Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multilayer modelling of waves generated by explosive subaqueous volcanism
Matthew W. Hayward
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of Auckland, Auckland, Aotearoa New Zealand
Invited contribution by Matthew W. Hayward, recipient of the EGU Natural Hazards Virtual Outstanding Student and PhD candidate Presentation Awards 2021.
Colin N. Whittaker
Civil and Environmental Engineering, University of Auckland, Auckland, Aotearoa New Zealand
Emily M. Lane
NIWA Taihoro Nukurangi, Christchurch, Aotearoa New Zealand
William L. Power
GNS Science Te Pū Ao, Wellington, Aotearoa New Zealand
Stéphane Popinet
Institut Jean le Rond d'Alembert, Sorbonne Université, CNRS, Paris, France
James D. L. White
Geology Department, University of Otago, Dunedin, Aotearoa New Zealand
Related authors
Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023, https://doi.org/10.5194/nhess-23-955-2023, 2023
Short summary
Short summary
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025, https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Short summary
This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models and found that forecasts at Baring Head improved significantly due to its narrow geography, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
Tate Kimpton, Colin Whittaker, Pablo Higuera, and Liam Wotherspoon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3724, https://doi.org/10.5194/egusphere-2024-3724, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This research assesses tsunami exposure across New Zealand using detailed inundation maps for various tsunami scenarios. An efficient and accurate model highlights both urban centres and provincial regions as highly exposed, with significant impacts on buildings, infrastructure, and land. The findings provide critical understanding to help communities and decision-makers better plan for tsunamis, offering valuable insights for improving resilience and protecting assets nationwide.
Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
Preprint under review for HESS
Short summary
Short summary
River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, and Jennifer Montaño
Earth Surf. Dynam., 11, 1145–1160, https://doi.org/10.5194/esurf-11-1145-2023, https://doi.org/10.5194/esurf-11-1145-2023, 2023
Short summary
Short summary
Predicting how shorelines change over time is a major challenge in coastal research. We here have turned to deep learning (DL), a data-driven modelling approach, to predict the movement of shorelines using observations from a camera system in New Zealand. The DL models here implemented succeeded in capturing the variability and distribution of the observed shoreline data. Overall, these findings indicate that DL has the potential to enhance the accuracy of current shoreline change predictions.
Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023, https://doi.org/10.5194/nhess-23-955-2023, 2023
Short summary
Short summary
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Cited articles
Abadie, S. M., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects, J. Geophys. Res.-Oceans, 117, C05030, https://doi.org/10.1029/2011jc007646, 2012. a
Allan, A. S. R., Morgan, D. J., Wilson, C. J. N., and Millet, M.-A.: From mush to eruption in centuries: assembly of the super-sized Oruanui magma body, Contrib. Mineral. Petr., 166, 143–164,
https://doi.org/10.1007/s00410-013-0869-2, 2013. a
Aman, Z., Wen-shan, Y., and Xiong-liang, Y.: Numerical simulation of underwater contact explosion, Appl. Ocean Res., 34, 10–20,
https://doi.org/10.1016/j.apor.2011.07.009, 2012. a
Barker, S. J., Wilson, C. J. N., Smith, E. G. C., Charlier, B. L. A., Wooden,
J. L., Hiess, J., and Ireland, T. R.: Post-supereruption magmatic
reconstruction of Taupo volcano (New Zealand), as reflected in zircon ages
and trace elements, J. Petrol., 55, 1511–1533,
https://doi.org/10.1093/petrology/egu032, 2014. a, b
Barker, S. J., Van Eaton, A. R., Mastin, L. G., Wilson, C. J. N., Thompson,
M. A., Wilson, T. M., Davis, C., and Renwick, J. A.: Modeling ash dispersal
from future eruptions of Taupo supervolcano, Geochem. Geophy.
Geosy., 20, 3375–3401, https://doi.org/10.1029/2018gc008152, 2019. a
Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel, E.
