Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-97-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-97-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Still normal? Near-real-time evaluation of storm surge events in the context of climate change
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum
Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Insa Meinke
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum
Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum
Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Related authors
No articles found.
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025, https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events, and no clear trend can be identified. Often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Daniel Krieger and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2025-111, https://doi.org/10.5194/egusphere-2025-111, 2025
Short summary
Short summary
We analyze storms over the Northeast Atlantic Ocean and the German Bight and how their statistics change over past, present, and future. We look at data from many different climate model runs that cover a variety of possible future climate states. We find that storms are generally predicted to be weaker in the future, even though the wind directions that typically happen during storms occur more frequently. We also find that the most extreme storms may become more likely than nowadays.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cited articles
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., and
Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection
design heights, Sci Rep., 7, 40171, https://doi.org/10.1038/srep40171, 2017.
Barbosa, S. M.: Quantile trends in Baltic sea level, Geophys. Res. Lett., 35, L22704, https://doi.org/10.1029/2008gl035182, 2008.
Butler, A., Heffernan, J. E., Tawn, J. A., and Flather, R. A.: Trend
estimation in extremes of synthetic North Sea surges, J. Roy. Stat. Soc. C.-App., 56, 395–414, https://doi.org/10.1111/j.1467-9876.2007.00583.x, 2007.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured
by tide gauges from global oceans – the Joint Archive for Sea Level
holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for
Environmental Information [data set], https://doi.org/10.7289/V5V40S7W, 2015.
Cid, A., Menendez, M., Castanedo, S., Abascal, A. J., Mendez, F. J., and
Medina, R.: Long-term changes in the frequency, intensity and duration of
extreme storm surge events in southern Europe, Clim. Dynam., 46, 1503–1516,
https://doi.org/10.1007/s00382-015-2659-1, 2016.
Dangendorf, S., Müller-Navarra, S., Jensen, J., Schenk, F., Wahl, T.,
and Weisse, R.: North Sea storminess from a novel storm surge record since
AD 1843, J. Climate, 27, 3582–3595, https://doi.org/10.1175/jcli-d-13-00427.1,
2014.
Deutschländer, T., Friedrich, K., Haeseler, S., and Lefebvre, C.: Severe
storm XAVER across northern Europe from 5 to 7 December 2013, Deutscher
Wetterdienst, available at: https://www.dwd.de/EN/ourservices/specialevents/storms/20131230_XAVER_europe_en.pdf?__blob=publicationFile&v=20131234 (last access: 14 January 2022), 2013.
DIN 4049-3: Hydrologie. Teil 3: Begriffe zur quantitativen Hydrologie
135DVWK (Deutscher Verband für Wasserwirtschaft und Kulturbau) (1999):
Statistische Analyse von Hochwasserabflüssen, DVWK 215/1999, Verlag
Paul Parey, Hamburg, https://doi.org/10.31030/2644617, 1994.
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia,
L.: Storminess over the North Atlantic and northwestern Europe – A review,
Q. J. Roy. Meteor. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364, 2015.
Feuchter, D., Jörg, C., Rosenhagen, G., Auchmann, R., Martius, O., and
Brönnimann, S.: The 1872 Baltic Sea storm surge, in: Weather extremes
during the past 140 years, edited by: Brönnimann, S. and Martius, O.,
Geographica Bernensia G89, https://doi.org/10.4480/GB2013.G89.10, 2013.
Gaslikova, L., Grabemann, I., and Groll, N.: Changes in North Sea storm
surge conditions for four transient future climate realizations, Nat.
Hazards, 66, 1501–1518, https://doi.org/10.1007/s11069-012-0279-1, 2013.
Gönnert, G.: Sturmfluten und Windstau in der Deutschen Bucht. Charakter,
Veränderungen und Maximalwerte im 20. Jahrhundert, Die Küste, 67,
185–365, 2003.
Gönnert, G. and Buß, T.: Sturmfluten zur Bemessung von
Hochwasserschutzanlagen, Landesbetrieb Straßen, Brücken und
Gewässer 2/2009, ISSN 1867–7959, 2009.
