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Abstract. Landslide hazard models aim at mitigating land-
slide impact by providing probabilistic forecasting, and the
accuracy of these models hinges on landslide databases for
model training and testing. Landslide databases at times lack
information on the underlying triggering mechanism, making
these inventories almost unusable in hazard models. We de-
veloped a Python-based unique library, Landsifier, that con-
tains three different machine-Learning frameworks for as-
sessing the likely triggering mechanisms of individual land-
slides or entire inventories based on landslide geometry. Two
of these methods only use the 2D landslide planforms, and
the third utilizes the 3D shape of landslides relying on an
underlying digital elevation model (DEM). The base method
extracts geometric properties of landslide polygons as a fea-
ture space for the shallow learner – random forest (RF).
An alternative method relies on landslide planform images
as an input for the deep learning algorithm – convolutional
neural network (CNN). The last framework extracts topo-
logical properties of 3D landslides through topological data
analysis (TDA) and then feeds these properties as a feature
space to the random forest classifier. We tested all three inter-
changeable methods on several inventories with known trig-
gers spread over the Japanese archipelago. To demonstrate
the effectiveness of developed methods, we used two testing
configurations. The first configuration merges all the avail-
able data for the k-fold cross-validation, whereas the sec-
ond configuration excludes one inventory during the train-
ing phase to use as the sole testing inventory. Our geometric-
feature-based method performs satisfactorily, with classifi-
cation accuracies varying between 67 % and 92 %. We have

introduced a more straightforward but data-intensive CNN
alternative, as it inputs only landslide images without man-
ual feature selection. CNN eases the scripting process with-
out losing classification accuracy. Using topological features
from 3D landslides (extracted through TDA) in the RF clas-
sifier improves classification accuracy by 12 % on average.
TDA also requires less training data. However, the landscape
autocorrelation could easily bias TDA-based classification.
Finally, we implemented the three methods on an inventory
without any triggering information to showcase a real-world
application.

1 Introduction

Landslides are gravitational movements of rock and debris
that pose a severe threat to the human environment (De-
picker et al., 2021). Hazard models are developed to fore-
cast landslides or to aid in understanding landslide processes
to mitigate their undesired consequences (Lombardo et al.,
2020). These models commonly rely on mapped landslides
to assess the relevant landslide causes in combination with
landslide triggers, i.e., earthquake and rainfall (Lombardo
and Tanyas, 2021; Ozturk et al., 2021; Marin et al., 2020).
However, many historical landslide inventories lack informa-
tion about the triggering mechanism, decreasing their poten-
tial utility in models (Bíl et al., 2021; Martha et al., 2021).
More recent semi-automated satellite-based landslide map-
pers also often disregard the triggering information (Behling
et al., 2014, 2016; Ghorbanzadeh et al., 2019), except the
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event-based inventories–landslide-mapping campaigns fol-
lowing a precursory triggering event such as a strong earth-
quake (Stumpf and Kerle, 2011; Gorum et al., 2014). Using
landslide inventories with missing triggers could introduce
biases as it is possible to accidentally use an earthquake-
triggered inventory to assess rainfall-induced landslide haz-
ards and vice versa. Hence, classifying the trigger of entire
landslide inventories or mapped individual landslides would
enhance the usability of newly acquired and historical inven-
tories in landslide models (Guzzetti et al., 2012).

Landslide planforms are used to estimate the mobilized
landslide volume, for example, estimating the potential sedi-
ment budget of a large-landslide-triggering event (Malamud
et al., 2004; Fan et al., 2012). This type of scaling rela-
tionship between the area of landslide planforms to mobi-
lized landslide volume allows comparing the impact of dif-
ferent landslide triggers, such as human versus earthquakes,
in terms of the landslide-triggered influence on landscape
(Tanyaş et al., 2022). However, this area–volume scaling de-
pends on the triggering mechanism of landslides. For exam-
ple, an earthquake-triggered landslide has a different area–
volume relationship than a rainfall-induced landslide. Hence,
extracting the landslide trigger information could enhance
the estimation capacity of landslide volumes (Moreno et al.,
2022) and also help predict the size of co-seismic landslides
for a given earthquake (Lombardo et al., 2021). Also, when
the exact trigger is known, observed landslides help assess
earthquakes’ ground motion patterns when no seismic obser-
vation is available (Lombardo et al., 2019).