R. H., Mauriohooho, K., and Charlier, B. L. A.: Taupō: an overview of New
Zealand's youngest supervolcano, New Zeal. J. Geol. Geop., 64, 1–27, https://doi.org/10.1080/00288306.2020.1792515, 2020. a
Bebbington, M. S.: Temporal-volume probabilistic hazard model for a
supervolcano: Taupo, New Zealand, Earth Planet. Sc. Lett., 536,
116141, https://doi.org/10.1016/j.epsl.2020.116141, 2020. a
Belousov, A., Voight, B., Belousova, M., and Muravyev, Y.: Tsunamis generated
by subaquatic volcanic explosions: unique data from 1996 eruption in
Karymskoye Lake, Kamchatka, Russia, Pure Appl. Geophys., 157,
1135–1143, https://doi.org/10.1007/s000240050021, 2000. a
Berny, A., Deike, L., Séon, T., and Popinet, S.: Role of all jet drops in
mass transfer from bursting bubbles, Physical Review Fluids, 5, 033605,
https://doi.org/10.1103/PhysRevFluids.5.033605, 2020. a
Bibby, H. M., Caldwell, T. G., Davey, F. J., and Webb, T. H.: Geophysical
evidence on the structure of the Taupo Volcanic Zone and its hydrothermal
circulation, J. Volcanol. Geoth. Res., 68, 29–58, https://doi.org/10.1016/0377-0273(95)00007-h, 1995. a
Cole, R. H.: Underwater Explosions, Princeton University Press, ISBN-13: 978-0486613840, 1948. a
Daramizadeh, A. and Ansari, M.: Numerical simulation of underwater explosion
near air–water free surface using a five-equation reduced model, Ocean
Eng., 110, 25–35, https://doi.org/10.1016/j.oceaneng.2015.10.003, 2015. a
Davy, B. W. and Caldwell, T. G.: Gravity, magnetic and seismic surveys of the
caldera complex, Lake Taupo, North Island, New Zealand, J. Volcanol. Geoth. Res., 81, 69–89, https://doi.org/10.1016/s0377-0273(97)00074-7, 1998. a, b
de Ronde, C. E. J., Stoffers, P., Garbe-Schönberg, D., Christenson, B. W., Jones, B., Manconi, R., Browne, P. R. L., Hissmann, K., Botz, R., Davy, B. W., Schmitt, M., and Battershill, C. N.: Discovery of active hydrothermal venting in Lake Taupo, New Zealand, J. Volcanol. Geoth. Res., 115, 257–275, https://doi.org/10.1016/s0377-0273(01)00332-8, 2002. a
Dietz, R. S. and Sheehy, M. J.: Transpacific detection of Myojin volcanic
explosions by underwater sound, Geol. Soc. Am. Bull., 65, 941–956, https://doi.org/10.1130/0016-7606(1954)65[941:tdomve]2.0.co;2, 1954. a
Dondin, F., Lebrun, J. F., Kelfoun, K., Fournier, N., and Randrianasolo, A.:
Sector collapse at Kick 'em Jenny submarine volcano (Lesser Antilles):
Numerical simulation and landslide behaviour, B. Volcanol., 74, 595–607, https://doi.org/10.1007/s00445-011-0554-0, 2012. a
Duffy, D. G.: On the generation of oceanic surface waves by underwater volcanic explosions, J. Volcanol. Geoth. Res., 50, 323–344,
https://doi.org/10.1016/0377-0273(92)90100-r, 1992. a
Egorov, Y.: Tsunami wave generation by the eruption of underwater volcano, Nat. Hazards Earth Syst. Sci., 7, 65–69, https://doi.org/10.5194/nhess-7-65-2007, 2007. a, b, c
Falvard, S., Paris, R., Belousova, M., Belousov, A., Giachetti, T., and Cuven, S.: Scenario of the 1996 volcanic tsunamis in Karymskoye Lake, Kamchatka, inferred from X-ray tomography of heavy minerals in tsunami deposits, Mar. Geol., 396, 160–170, https://doi.org/10.1016/j.margeo.2017.04.011, 2018. a
Gelman, S. E., Deering, C. D., Gutierrez, F. J., and Bachmann, O.: Evolution of the Taupo Volcanic Center, New Zealand: petrological and thermal constraints from the Omega dacite, Contrib. Mineral. Petr., 166,