Gräwe, U., Klingbeil, K., Kelln, J., and Dangendorf, S.: Decomposing
Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea, J. Climate, 32, 3089–3108, https://doi.org/10.1175/JCLI-D-18-0174.1, 2019.
Grinsted, A.: Projected Change – Sea Level, in: Second Assessment of Climate
Change for the Baltic Sea Basin, edited by: The BACC II Author Team, Springer,
Cham, https://doi.org/10.1007/978-3-319-16006-1_14, 2015.
Haeseler, S., Bissolli, P., Dassler, J., Zins, V., and Kreis, A.: Orkantief
Sabine löst am 09./10. Februar 2020 eine schwere Sturmlage über
Europa aus, DWD, available at: https://www.dwd.de/DE/leistungen/besondereereignisse/stuerme/20200213_orkantief_sabine_europa.pdf (last access: 14 January 2022), 2020
Haigh, I. D., Wadey, M. P., Gallop, S. L., Loehr, H., Nicholls, R. J.,
Horsburgh, K., Brown, J. M., and Bradshaw, E.: A user-friendly database of
coastal flooding in the United Kingdom from 1915–2014, Sci. Data, 2, 150021 (2015), https://doi.org/10.1038/sdata.2015.21, 2015.
Hall, A.: The North Sea Flood of 1953, Environment & Society Portal,
Arcadia, no. 5, Rachel Carson Center for Environment and Society, https://doi.org/10.5282/rcc/5181, 2013.
Hegerl, G. C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M. P., Kovats, R. S., Parmesan, C., Pierce, D. W., and Stott, P. A.: Good Practice Guidance Paper on Detection
and Attribution Related to Anthropogenic Climate Change, in: Meeting Report
of the Intergovernmental Panel on Climate Change Expert Meeting on Detection
and Attribution of Anthropogenic Climate Change, edited by: Stocker, T. F., Field, C. B., Qin, D., Barros, V., Plattner, G.-K., Tignor, M., Midgley, P. M., and Ebi, K. L., IPCC Working Group I Technical Support Unit, University of Bern,
Bern, Switzerland, available at: https://archive.ipcc.ch/pdf/supporting-material/ipcc_good_practice_guidance_paper_anthropogenic.pdf (last access: 19 January 2022), 2010.
Hein, S. S. V., Sohrt, V., Nehlsen, E., Strotmann, T., and Fröhle, P.: Tidal
Oscillation and Resonance in Semi-Closed Estuaries – Empirical Analyses from
the Elbe Estuary, North Sea, Water, 2021, 848, https://doi.org/10.3390/w13060848,
2021
Hennemuth, B., Bender, S., Bülow, K., Dreier, N., Keup-Thiel, E.,
Krüger, O., Mudersbach, C., Radermacher, C., and Schoetter, R.: Statistical
methods for the analysis of simulated and observed climate data, applied in
projects and institutions dealing with climate change impact and adaptation,
CSC Rep. 13, Climate Service Center, Germany, available at: https://www.climate-service-center.de/imperia/md/content/csc/projekte/csc-report13_englisch_final-mit_umschlag.pdf (last access: 14 January 2022), 2013.
Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden
based on the new IPCC special report: The ocean and cryosphere in a changing
climate, Ambio, 49, 1587–1600, https://doi.org/10.1007/s13280-019-01313-8, 2020.
Hollebrandse, F. A. P.: Temporal development of the tidal range in the
southern North Sea, master, MS thesis, Delft Univ. of Technol., Delft, The
Netherlands, available at: http://resolver.tudelft.nl/uuid:d0e5cb29-1c09-4de3-a1e6-0b17a9cb43ec (last access: 14 January 2022), 2005.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys. Res.-Oceans, 112, C08003, https://doi.org/10.1029/2006jc004033, 2007.
Hünicke, B. and Zorita, E.: Influence of temperature and precipitation
on decadal Baltic Sea level variations in the 20th century, Tellus A, 58,
141–153, https://doi.org/10.1111/j.1600-0870.2006.00157.x, 2006.
Jensen, J. and Müller-Navarra, S. H.: Storm surges on the German coast,
Die Küste, 74, 92–124, 2008.
