Articles | Volume 22, issue 2
Nat. Hazards Earth Syst. Sci., 22, 617–637, 2022
https://doi.org/10.5194/nhess-22-617-2022
Nat. Hazards Earth Syst. Sci., 22, 617–637, 2022
https://doi.org/10.5194/nhess-22-617-2022
Research article
 | Highlight paper
25 Feb 2022
Research article  | Highlight paper | 25 Feb 2022

Multilayer modelling of waves generated by explosive subaqueous volcanism

Matthew W. Hayward et al.

Related authors

Potential tsunami hazard of the southern Vanuatu Subduction Zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-157,https://doi.org/10.5194/nhess-2022-157, 2022
Preprint under review for NHESS
Short summary
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021,https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Assessing transportation vulnerability to tsunamis: utilising post-event field data from the 2011 Tōhoku tsunami, Japan, and the 2015 Illapel tsunami, Chile
James H. Williams, Thomas M. Wilson, Nick Horspool, Ryan Paulik, Liam Wotherspoon, Emily M. Lane, and Matthew W. Hughes
Nat. Hazards Earth Syst. Sci., 20, 451–470, https://doi.org/10.5194/nhess-20-451-2020,https://doi.org/10.5194/nhess-20-451-2020, 2020
Short summary
SUSTAIN drilling at Surtsey volcano, Iceland, tracks hydrothermal and microbiological interactions in basalt 50 years after eruption
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019,https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Adaptive Cartesian meshes for atmospheric single-column models: a study using Basilisk 18-02-16
J. Antoon van Hooft, Stéphane Popinet, and Bas J. H. van de Wiel
Geosci. Model Dev., 11, 4727–4738, https://doi.org/10.5194/gmd-11-4727-2018,https://doi.org/10.5194/gmd-11-4727-2018, 2018
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022,https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022,https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022,https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022,https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022,https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary

Cited articles

Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011jc007646, 2012. a
Allan, A. S. R.: The Oruanui eruption: Insights into the generation and dynamics of the world's youngest supereruption, PhD thesis, Victoria University of Wellington, http://hdl.handle.net/10063/2975 (last access: 21 February 2022), 2013. a, b
Allan, A. S. R., Morgan, D. J., Wilson, C. J. N., and Millet, M.-A.: From mush to eruption in centuries: assembly of the super-sized Oruanui magma body, Contrib. Mineral. Petr., 166, 143–164, https://doi.org/10.1007/s00410-013-0869-2, 2013. a
Aman, Z., Wen-shan, Y., and Xiong-liang, Y.: Numerical simulation of underwater contact explosion, Appl. Ocean Res., 34, 10–20, https://doi.org/10.1016/j.apor.2011.07.009, 2012. a
Barker, S. J., Wilson, C. J. N., Smith, E. G. C., Charlier, B. L. A., Wooden, J. L., Hiess, J., and Ireland, T. R.: Post-supereruption magmatic reconstruction of Taupo volcano (New Zealand), as reflected in zircon ages and trace elements, J. Petrol., 55, 1511–1533, https://doi.org/10.1093/petrology/egu032, 2014. a, b
Download
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Altmetrics
Final-revised paper
Preprint