1355–1374, https://doi.org/10.1007/s00410-013-0932-z, 2013. a
Glasbergen, T.: Characterization of incoming tsunamis for the design of coastal structures: A numerical study using the SWASH model, master's thesis, published by Delft University of Technology, http://resolver.tudelft.nl/uuid:ad229966-5403-432d-9a13-84a9e7fdb5bc (last accessed: 17 February 2022), 2018. a
Grilli, S. T., Harris, J. C., Shi, F., Kirby, J. T., Bakhsh, T. S. T.,
Estibals, E., and Tehranirad, B.: Numerical modeling of coastal tsunami
impact dissipation and impact, Coastal Engineering Proceedings, 1,
https://doi.org/10.9753/icce.v33.currents.9, 2012. a
Grilli, S. T., O’Reilly, C., Harris, J. C., Bakhsh, T. T., Tehranirad, B.,
Banihashemi, S., Kirby, J. T., Baxter, C. D. P., Eggeling, T., Ma, G., and Shi, F.: Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD, Nat. Hazards, 76, 705–746, https://doi.org/10.1007/s11069-014-1522-8, 2015. a
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli,
A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin, M.:
Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak
Krakatau volcano in the Sunda Straits, Indonesia, Sci. Rep., 9,
1–13, https://doi.org/10.1038/s41598-019-48327-6, 2019. a, b, c
Grilli, S. T., Zhang, C., Kirby, J. T., Grilli, A. R., Tappin, D. R., Watt, S. F. L., Hunt, J. E., Novellino, A., Engwell, S., Nurshal, M. E. M., Abdurrachman, M., Cassidy, M., Madden-Nadeau, A. L., and Day, S.: Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact, Mar. Geol., 440, 106566, https://doi.org/10.1016/j.margeo.2021.106566, 2021. a
Hallquist, J. O.: LS-DYNA3D theoretical manual, Livermore software technology
corporation Livermore, Calif., 1994. a
Hammack, J. L.: A note on tsunamis: their generation and propagation in an
ocean of uniform depth, J. Fluid Mech., 60, 769–799,
https://doi.org/10.1017/s0022112073000479, 1973. a
Hammack, J. L. and Segur, H.: The Korteweg-de Vries equation and water waves.
Part 2. Comparison with experiments, J. Fluid Mech., 65,
289–314, https://doi.org/10.1017/s002211207400139x, 1974. a
Hammack, J. L. and Segur, H.: The Korteweg-de Vries equation and water waves.
Part 3. Oscillatory waves, J. Fluid Mech., 84, 337–358,
https://doi.org/10.1017/s0022112078000208, 1978a. a
Hammack, J. L. and Segur, H.: Modelling criteria for long water waves, J. Fluid Mech., 84, 359–373, https://doi.org/10.1017/s002211207800021x, 1978b. a
Hayward, M.: Simulation of Lake Taupō explosive tsunami, TIB AV-Portal [video], https://doi.org/10.5446/52050, 2021. a
Hayward, M. W.: Multilayer modelling of waves from disturbances and explosions: Cases at laboratory-scale and field-scale at Mono Lake, California, Zenodo [code], https://doi.org/10.5281/zenodo.6125817, 2022. a
Houghton, B. F., Carey, R. J., Cashman, K. V., Wilson, C. J. N., Hobden, B. J., and Hammer, J. E.: Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: evidence from clast vesicularity, J. Volcanol. Geoth. Res., 195, 31–47, https://doi.org/10.1016/j.jvolgeores.2010.06.002, 2010. a
Illsley-Kemp, F., Barker, S. J., Wilson, C. J. N., Chamberlain, C. J.,
Hreinsdóttir, S., Ellis, S., Hamling, I. J., Savage, M. K., Mestel, E.