Jensen, J., Ebener, A., Jänicke, L., Arns, A., Hubert, K., Wurpts, A.,
Berkenbrink, C., Weisse, R., Yi, X., and Meyer, E.: Untersuchungen zur
Entwicklung der Tidedynamik an der deutschen Nordseeküste (ALADYN), Die
Küste, 89, https://doi.org/10.18171/1.089105, 2021.
Karabil, S.: Influence of Atmospheric Circulation on the Baltic Sea Level
Rise under the RCP8.5 Scenario over the 21st Century, Climate, 5, 71, https://doi.org/10.3390/cli5030071, 2017.
Karabil, S., Zorita, E., and Hünicke, B.: Mechanisms of variability in decadal sea-level trends in the Baltic Sea over the 20th century, Earth Syst. Dynam., 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, 2017.
Kodeih, S.: Catalogue of potential coastal climate indicators for a
pan-European coastal climate service web tool, Deliverable 1.D, Work Package
1, Project ECLISEA, available at: https://www.ecliseaproject.eu/wp-content/uploads/2019/08/d1d_report_final.pdf (last access: 13 December 2021), 2018.
Kodeih, S., Cozannet, G. L., Maspataud, A., Meyssignac, B., Maisongrande,
P., Ayerbe, I. A., Emmanouil, G., and Vlachogianni, M.: Climate information
needs from multi-sector stakeholders, Deliverable 1.B, Work Package 1,
Project ECLISEA, available at: https://www.ecliseaproject.eu/wp-content/uploads/2019/08/d1.b_report_stakeholder-needs_final_20180629.pdf (last access: 13 December 2021), 2019.
Krieger, D., Krueger, O., Feser, F., Weisse, R., Tinz, B., and von Storch,
H.: German Bight storm activity, 1897–2018, Int. J. Climatol., 41, E2159–E2177, https://doi.org/10.1002/joc.6837, 2020.
Krueger, O., Feser, F., and Weisse, R.: Northeast Atlantic storm activity
and its uncertainty from the late nineteenth to the twenty-first century,
J. Climate, 32, 1919–1931, https://doi.org/10.1175/jcli-d-18-0505.1, 2019.
Lehmann, A., Getzlaff, K., and Harlaß, J.: Detailed assessment of climate
variability in the Baltic Sea area for the period 1958 to 2009, Clim.
Res., 46, 185–196, https://doi.org/10.3354/cr00876, 2011.
Meinke, I.: Sturmfluten in der südwestlichen Ostsee – dargestellt am
Beispiel des Pegels Warnemünde, Marburger Geographische Schriften, 134,
1–23, 1999.
Meinke, I.: Stakeholder-based evaluation categories for regional climate
services – a case study at the German Baltic Sea coast, Adv. Sci. Res., 14,
279–291, https://doi.org/10.5194/asr-14-279-2017, 2017.
Mudersbach, C. and Jensen J.: Statistische Extremwertanalyse von
Wasserständen an der Deutschen Ostseeküste, in: Abschlussbericht 1.4
KFKI-VERBUNDPROJEKT Modellgestützte Untersuchungen zu extremen
Sturmflutereignissen an der Deutschen Ostseeküste (MUSTOK), Universität Siegen, https://doi.org/10.2314/GBV:609714708, 2008.
Needham, H. F., Keim, B. D., and Sathiaraj, D.: A review of tropical
cyclone-generated storm surges: Global data sources, observations, and
impacts, Rev. Geophys., 53, 545–591, https://doi.org/10.1002/2014rg000477,
2015.
PEGELONLINE: Real-time data, available at: https://www.pegelonline.wsv.de/, last access: 14 January 2022.
Perlet, I.: Ostsee-Sturmflut am 02.01.2019, Berichte zu Ostsee-Sturmfluten
und -Hochwassern, BSH, available at:
https://www.bsh.de/DE/THEMEN/Wasserstand_und_Gezeiten/Sturmfluten/_Anlagen/Downloads/Ostsee_Sturmflut_20190102.pdf?__blob=publicationFile&v=20190105 (last access: 14 January 2022), 2019.