Landslides with the same trigger morphologically clus-
ter, for example, covering narrowly the available statistical
variability of hillslope angles in a study region (e.g., Jones
et al., 2021), and, thus, could have characteristic shapes re-
flecting their triggering mechanism, for instance, by having
similar area and perimeter ratio or size (Taylor et al., 2018;
Samia et al., 2017). We developed a binary classifier that
groups landslides either as earthquake-triggered or rainfall-
induced based on this hypothesis (Rana et al., 2021). This
initial model demonstrated that the landslides with an identi-
cal trigger indeed exhibit similar geometric properties. Thus,
finding the trigger of landslides is a classification problem,
and one can employ machine-learning tools to carry out au-
tomated classification of landslide triggers. In each classi-
fication problem, the principal idea is to construct a classi-
fier based on training samples and evaluate its performance
on testing samples. The classifier predicts the class y corre-
sponding to the input sample x. These input samples x can
be one-dimensional vectors or images; for instance, in a soil
classification problem (e.g., Bhattacharya and Solomatine,
2006), x is a one-dimensional vector, and in any image clas-
sification problem, x is an image (2D or multi-dimensional
matrix) (Domingos, 2012).

Our preliminary model (Rana et al., 2021) can classify
landslide triggers by only using the geometric properties of
landslide polygons. Here, we introduce two additional meth-

ods for landslide trigger classification. In one new method,
we treated landslide polygons as images, and these images
are fed as the sole predictor to a deep learner – convolutional
neural networks (CNNs). Treating landslide polygons as im-
ages eases the workflow as an image already resembles some
of the geometric features of the first method. Both of these
methods rely on two-dimensional (2D) landslide planforms,
ignoring the three-dimensional (3D) shapes of real-world
landslides. In another approach, we included the 3D shapes
of landslides by incorporating the elevation of landslides via
a digital elevation model (DEM). In this approach, we ex-
tracted the topological features of these 3D shapes using a re-
cently developed technique known as topological data anal-
ysis (TDA). These topology-based features are input to the
decision-tree-based shallow learner as in the first method.
We included the TDA-based model considering its potential
to handle other relevant classification problems in future ver-
sions of our tool, e.g., classifying landslide types (Cruden
and Varnes, 1996; Varnes, 1978). The above-listed methods
could be used independently following similar script streams.

This study also introduces a new Python library, Landsi-
fier, that classifies the trigger of landslides, individually or as
a whole, in an inventory where the landslide source mech-
anism is undocumented. Landsifier is the first-ever library
built for estimating likely triggers of mapped landslides; the
methods used in this library to find landslides’ triggers are
new. Two of these methods are introduced in this paper for
the first time, while the third was published in our prelimi-
nary work (Rana et al., 2021). The library consists of three
different machine-learning-based methods mentioned above;
we elaborate on these methods in Sect. 3. Various function-
alities of the library are described in Sect. S2, where we
also list several supporting functions to calculate landslide
polygons’ geometric properties, convert landslide polygons’
shape to a binary-scale image, download a digital elevation
model (DEM) corresponding to inventory location, and eval-
uate the diagnostic performance of the final classification. To
demonstrate the efficacy of the developed methods, we apply
each to six landslide inventories with known triggers spread
over the Japanese archipelago and document our findings in
Sect. 4. In Sect. 6, we further highlight the weaknesses of
each method to ease choosing the suitable classifier for the
various applications.

2 Data

In this work, we used seven landslide inventories spread
over the Japanese archipelago (Fig. 1). The trigger mech-
anism of six out of seven landslide inventories is known
(Fig. 1a–f), whereas the last inventory has no documented
triggering information (Fig. 1g). We use the last inven-
tory to demonstrate the practical deployment of the final
model as this case represents the model’s real-world us-
age. Out of six landslide inventories, three inventories are
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Figure 1. The seven landslide inventories used in this work are spread over Japan, and their geographical locations are shown on the country’s
map at the center of the figure. Panels (a)–(g) show the subset of landslide polygons highlighted in red on local hillshades. (a–c) Rainfall-
induced inventories; (d–f) coseismic inventories; (g) undocumented “Kumamoto unspecified” inventory.

earthquake-triggered (Fig. 1d–f) and are associated with the
2018 Mw 6.6 Hokkaido Eastern Iburi (3256 landslides), the
2008 Mw 6.9 Iwate–Miyagi Nairiku (4160 landslides), and
the 2004 Mw 6.6 Niigata (8780 landslides). The remaining
three are rainfall-induced (Fig. 1a–c), and these are associ-
ated with the 2017 Fukuoka northern-Kyushu torrential rain-
fall disaster (1924 landslides); the 2018 Saka, Japan, floods
(2817 landslides); and the Kumamoto inventory (5564 land-
slides) that is collected over 1992–2012, which is not associ-
ated with any particular event.

The Geospatial Information Authority of Japan (GSI)
is the source of the Hokkaido Eastern Iburi earthquake
(September 2018), Fukuoka rainfall (July 2017), and Saka
rainfall (July 2018) inventories. The source of the other two
coseismic inventories – Iwata and Niigata – is the global
repository created by Schmitt et al. (2017). The remaining
two inventories from the Kumamoto region are provided by
Japan’s National Research Institute for Earth Science and
Disaster Resilience (NIED). The first inventory from Ku-
mamoto is associated with rainfall (Fig. 1b), whereas the sec-
ond inventory is without any triggering information (Fig. 1g).
Hereafter, we refer to this second inventory as “Kumamoto
unspecified” (it consists of 612 landslides with unknown trig-
gers).