R. H., and Wadsworth, F. B.: Volcanic unrest at Taupō volcano in 2019:
Causes, mechanisms and implications, Geochem. Geophy. Geosy., 22, e2021GC009803, https://doi.org/10.1029/2021gc009803, 2021. a
Johnson, R. W.: Large-scale volcanic cone collapse: the 1888 slope failure of
Ritter volcano, and other examples from Papua New Guinea, B. Volcanol., 49, 669–679, https://doi.org/10.1007/bf01080358, 1987. a
Kedrinskiy, V. K.: Hydrodynamics of Explosion: Experiments and Models, Springer, ISBN: 978-3-642-06130-1, 2006. a
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P.,
Debono, S., and Charlier, H.: Experimental and numerical investigation of the
dynamics of an underwater explosion bubble near a resilient/rigid structure,
J. Fluid Mech., 537, 387–413, https://doi.org/10.1017/s0022112005005306, 2005. a
Lane, E. M., Borrero, J., Whittaker, C. N., Bind, J., Chagué-Goff, C.,
Goff, J., Goring, D., Hoyle, J., Mueller, C., Power, W. L., Reid, C. M., Williams, J. H., and Williams, S. P.: Effects of inundation by the 14th november, 2016 Kaikōura tsunami on banks Peninsula, Canterbury, New Zealand, Pure Appl. Geophys., 174, 1855–1874, https://doi.org/10.1007/s00024-017-1534-x, 2017. a
Leonard, G. S., Begg, J. G., and Wilson, C. J. N.: Geology of the Rotorua Area: Institute of Geological & Nuclear Sciences 1 : 250 000 Geological Map 5, 1 Sheet + 102 pp., GNS Science, Lower Hutt, New Zealand, ISBN: 978-0-478-19778-5, 2010. a
Li, T., Wang, S., Li, S., and Zhang, A.-M.: Numerical investigation of an
underwater explosion bubble based on FVM and VOF, Appl. Ocean Res., 74,
49–58, https://doi.org/10.1016/j.apor.2018.02.024, 2018. a
Liu, Y. L., Zhang, A. M., Tian, Z. L., and Wang, S. P.: Numerical investigation on global responses of surface ship subjected to underwater explosion in waves, Ocean Eng., 161, 277–290, https://doi.org/10.1016/j.oceaneng.2018.05.013, 2018. a
López-Herrera, J., Popinet, S., and Castrejón-Pita, A.: An adaptive
solver for viscoelastic incompressible two-phase problems applied to the
study of the splashing of weakly viscoelastic droplets, J. Non-Newton. Fluid, 264, 144–158, https://doi.org/10.1016/j.jnnfm.2018.10.012, 2019. a
López-Venegas, A. M., Horrillo, J., Pampell-Manis, A., Huérfano, V.,
and Mercado, A.: Advanced tsunami numerical simulations and energy
considerations by use of 3D–2D coupled models: The October 11, 1918, Mona
passage tsunami, Pure Appl. Geophys., 172, 1679–1698,
https://doi.org/10.1007/s00024-014-0988-3, 2015. a
Ma, G., Shi, F., and Kirby, J. T.: Shock-capturing non-hydrostatic model for
fully dispersive surface wave processes, Ocean Model., 43, 22–35,
https://doi.org/10.1016/j.ocemod.2011.12.002, 2012. a
Ma, G., Kirby, J. T., and Shi, F.: Numerical simulation of tsunami waves
generated by deformable submarine landslides, Ocean Model., 69, 146–165,
https://doi.org/10.1016/j.ocemod.2013.07.001, 2013. a
Manville, V.: Sedimentary and geomorphic responses to ignimbrite emplacement:
readjustment of the Waikato River after the AD 181 Taupo eruption, New
Zealand, J. Geol., 110, 519–541, https://doi.org/10.1086/341596, 2002. a
Manville, V., White, J. D. L., Houghton, B. F., and Wilson, C. J. N.:
Paleohydrology and sedimentology of a post–1.8 ka breakout flood from
intracaldera Lake Taupo, North Island, New Zealand, Geol. Soc. Am. Bull., 111, 1435–1447, https://doi.org/10.1130/0016-7606(1999)111<1435:pasoap>2.3.co;2, 1999. a