Ratter, B. M. W. and Kruse, N.: Klimawandel und Wahrnehmung – Risiko und
Risikobewusstsein in Hamburg, in: Klimawandel und Klimawirkung, edited by: Böhner, J. and Ratter, B. M. W., Hamburg 2010, Hamburger Symposium Geographie, Band 2, Institut für Geographie der Universität Hamburg, ISBN 9783980686594, 2010.
Ribeiro, A., Barbosa, S. M., Scotto, M. G., and Donner, R. V.: Changes in
extreme sea-levels in the Baltic Sea, Tellus A, 66, 20921, https://doi.org/10.3402/tellusa.v66.20921, 2014.
Richter, A., Groh, A., and Dietrich, R.: Geodetic observation of sea-level
change and crustal deformation in the Baltic Sea region, Phys. Chem. Earth,
53–54, 43–53, https://doi.org/10.1016/j.pce.2011.04.011, 2012.
Rosenhagen, G. and Bork, I.: Rekonstruktion der Sturmwetterlage vom 13.
November 1872, Die Küste, 75, 51–70, 2009.
Rovere, A., Stocchi, P., and Vacchi, M.: Eustatic and relative sea level
changes, Current Climate Change Reports, 2, 221–231, https://doi.org/10.1007/s40641-016-0045-7, 2016.
Rucińska, D.: Describing Storm Xaver in disaster terms, Int. J. Disast. Risk. Re., 34, 147–153, https://doi.org/10.1016/j.ijdrr.2018.11.012, 2019.
Schaper, J., Ulm, M., Arns, A., Jensen, J., Ratter, B., and Weisse, R.:
Transdisziplinäres Risikomanagement im Umgang mit extremen
Nordsee-Sturmfluten – Vom Modell zur Wissenschafts-Praxis-Kooperation, Die
Küste, 87, 75–114, https://doi.org/10.18171/1.087112, 2019.
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E.: Causes for
contemporary regional sea level changes, Annu. Rev. Mar. Sci., 5,
21–46, https://doi.org/10.1146/annurev-marine-121211-172406, 2013.
Stendel, M., van den Besselaar, E., Hannachi, A., Kent, E. C., Lefebvre, C.,
Schenk, F., van der Schrier, G., and Woollings, T.: Recent change –
Atmosphere, in: North Sea region climate change assessment, edited by: Quante, M. and Colijn, F., 55–84, https://doi.org/10.1007/978-3-319-39745-0_2, 2016.
STORMSURGE-MONITOR: Near-real-time analyzes, available at: https://stormsurge-monitor.eu, last access: 19 January 2022.
STURMFLUT-MONITOR: Near-real-time analyzes, available at: https://sturmflut-monitor.de, last access: 19 January 2022.
Tamisiea, M. E. and Mitrovica, J. X.: The moving boundaries of sea level
change: understanding the origins of geographic variability, Oceanography,
24, 24–39, https://doi.org/10.5670/oceanog.2011.25, 2011.
von Storch, H. and Woth, K.: Storm surges: perspectives and options, Sustain.
Sci., 3, 33–43, https://doi.org/10.1007/s11625-008-0044-2, 2008.
von Storch, H., Gönnert, G., and Meine, M.: Storm surges – An option for
Hamburg, Germany, to mitigate expected future aggravation of risk,
Environ. Sci. Policy, 11, 735–742, https://doi.org/10.1016/j.envsci.2008.08.003, 2008.
von Storch, H., Jiang, W., and Furmanczyk, K. K.: Storm surge case studies.
In: Coastal and Marine Hazards, Risks, and Disasters, edited by: Shroder, J. F., Ellis, J. T., and Sherman, D. J., Elsevier, Boston, https://doi.org/10.1016/B978-0-12-396483-0.00007-8, 2015.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam., 47,
3171–3190, https://doi.org/10.1007/s00382-016-3019-5, 2016.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen,
L.: Extreme sea levels on the rise along Europe's coasts, Earths Future, 5,
304–323, https://doi.org/10.1002/2016ef000505, 2017.
