federal Waterways and Shipping Administration via email, 2021a.
Wasserstraßen- und Schifffahrtsverwaltung des Bundes: Water level data:
Tide gauge Cuxhaven–Steubenhöft, Years 1998–2020, Wasserstraßen- und Schifffahrtsverwaltung des Bundes, https://www.kuestendaten.de/DE/Startseite/Startseite_Kuestendaten_node.html
(last access: 12 October 2021), 2021b.
Weisse, R., v. Storch, H., Niemeyer, H. D., and Knaack, H.: Changing North
Sea storm surge climate: An increasing hazard?, Ocean Coast. Manage., 68, 58–68, https://doi.org/10.1016/j.ocecoaman.2011.09.005, 2012.
Werner, P. C. and Gerstengarbe, F.-W.: Katalog der Großwetterlagen
Europas (1881–2009): Nach Paul Hess und Helmut Brezowsky, 7. verbesserte und
ergänzte Auflage, PIK Report 119, PIK, Potsdam, https://www.pik-potsdam.de/en/output/publications/pikreports/.files/pr119.pdf (last access: 30 August 2022), 2010.
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
External surges in the North Sea are caused by low-pressure cells travelling over the northeast...
Special issue
Altmetrics
Final-revised paper
Preprint