The TDA-based method uses elevation data to obtain the
3D shapes of landslides from their 2D planforms. We use
the Shuttle Radar Topography Mission (SRTM) digital el-
evation model (DEM) data that come with a spatial reso-
lution of approximately 30 m. The SRTM data are freely
available from https://www2.jpl.nasa.gov/srtm/ (last access:
17 November 2022) by manually selecting the tiles which
correspond to topographic quadrangles. Each tile covers 1◦

of both the latitude and longitude region. The Landsifier li-
brary automatically downloads the corresponding tile(s) cov-
ering the region of the landslide inventory used (explained
further in Sect. S2).

3 Methods

In our preliminary study (Rana et al., 2021), we introduced
a method that can classify landslide triggers by only using
geometric features of landslide planforms. This initial model
constitutes the first method in the Landsifier library, and for
continuity, we briefly describe it in section 3.1. In this pa-
per, we further diversify our initial model and introduce two
new methods. One new method is based on the topological
features of 3D shapes of landslides computed using TDA,
described in Sect. 3.2. The other new method uses CNN to
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Figure 2. Sample landslide planforms from all six known triggered inventories. (a) Earthquake-triggered inventories. (b) Rainfall-induced
inventories. (c) Geometric properties of the landslide polygon (from left to right): width (W ) of the minimum area bounding box fitted to the
polygon, convex-hull-based measure (Ch), minor (sm) and major (SM) axis of an ellipse fitted to the polygon having area A and perimeter P .

carry out an image-based classification of landslide triggers;
see Sect. 3.3. We anticipate that the variety of methods and
corresponding Python library presented here will allow re-
searchers to perform this analysis seamlessly.

3.1 First method: geometric-feature-based
classification

In the first method, we used the geometric properties of
2D landslide polygons for the classification. We explored
several geometric properties of landslide polygons (e.g.,
Fig. 2). Using a combination of feature selection meth-
ods and feature importance analysis, for instance, removing
highly correlated features, we choose the seven geometric
properties of polygons that lead to optimum results. These
geometric features are area A; perimeter P ; convex-hull-
based measure Ch =

A
Ac

, where Ac is the area of the convex
hull fitted to the polygon (hereafter, we will referCh as a con-
vex hull measure); the ratio of area to perimeter A

P
; the width

of the minimum area bounding box W ; minor axis sm; and
eccentricity of the fitted ellipse e having area A and perime-
ter P . All these seven geometric features are calculated us-
ing the Python library shapely (Gillies, 2013). The feature
vector ([A, P , Ch, W , sm, A

P
, e]) is the input variable to

a machine-learning algorithm – random forest (described in
the Sect. S1 in the Supplement). Further details of the method
can be found in Rana et al. (2021).

In Rana et al. (2021), we analyzed the distributions of geo-
metric properties of the earthquake and rainfall polygons and
found geometric dissimilarities between earthquake and rain-
fall polygons’ shapes. Earthquakes polygons are more likely
to have a compact shape (as measured by convex-hull-based
measure) than rainfall polygons. Moreover, earthquake poly-
gons have more chances to have a larger area (A), perime-
ter (P ), the ratio of the area to the perimeter (A

P
), and min-

imum width (W ) than rainfall polygons. In contrast, rainfall
polygons have a larger eccentricity (e) than earthquake poly-
gons of an ellipse fitted to the polygon. Rainfall polygons
are more sinuous in shape, leading to the smaller minor axis
and larger major axis leading to the larger eccentricity of the
ellipse fitted to the polygon (Rana et al., 2021).

3.2 Second method: topological-feature-based
classification

In the second method, we used the 3D shapes of land-
slides by incorporating the elevation data of the landslide
regions. We extracted geometrical and topological proper-
ties of a landslides’ 3D shapes using topological data anal-
ysis (TDA) and then used these properties as a feature space
for the machine-learning algorithm – random forest (de-
scribed in Sect. S1). The topological properties of the land-
slide’s 3D shape extracted using DEM provide additional in-
sights into the landslide triggers, which might further im-
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Figure 3. Sample 3D landslides from six known triggered inventories. (a) Flowchart of conversion of 2D landslide planforms to 3D landslide
shape. (b) Earthquake-triggered 3D landslide samples; (c) rainfall-induced landslide 3D samples. The 2D landslide planforms converted to
3D landslide shapes by using the elevation of landslides through a digital elevation model (DEM).

prove the accuracy of the landslide trigger classification.
We converted the 2D landslide polygons to 3D landslide
polygons using interpolation of 30 m elevation data (DEM)
around the bounding box of landslides. We took only the ele-
vation data within the landslide polygons to preserve the ge-
ometric shape of the landslides (Fig. 3). We explored various
TDA features to quantify the 3D shapes of landslides using
the Python library giotto-tda (Tauzin et al., 2021). Using ran-
dom forest feature importance analysis, we selected the top
10 most relevant features, as irrelevant features increase the
complexity of the model and are ineffective in improving the
classification results. These selected relevant features consti-
tute the input variables for the random forest classifier.