Mastin, L. G. and Witter, J. B.: The hazards of eruptions through lakes and
seawater, J. Volcanol. Geoth. Res., 97, 195–214,
https://doi.org/10.1016/s0377-0273(99)00174-2, 2000. a
Mirchina, N. and Pelinovsky, E.: Estimation of underwater eruption energy based on tsunami wave data, Nat. Hazards, 1, 277–283,
https://doi.org/10.1007/bf00137232, 1988. a
Nomanbhoy, N. and Satake, K.: Generation mechanism of tsunamis from the 1883
Krakatau eruption, Geophys. Res. Lett., 22, 509–512, https://doi.org/10.1029/94gl03219, 1995. a
Pakoksung, K., Suppasri, A., and Imamura, F.: Probabilistic Tsunami Hazard
Analysis of Inundated Buildings Following a Subaqueous Volcanic Explosion
Based on the 1716 Tsunami Scenario in Taal Lake, Philippines, Geosciences, 11, 92, https://doi.org/10.3390/geosciences11020092, 2021. a
Paris, R.: Source mechanisms of volcanic tsunamis, Philos. T. Roy. Soc. A, 373, 20140380, https://doi.org/10.1098/rsta.2014.0380, 2015. a
Paris, R. and Ulvrová, M.: Tsunamis generated by subaqueous volcanic
explosions in Taal Caldera Lake, Philippines, B. Volcanol., 81, 14, https://doi.org/10.1007/s00445-019-1272-2, 2019. a, b, c, d
Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L., and Ulvrova, M.: Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea), Nat. Hazards, 70, 447–470, https://doi.org/10.1007/s11069-013-0822-8, 2014. a
Paris, R., Ulvrová, M., Selva, J., Brizuela, B., Costa, A., Grezio, A.,
Lorito, S., and Tonini, R.: Probabilistic hazard analysis for tsunamis
generated by subaqueous volcanic explosions in the Campi Flegrei caldera,
Italy, J. Volcanol. Geoth. Res., 379, 106–116,
https://doi.org/10.1016/j.jvolgeores.2019.05.010, 2019. a, b, c
Petrov, N. V. and Schmidt, A. A.: Multiphase phenomena in underwater explosion, Exp. Therm. Fluid Sci., 60, 367–373,
https://doi.org/10.1016/j.expthermflusci.2014.05.008, 2015. a
Pinkston, J., Skinner, F. W., and Strange, J. N.: Results of Surface Wave
Experiments: Mono Lake Explosion Test Series, 1965, Waterways Experiment
Station, 1970. a
Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838–5866,
https://doi.org/10.1016/j.jcp.2009.04.042, 2009. a
Popinet, S.: Quadtree-adaptive tsunami modelling, Ocean Dynam., 61,
1261–1285, https://doi.org/10.1007/s10236-011-0438-z, 2011. a
Popinet, S.: Basilisk, Darcs [code], http://basilisk.fr/ (last access:
9 April 2021), 2013. a
Popinet, S.: A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys., 302, 336–358, https://doi.org/10.1016/j.jcp.2015.09.009, 2015. a
Popinet, S.: Numerical models of surface tension, Annu. Rev. Fluid Mech., 50, 49–75, https://doi.org/10.1146/annurev-fluid-122316-045034, 2018. a
Potter, S. H., Scott, B. J., Jolly, G. E., Johnston, D. M., and Neall, V. E.: A catalogue of caldera unrest at Taupo Volcanic Centre, New Zealand, using the volcanic unrest index (VUI), B. Volcanol., 77, 1–28,
https://doi.org/10.1007/s00445-015-0956-5, 2015. a
Pyle, D. M.: Chapter 13 – Sizes of Volcanic Eruptions, in: The Encyclopedia of Volcanoes (Second Edition), edited by: Sigurdsson, H., Academic Press, Amsterdam, 2nd edn., 257–264, https://doi.org/10.1016/B978-0-12-385938-9.00013-4, 2015. a
Raumann, C. G., Stine, S., Evans, A., and Wilson, J.: Digital bathymetric model of mono lake, california, Miscellaneous field studies map MF-2393, 2002. a
Rowe, D. K., Shankar, U., James, M., and Waugh, B.: Use of GIS to predict
effects of water level on the spawning area for smelt, Retropinna retropinna,