Wahl, T.: Sea-level rise and storm surges, relationship status:
complicated!, Environ. Res. Lett., 12, 111001, https://doi.org/10.1088/1748-9326/aa8eba, 2017.
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel,
J., and Slangen, A. B. A.: Understanding extreme sea levels for broad-scale
coastal impact and adaptation analysis, Nat. Commun., 8, 16075,
https://doi.org/10.1038/ncomms16075, 2017.
Weidemann, H.: Klimatologie der Ostseewasserstände: Eine Rekonstruktion
von 1949–2011, Dissertation Universität Hamburg, available at: https://ediss.sub.uni-hamburg.de/handle/ediss/5561 (last access: 14 January 2022), 2014.
Weisse, R. and Meinke, I.: Meeresspiegelanstieg, Gezeiten, Sturmfluten und
Seegang, in: Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und
Perspektiven, edited by: Brasseur, G. P., Jacob, D., and Schuck-Zöller, S., ISBN 978-3-662-50396-6, 2016.
Weisse, R. and Plüß, A.: Storm-related sea level variations along
the North Sea coast as simulated by a high-resolution model 1958–2002,
Ocean Dynam., 56, 16–25, https://doi.org/10.1007/s10236-005-0037-y, 2006.
Weisse, R. and von Storch, H.: Marine Climate and Climate Change, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-540-68491-6, 2010.
Weisse, R., von Storch, H., Niemeyer, H. D., and Knaack, H.: Changing North
Sea storm surge climate: An increasing hazard?, Ocean Coast. Manage., 68,
58–68, https://doi.org/10.1016/j.ocecoaman.2011.09.005, 2012.
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R.
J., Umgiesser, G., and Willems, P.: Changing extreme sea levels along
European coasts, Coast. Eng., 87, 4–14, https://doi.org/10.1016/j.coastaleng.2013.10.017, 2014.
Weisse, R., Bisling, P., Gaslikova, L., Geyer, B., Groll, N., Hortamani, M.,
Matthias, V., Maneke, M., Meinke, I., Meyer, E. M., Schwichtenberg, F.,
Stempinski, F., Wiese, F., and Wöckner-Kluwe, K.: Climate services for
marine applications in Europe, Earth Perspectives, 2, 3, https://doi.org/10.1186/s40322-015-0029-0, 2015.
Weisse, R., Grabemann, I., Gaslikova, L., Meyer, E., Tinz, B., Fery, N.,
Möller, T., Rudolph, E., Brodhagen, T., Arns, A., Jensen, J., Ulm, M.,
Ratter, B., and Schaper, J.: Extreme Nordseesturmfluten und mögliche
Auswirkungen: Das EXTREMENESS Projekt, Die Küste, 87, 39–45, https://doi.org/10.18171/1.087110, 2019.
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, 2021.
Woodworth, P. L., Flather, R. A., Williams, J. A., Wakelin, S. L., and
Jevrejeva, S.: The dependence of UK extreme sea levels and storm surges on
the North Atlantic Oscillation, Cont. Shelf Res., 27, 935–946, https://doi.org/10.1016/j.csr.2006.12.007, 2007.
Woodworth, P. L., Menendez, M., and Gehrels, W. R.: Evidence for
Century-Timescale Acceleration in Mean Sea Levels and for Recent Changes in
Extreme Sea Levels, Surv. Geophys., 32, 603–618, https://doi.org/10.1007/s10712-011-9112-8, 2011.
Woth, K., Weisse, R., and von Storch, H.: Climate change and North Sea storm
surge extremes: an ensemble study of storm surge extremes expected in a
changed climate projected by four different regional climate models, Ocean
Dynam., 56, 3–15, https://doi.org/10.1007/s10236-005-0024-3, 2006.
Zhang, K. Q., Douglas, B. C., and Leatherman, S. P.: Twentieth-century storm
activity along the US east coast, J. Climate, 13, 1748–1761, https://doi.org/10.1175/1520-0442(2000)013<1748:Tcsaat>2.0.Co;2, 2000.
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events,...
Altmetrics
Final-revised paper
Preprint