Topological data analysis (TDA) provides a gamut of met-
rics to quantify the multidimensional shape of data by apply-
ing techniques of algebraic topology (Carlsson, 2009). These
metrics could also serve as a feature space for machine-
learning algorithms to solve classification problems, e.g.,
the classification of manifolds or complex geometric shapes.
The central idea of TDA is persistent homology that identi-
fies persistent geometric features in the data; it uses simpli-
cial complexes to extract topological features from the point
cloud data. A simplicial complex is a collection of simplexes

and building blocks of higher-dimensional counterparts of a
graph. For example, a point is a zero-dimensional simplex,
an edge which is a connection between two points is a one-
dimensional simplex, and a filled triangle formed by connect-
ing three non-linear points is a two-dimensional simplex. In
general, an n-dimensional simplex is formed by connecting
n+ 1 affinely independent points (Munch, 2017; Garin and
Tauzin, 2019).

Generally, in TDA, one constructs a simplicial complex
by the Vietoris–Rips complex method, where one chooses
a parameter ε > 0 to find the structure present in the data.
For each pair of points (x, y) in the point cloud data, add
an edge between x and y if the Euclidean distance (d) be-
tween x and y is less than ε. For an n-dimensional simplex,
the distance between each pair of n+ 1 affinely independent
points should be less than ε(d(x,y) < ε). Each value of ε
provides a set of simplexes representing a data structure. Dif-
ferent values of ε could lead to a different structure in data.
To get the complete information about the structures present
in the data, all the possible values of ε are used, creating a se-
quence of simplicial complex (this process is called filtration,
Fig. 4a–g).
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Figure 4. An example of using persistence homology: the data points are sampled from a noisy circle. (a–g) As the disk’s radius increases ( ε2 ),
persistence homology captures various structures in the data. (h) The origin (birth) and disappearance (death) of loops and connected com-
ponents is shown in the persistence diagram. The biggest loop in the noisy circle data is captured by the data points shown with the blue
dotted line in panel (h).

Homology measures particular structures present in the
data providing valuable information about the geometrical
and topological properties of the data. For example, zero-
dimensional homology captures connected components or
clusters, one-dimensional homology measures loops, and
two-dimensional homology measures voids (Munch, 2017;
Hensel et al., 2021). Structures like connected components,
holes, and voids originate (birth) and disappear (death) with
a change in the value of ε. A persistence diagram, shown
in Fig. 4h, documents the birth and death information of
these structures. Using the birth and death information of
clusters, holes, and voids present in the persistence diagram,
we can calculate several topological features of the data. We
used various topological features to quantify the shape of
data such as persistence entropy, average lifetime, number
of points, Betti-curve-based measure, persistence-landscape-
curve-based measure, Wasserstein amplitude, bottleneck am-
plitude, heat-kernel-based measure, and landscape-image-

based measure. Each topological metric considers different
homology dimensions separately.

The above-mentioned topological features can be ex-
plained using two objects – one the set of the {(bi,di)}i=Ni=1
birth–death pair in the persistence diagram, where i and
N are the birth–death pair index and the total number of
birth–death pairs respectively, and two the elements of the
lifetime vector [li]i=Ni=1 , calculated as difference between
death and life of the (bi , di) pair (li = di − bi). Then the
number of points is the length of the lifetime vector, whereas
Wasserstein and bottleneck amplitudes are the p-norm and
∞-norm of the lifetime vector, respectively. Average lifetime
and persistence entropy are the average and Shannon entropy
of the lifetime vector.

Betti- and persistence-landscape-curve-based features are
calculated from the p-norm of discretized Betti and persis-
tence landscape curves. The Betti curve is a function B(ε)
that maps persistence diagram to an integer-valued curve,
B(ε) : R→ Z; it counts the number of (birth, death) pairs at
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Figure 5. Sample input images for the image-based classification. (a) Flowchart of converting landslide planforms to a landslide polygon
image. (b) Earthquake-triggered landslide image samples. (c) Rainfall-induced landslide image samples.

ε that satisfy the condition bi < ε < di (Garin and Tauzin,
2019), whereas persistence landscape curve is a function
λ(k,ε) : R→ R+, where λ(k,ε)= kmax

{
fbi ,di (ε)

}i=n
i=1 , and

kmax is the kth largest value of the set of functions defined
by fbi ,di (ε)=max {0,min(ε− bi,di − ε)} for each (bi , di)
pair (Bubenik and Dłotko, 2017).