in Lake Taupo, New Zealand, Fisheries Manag. Ecol., 9,
205–216, https://doi.org/10.1046/j.1365-2400.2002.00298.x, 2002. a
Ruffini, G., Heller, V., and Briganti, R.: Numerical modelling of
landslide-tsunami propagation in a wide range of idealised water body
geometries, Coast. Eng., 153, 103518,
https://doi.org/10.1016/j.coastaleng.2019.103518, 2019. a
Sato, H. and Taniguchi, H.: Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: Implications for energy partitioning, Geophys. Res. Lett., 24, 205–208,
https://doi.org/10.1029/96gl04004, 1997. a, b
Schambach, L., Grilli, S. T., Kirby, J. T., and Shi, F.: Landslide tsunami
hazard along the upper US East Coast: effects of slide deformation, bottom
friction, and frequency dispersion, Pure Appl. Geophys., 176,
3059–3098, https://doi.org/10.1007/s00024-018-1978-7, 2019. a
Schambach, L., Grilli, S. T., and Tappin, D. R.: New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source, Front. Earth Sci., 8, 598839, https://doi.org/10.3389/feart.2020.598839, 2021. a, b
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and
Melville, B. W.: Waves generated by discrete and sustained gas eruptions with implications for submarine volcanic tsunamis, Geophys. Res. Lett., 48, e2021GL094539, https://doi.org/10.1029/2021GL094539, 2021a. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and
Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous
volcanic eruptions. Part 1: Free surface disturbances, J. Geophys. Res.-Oceans, 126, e2020JC016588, https://doi.org/10.1029/2020JC016588, 2021b. a
Shen, Y., Whittaker, C. N., Lane, E. M., White, J. D. L., Power, W., and
Nomikou, P.: Laboratory experiments on tsunamigenic discrete subaqueous
volcanic eruptions. Part 2: Properties of generated waves, J. Geophys. Res.-Oceans, 126, e2020JC016587, https://doi.org/10.1029/2020jc016587, 2021c. a
Smith, M. S. and Shepherd, J. B.: Preliminary investigations of the tsunami
hazard of Kick'em Jenny submarine volcano, Nat. Hazards, 7, 257–277,
https://doi.org/10.1007/bf00662650, 1993. a
Smith, M. S. and Shepherd, J. B.: Tsunami waves generated by volcanic
landslides: an assessment of the hazard associated with Kick’em Jenny,
Geol. Soc. Spec. Publ., 110, 115–123, https://doi.org/10.1144/gsl.sp.1996.110.01.09, 1996. a
Sutton, A. N., Blake, S., Wilson, C. J. N., and Charlier, B. L.: Late
Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo
volcanic centre, New Zealand, J. Geol. Soc., 157, 537–552, https://doi.org/10.1144/jgs.157.3.537, 2000. a
Torsvik, T., Paris, R., Didenkulova, I., Pelinovsky, E., Belousov, A., and Belousova, M.: Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia, Nat. Hazards Earth Syst. Sci., 10, 2359–2369, https://doi.org/10.5194/nhess-10-2359-2010, 2010. a, b, c, d
Ulvrová, M., Paris, R., Kelfoun, K., and Nomikou, P.: Numerical simulations of tsunamis generated by underwater volcanic explosions at Karymskoye lake (Kamchatka, Russia) and Kolumbo volcano (Aegean Sea, Greece), Nat. Hazards Earth Syst. Sci., 14, 401–412, https://doi.org/10.5194/nhess-14-401-2014, 2014. a, b, c, d
Valentine, G. A. and White, J. D.: Revised conceptual model for maar-diatremes: Subsurface processes, energetics, and eruptive products, Geology, 40, 1111–1114, https://doi.org/10.1130/g33411.1, 2012. a
Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H.,
Southon, J., Barrell, D. J. A., Wilson, C. J. N., McGlone, M. S., Allan, A.
