Articles | Volume 22, issue 11
https://doi.org/10.5194/nhess-22-3751-2022
https://doi.org/10.5194/nhess-22-3751-2022
Research article
 | 
22 Nov 2022
Research article |  | 22 Nov 2022

Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides

Kamal Rana, Nishant Malik, and Ugur Ozturk

Related authors

Preface: Estimating and predicting natural hazards and vulnerabilities in the Himalayan region
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024,https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022,https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021,https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Optimal design of hydrometric station networks based on complex network analysis
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020,https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Effects of finite source rupture on landslide triggering: the 2016 Mw 7.1 Kumamoto earthquake
Sebastian von Specht, Ugur Ozturk, Georg Veh, Fabrice Cotton, and Oliver Korup
Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019,https://doi.org/10.5194/se-10-463-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024,https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Optimizing Rainfall-Triggered Landslide Thresholds to Warning Daily Landslide Hazard in Three Gorges Reservoir Area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-109,https://doi.org/10.5194/nhess-2024-109, 2024
Revised manuscript accepted for NHESS
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary

Cited articles

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., and Ziegelmeier, L.: Persistence images: A stable vector representation of persistent homology, J. Mach. Learn. Res., 18, 1–35, 2017. a
Albawi, S., Mohammed, T. A., and Al-Zawi, S.: Understanding of a convolutional neural network, in: 2017 IEEE International Conference on Engineering and Technology (ICET), 21–23 August 2017, Antalya, Turkey, 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308186, 2017. a, b
Amato, G., Palombi, L., and Raimondi, V.: Data-driven classification of landslide types at a national scale by using Artificial Neural Networks, Int. J. Appl. Earth Obs. Geoinf., 104, 102549, https://doi.org/10.1016/j.jag.2021.102549, 2021. a
Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M., Niner, E., Pawloski, G., Psihas, F., Sousa, A., and Vahle, P.: A convolutional neural network neutrino event classifier, J. Instrument., 11, P09001, https://doi.org/10.1088/1748-0221/11/09/P09001, 2016. a
Behling, R., Roessner, S., Segl, K., Kleinschmit, B., and Kaufmann, H.: Robust automated image co-registration of optical multi-sensor time series data: Database generation for multi-temporal landslide detection, Remote Sens., 3, 2572–2600, 2014. a
Download
Short summary
The landslide hazard models assist in mitigating losses due to landslides. However, these models depend on landslide databases, which often have missing triggering information, rendering these databases unusable for landslide hazard models. In this work, we developed a Python library, Landsifier, consisting of three different methods to identify the triggers of landslides. These methods can classify landslide triggers with high accuracy using only a landslide polygon shapefile as an input.
Altmetrics
Final-revised paper
Preprint