The heat-kernel-based feature is calculated using the p-
norm of the 2D function discretization obtained using the
heat kernel on the persistence diagram. The heat kernel trans-
forms the persistence diagram into a function of R2 obtained
by placing a Gaussian kernel with standard deviation σ for
each (birth, death) pair and negative of Gaussian kernel with
the same standard deviation in the mirror image of (birth,
death) pairs across the diagonal (Reininghaus et al., 2015),
whereas the persistence-image-based measure is calculated
using the p-norm of 2D function discretization obtained us-
ing the weighted Gaussian kernel on the birth-persistence di-
agram. The weighted Gaussian kernel transforms the birth-
persistence diagram into a function of R2 obtained by plac-
ing a weighted Gaussian kernel with standard deviation σ for
each (birth, death minus birth) pair in the birth-persistence di-
agram (Adams et al., 2017). In the birth-persistence diagram,
the y axis represents the lifetime (death–birth) information of
each (birth, death) pair.

3.3 Third method: image-based classification

In the third method, we used landslide planform images as
input to convolutional neural networks (CNN) for the classi-
fication. We converted landslide polygons into binary images
in a way that preserves the relative shape and structure of
the polygons (Fig. 5). Then, using CNN for landslide trigger
classification is straightforward via a simple CNN architec-
ture with three convolutional layers and two fully connected
layers. The input to CNN is a 64×64 binary pixel image, and
the output is the probability of the input image belonging to
one of the landslide trigger classes.

Convolutional neural networks (CNNs) are a class of arti-
ficial neural networks that are effective for various applica-
tions, such as image classification and object detection (Li
et al., 2014; Guo et al., 2017; Albawi et al., 2017). The CNN
architecture for classification problems consists of the input,
hidden, and output layers (as shown in Fig. 6). The input
layer consists of the input data to CNN, an image of a land-
slide polygon in our application. The hidden layer primarily
contains convolutional layers, max-pooling layers, and fully
connected layers. Finally, the output layer provides the prob-
ability of input data belonging to an output class – rainfall-
induced or coseismic.

Convolutional layers are the fundamental component of
CNN that uses kernels (matrix of learnable parameters) to
perform convolutions operations on the input. The resulting
output of the convolution operation is called a feature map
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Figure 6. The figure shows the convolutional neural network (CNN) architecture used in the image-based method. The input of CNN is a
binary-scale landslide image, and the output of CNN is the probability of a landslide image belonging to an earthquake- or rainfall-induced
class.

that learns the feature representation of the input data (Ya-
mashita et al., 2018). Each neuron in a feature map captures
the antecedent layer’s local characteristics by convolution of
kernels with the previous layer’s feature maps (Guo et al.,
2017). However, increasing convolutional layers could lead
to over-parametrization and increase model complexity and,
thus, overfitting. One of the ways to avoid the issue is to use
pooling layers that reduce the feature map dimension and the
number of neurons in the output layer of CNNs (Yamashita
et al., 2018; Guo et al., 2017). We used max-pooling layers
of n×n (n= 2) size that take a patch of size n×n from a fea-
ture map and produce one value corresponding to that patch,
and the pooling layer itself is free from parameters (Li et al.,
2014).

Activation functions in CNNs capture the non-linear rela-
tionship between the input data and their output class. We
used rectified linear unit (ReLU) activation for the hidden
layer neuron activation functions as past studies have proved
that ReLU activation improves classification results and
learning speed (Li et al., 2014; Krizhevsky et al., 2012). The
output of the ReLU activation function is f (x)=max(0,x);
here x means the output of a neuron (Li et al., 2014). For the
output layer, we used the softmax activation function. The
softmax activation function calculates the output probabili-
ties of the input sample belonging to each class in the last
layer of CNN. The class probabilities are calculated as

Pi =
expzi

j=m∑
j=1

expzj

, (1)

where zi is the output from the last layer of CNN correspond-
ing to i class and m is the number of classes (in our case,
m= 2).

Fully connected (FC) layers work as a classification layer
for CNNs, which comes after the convolutional layers. All
layers in FC layers are fully connected, which means each
neuron in a layer is connected to every neuron in the next
layer of FC layers (Albawi et al., 2017; Guo et al., 2017). In
classification problems, the last layer of the FC layer gives
the probabilities of the input image belonging to one of the
output classes with the help of the softmax activation func-
tion (Eq. 1). The output predicted probabilities of the input
sample are used in a loss function that evaluates how well
the model works for classifying the class of the input image
data set. We used the cross-entropy loss function that mea-
sures the difference between actual and predicted probabil-
ity distribution. The cross-entropy loss function for a sample

is defined as −
i=m∑
i=1

yi log(ŷi), where m is the total number

of classes, and yi(ŷi) is actual (predicted) probability corre-
sponding to class i. If i is the actual class of the input sample,
then yi = 1; otherwise, yi = 0. In the case of binary classifi-
cation, m= 2. The sample’s output probabilities are a func-
tion of parameters used in convolution kernels and FC layers
to connect neurons in one layer to the next layer. These pa-
rameters are altered iteratively using the back-propagation al-
gorithm and stochastic gradient method to increase the prob-
ability of samples belonging to the actual class and, thus,
minimize the loss (Aurisano et al., 2016).