S. R., Almond, P. C., Petchey, F., Dabell, K., Dieffenbacher-Krall, A. C., and Blaauw, M.: A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand, Quaternary Sci. Rev., 74, 195–201, https://doi.org/10.1016/j.quascirev.2012.11.006, 2013. a
van Hooft, J. A., Popinet, S., van Heerwaarden, C. C., van der Linden, S.
J. A., de Roode, S. R., and van de Wiel, B. J. H.: Towards adaptive grids for
atmospheric boundary-layer simulations, Bound.-Lay. Meteorol., 167,
421–443, https://doi.org/10.1007/s10546-018-0335-9, 2018. a
Wang, S.-P., Zhang, A.-M., Liu, Y.-L., Zhang, S., and Cui, P.: Bubble dynamics and its applications, J. Hydrodyn., 30, 975–991,
https://doi.org/10.1007/s42241-018-0141-3, 2018. a
Ward, S. N. and Asphaug, E.: Asteroid impact tsunami: a probabilistic hazard
assessment, Icarus, 145, 64–78, https://doi.org/10.1006/icar.1999.6336, 2000. a
Williams, R., Rowley, P., and Garthwaite, M. C.: Reconstructing the Anak
Krakatau flank collapse that caused the December 2018 Indonesian tsunami,
Geology, 47, 973–976, https://doi.org/10.1130/g46517.1, 2019.
a
Wilson, C. J. N.: Stratigraphy, chronology, styles and dynamics of late
Quaternary eruptions from Taupo volcano, New Zealand, Philos. T. Roy. Soc. A, 343, 205–306, https://doi.org/10.1098/rsta.1993.0050, 1993. a, b, c
Wilson, C. J. N.: The 26.5 ka Oruanui eruption, New Zealand: an introduction
and overview, J. Volcanol. Geoth. Res., 112, 133–174, https://doi.org/10.1016/s0377-0273(01)00239-6, 2001. a
Wilson, C. J. N. and Charlier, B. L. A.: Rapid rates of magma generation at
contemporaneous magma systems, Taupo Volcano, New Zealand: insights from
U–Th model-age spectra in zircons, J. Petrol., 50, 875–907,
https://doi.org/10.1093/petrology/egp023, 2009. a
Wilson, C. J. N. and Walker, G. P. L.: The Taupo eruption, New Zealand I.
General aspects, Philos. T. Roy. Soc. A, 314, 199–228,
https://doi.org/10.1098/rsta.1985.0019, 1985. a
Wilson, C. J. N., Blake, S., Charlier, B. L. A., and Sutton, A. N.: The 26.5 ka Oruanui eruption, Taupo volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body, J. Petrol., 47, 35–69, https://doi.org/10.1093/petrology/egi066, 2006. a
Wilson, C. J. N., Gravley, D. M., Leonard, G. S., and Rowland, J. V.: Volcanism in the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls, Studies in volcanology: the legacy of George Walker, Special Publications of IAVCEI, 2, 225–247, https://doi.org/10.1144/IAVCEl002.12, 2009. a
Xu, L.-Y., Wang, S.-P., Liu, Y.-L., and Zhang, A.-M.: Numerical simulation on
the whole process of an underwater explosion between a deformable seabed and
a free surface, Ocean Eng., 219, 108311,
https://doi.org/10.1016/j.oceaneng.2020.108311, 2020. a
Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D., and Satake, K.: The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption, Sci. Adv., 6, eaaz1377,
https://doi.org/10.1126/sciadv.aaz1377, 2020. a
Zijlema, M., Stelling, G., and Smit, P.: SWASH: An operational public domain
code for simulating wave fields and rapidly varied flows in coastal waters,
Coast. Eng., 58, 992–1012, https://doi.org/10.1016/j.coastaleng.2011.05.015, 2011. a
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases...
Altmetrics
Final-revised paper
Preprint