4 Landsifier model evaluation

We used two different testing configurations to evaluate the
efficacy of our methods. Finding the triggers of individual
landslides irrespective of their inventories is the first testing
configuration. Here, we combined all the known trigger land-
slides from all six known triggered inventories and then split
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the combined landslide data into various training and testing
sets following the k-fold cross-validation framework. In this
testing configuration, landslides in each training and testing
set are from all six landslide inventories. The second testing
configuration finds the trigger of landslide inventories itself.
We used all the possible combinations to train the algorithm
on five known trigger inventories and test it on the sixth in-
ventory. In this second testing configuration, landslides in
the testing set are from a single inventory. Note that there
are seven inventories in the analyzed data set, and six have
known triggers. The analysis of this seventh inventory (Ku-
mamoto unspecified) with unknown triggers is presented in
Sect. 6.

4.1 Evaluation of the first method
(geometric-feature-based classification)

Combining all the landslide inventories with known triggers
leads to 26 501 samples (ntotal), out of which 16 196 are
earthquake-triggered landslides (nearthquake) and 10 305 are
rainfall-induced landslides (nrainfall). As the number of
earthquake-triggered landslides is much larger than the num-
ber of rainfall-induced landslides, we use equal numbers
of each trigger class to avoid any class imbalance prob-
lems. To avoid selection bias and overfitting, we apply 10-
fold cross-validation. k-fold cross-validation splits the com-
bined classes data set into k random subsets where each
iteration of cross-validation k− 1 folds is used for train-
ing and the remaining fold for testing. We use 20 610 sam-
ples (nrainfall = nearthquake = 10305) for cross-validation, and
to get generalizable results we employ 1000 runs of cross-
validation. In each run of cross-validation we randomly se-
lect 10 305 earthquake samples from 16 196 earthquake land-
slides. We achieved an 86.15± 0.22 % classification accu-
racy for earthquakes, 85.29±0.19 % for rainfall, and 85.73±
0.16 % as the mean classification accuracy.

For the second split configuration, we trained the ran-
dom forest classifier on five inventories and tested it on
the sixth inventory. For earthquake-triggered inventories the
method achieved a classification accuracy of 66.62±0.65 %,
75.59±0.34 %, and 85.22±0.20 % for the Hokkaido (ntrain =

20610, ntest = 3256), Iwata (ntrain = 20610, ntest = 4160),
and Niigata (ntrain = 14832, ntest = 8780) inventories (for
geographical locations of these inventories see Fig. 1). For
rainfall-induced inventories, we achieved a classification ac-
curacy of 83.63±0.41 %, 69.40±0.61 %, and 92.12±0.25 %
for the Kumamoto (ntrain = 9482, ntest = 5564), Fukuoka
(ntrain = 16762, ntest = 1924), and Saka (ntrain = 14946,
ntest = 2817) region. In each one of the cases, we took an
equal number of earthquake- and rainfall-triggered landslide
samples to avoid any class imbalance issues (nearthquake =

nrainfall). The low standard deviation in classification accu-
racy shows that results are stable with a change in training
samples.

4.2 Evaluation of the second method
(topological-feature-based classification)

In the first test and training set split configuration, as in
Sect. 4.1, we used ntotal = 20610 (total number of samples),
nearthquake = 10305 (number of earthquake-triggered sam-
ples), and nrainfall = 10305 (number of rainfall-induced sam-
ples), keeping numbers of each trigger class equal to avoid
class imbalance. We first identify the top 10 relevant topo-
logical features out of thirty features, employing 1000 runs of
10-fold cross-validation of random forest. Using these top 10
relevant topological features as the feature space for the ran-
dom forest classifier, we carry out 1000 runs of 10-fold cross-
validation to get the generalized classification accuracy. The
method achieved an above 94 % classification accuracy for
earthquake, rainfall, and mean class classification.

In the second split configuration, this method achieves an
above 90 % accuracy for the Iwata, Niigata, Kumamoto, and
Saka inventories. For the Hokkaido and Fukuoka region, the
method achieves an above 80 % classification accuracy (see
Fig. 7). The number of training and testing samples for each
case is the same as in Sect. 4.1.

4.3 Evaluation of the third method (image-based
classification)

As explained above in Sect. 3.3 we removed large landslides
from the analysis, leading to ntotal = 24311, nearthquake =

14892, and nrainfall = 9419. We used an equal number of
training samples of the coseismic and rainfall-induced land-
slides to avoid any class imbalance issues. We used 100 runs
of different test and training sets instead of different runs of
10-fold cross-validation as convolutional neural networks are
computationally expensive. The method achieved an above
85 % classification accuracy for earthquake, rainfall, and
mean class classification.

For the second split configuration, the method achieved
an above 80 % accuracy for the Saka region (ntrain =

13738, ntest = 2550). For the Niigata (ntrain = 12780,
ntest = 8502), Kumamoto (ntrain = 8276, ntest = 5281), and
Fukuoka (ntrain = 15662, ntest = 1588) region, the method
achieves an accuracy of above 70 %. The method achieves a
67 % accuracy for the Hokkaido inventory (ntrain = 18838,
ntest = 2431). In each one of the cases, we took an equal
number of earthquake- and rainfall-induced landslide sam-
ples to avoid class imbalance issues.

5 Landsifier library

One of the main aims of this paper is to introduce Landsifier,
a Python library we built to provide the landslide research
community with a user-friendly computational package to
implement the methods described above. At the moment,
we have made the code available on the corresponding au-
thor’s GitHub: https://github.com/kamalrana7843/Landsifier.
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Figure 7. The topological-feature-based method (second method) accuracies for all the six known triggered inventories. The model is trained
on five inventories in each case and tested on the sixth inventory. The y axis in the plot shows the probability of landslides belonging to the
earthquake and rainfall class, and the x axis shows the sample index of landslides.

git (last access: 17 November 2022). Furthermore, we pub-
lished the Landsifier library under an open-source license so
that it is accessible via the Python terminal using the import
command. In Sect. S2 we provide details of the library and
brief descriptions of the available functionalities. Apart from
three different methods for landslide trigger classification,
the library also contains other useful functions like calcu-
lating geometric properties of landslide polygons, converting
polygons to binary-scale images, downloading DEMs corre-
sponding to an inventory region, and converting the 2D land-
slide polygon to a 3D landslide shape (see Figs. 3a and 5a).
Please refer to Sect. S2 for further details about the library
functions (Fig. S1 in the Supplement). Each of the three
methods used in the library is simple to use and only requires
polygon shapefiles as input. Also, the computation process
is relatively fast; for example, the geometric, image, and
topological-feature-based method takes less than 5, 15, and
45 min for training on 20 000 landslides (equal earthquake
and rainfall samples) on a windows machine with 16 GB of
RAM (random-access memory) using only landslide shape-
files as input. Moreover, none of the methods requires a GPU
(graphics processing unit).

6 Discussion

The geometric properties of landslides can provide informa-
tion about their trigger (Taylor et al., 2018). Our prelimi-
nary work on landslide trigger classification demonstrated
that landslides with identical triggers share similar geomet-
ric properties, which could be exploited to classify land-

slide triggers – see the publication Rana et al. (2021) and
briefly reproduced results here in Sects. 3.1, 4.1, and S1.
In this work, we further expanded our initial approach by
adding two additional methods for landslide trigger classi-
fication and a Python library Landsifier to implement them.
One of these two new methods uses 3D shapes of landslides
for their trigger classification by incorporating the elevation
information. We compute topological features of these 3D
shapes using topological data analysis (TDA) and use the
features as an input to a machine-learning-based algorithm
– random forest. The other method uses binary-scale land-
slide polygon images as an input to convolutional neural net-
works (CNNs) for the classification. Using six landslide in-
ventories spread over the Japanese archipelago, we showed
that each method exhibits strong performance in classifying
landslide triggers. However, each method has its strengths
and limitations that primarily depend on training and testing
landslide data quality, quantity, and location. We explained
each method’s strengths and limitations in different condi-
tions in this section. Before providing some hints about po-
tential future work and opportunities that could arise from
using Landsifier library, here, we also present and discuss
the results of each of the three methods on the seventh Ku-
mamoto unspecified inventory.

The landslide data quality depends on the data-acquiring
technique; e.g., landslide data obtained using aerial or satel-
lite images are much higher quality than the data acquired via
field campaigns. Geologists collect landslide data acquired
via field campaigns, and, naturally, such inventories tend to
fail to represent the smaller landslides and cover the larger
landslides (Ozturk et al., 2020), whereas landslide invento-
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ries acquired via aerial or satellite images cover both small
and larger landslides and are called complete inventories as
they adequately capture landslides of various sizes in their
respective study area; e.g., see Schmitt et al. (2017). The per-
formance of developed methods depends on landslide data
quality, and without similar data quality in the training and
testing set the accuracy of classification techniques could be
insufficient to conclude the trigger of landslide inventory and
also might lead to biases. Training the geometric-feature-
based and image-based methods on landslide planforms with
landslide data acquired via satellite or aerial images and test-
ing on data acquired via field campaign or vice versa could
lead to biases in landslide classification results. The meth-
ods based on landslide planform shape consider the area and
perimeter as the most important features and rely on the in-
formation that coseismic landslides are generally larger than
rainfall-induced landslides (Rana et al., 2021) (e.g., Taylor
et al., 2018; Tanyaş et al., 2022). Therefore, a testing inven-
tory triggered by rainfall but which lacks smaller landslides
due to the field campaign acquisition technique could be clas-
sified as earthquake-triggered – given that training invento-
ries are satellite- or aerial-image-based. We recommend us-
ing similar field-campaign-acquired inventories with known
triggers to train the models for more accurate classification
in such a scenario. Another option is to sample landslides
from the satellite- or aerial-image-based inventories that re-
semble the size distribution of the testing data acquired via
field campaign. This shortcoming motivated us to offer an-
other alternative solution relying on topological analysis of
3D shapes of landslides.

Landslides are 3D shapes; thus, using 3D shapes of land-
slides instead of 2D could provide additional information
related to the landslide morphology. Consequently, a 3D-
landslide-shape-based method might elevate classification
accuracy, especially in regions without proper training and
testing data of similar quality. We use TDA, a method rooted
in algebraic topology, to compute topological features of
a landslide’s 3D shapes to classify landslide triggers. The
TDA-based method extracts topological information along
with geometric information of landslide shape, whereas the
geometric-feature-based method and likely the image-based
method use only geometric information of the landslide
shape for landslide classification. We expect the TDA-based
method will provide best landslide trigger classification re-
sults. In Table 1 one can observe that the TDA-based method
indeed performs better than the other two methods. However,
TDA-based measures encode landslide morphology; hence,
if testing and training inventories share similarities in the
geomorphology of the studied regions (spatial autocorrela-
tion) (Oksanen and Sarjakoski, 2005), then the trigger pre-
diction is highly influenced by training inventory. Geometric-
feature- and image-based methods are less sensitive to the
geomorphological similarities between the training and test-
ing landslide inventories, as these only use the 2D landslide
planforms. However, the image-based method performs sat-

Table 1. The table shows landslide classification results using the
three methods. The model is evaluated on all possible training set
combinations of the five inventories and tested on the sixth inven-
tory.

Inventory Geometric- Topological- Image-
region feature- feature- based

based based method
method method (%)

(%) (%)

Hokkaido 67 84 68
Iwata 76 94 67
Niigata 85 94 77
Saka 92 98 88
Kumamoto 84 92 78
Fukuoka 69 83 70

isfactorily only when an adequate number of training data
are available. Hence, we recommend using geometric- or
topological-feature-based methods in inventories with lim-
ited landslide counts.

We applied each method to classify landslides triggers
in the Kumamoto unspecified inventory having an undocu-
mented trigger to demonstrate the real-world application of
the Landsifier library. Out of 612 landslides in the inven-
tory, the geometric-feature-based method and topological-
feature-based method classified 604 and 612 landslides
as earthquake-triggered. In comparison, the image-based
method uses 164 landslides after removing landslides hav-
ing width and length greater than 180 m (see Sect. 3.3 for
more details) and classified all of the landslides as seismi-
cally triggered. As each method classifies the majority of
the landslides as earthquake-triggered, we are confident that
earthquakes are the most likely trigger for most of the land-
slides in this inventory. Moreover, the Kumamoto unspec-
ified inventory documents landslides along the rims of the
Aso Caldera, and the active volcano Mount Aso shakes the
surrounding area frequently, triggering landslides within its
vicinity (Saito et al., 2018). Hence, it is very likely that this
inventory consists of landslides of coseismic origin.

Considering the above discussions, in future work, we plan
to explore further the sensitivity of our trigger classifica-
tion methods to spatial autocorrelations. We will also ex-
amine the influences of landslide size distributions on each
method. Specifically, we plan to classify the trigger of large
landslides (area> 90 000 m2), as they are the most dangerous
landslides and affect a huge area, by training each method
on a large-landslide-training dataset. Moreover, we will con-
sider model transferability to different regions by exten-
sively testing these methods on national landslide invento-
ries, e.g., India, Nepal, Taiwan, and the USA. Our methods
could also provide other opportunities – for example, assess-
ing landslide-prone regions as an alternative to landslide sus-
ceptibility measure using TDA. Also, TDA could be used to
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classify landslide types, according to the types described in
Cruden and Varnes (1996) and Varnes (1978). Landslide type
information plays a crucial role in landslide risk assessment,
which is usually missed in landslide databases (Loche et al.,
2022). We plan to further develop the current version of the
Landsifier by incorporating a landslide type classifier in the
next version (e.g., Amato et al., 2021). This method will be
able to find the analogy between an observed landslide type
and a generic landslide type following Cruden and Varnes
(1996).

7 Conclusions

The landslide-triggering mechanism is crucial information
to develop landslide hazard models; e.g., a landslide haz-
ard model for extreme rainfall incidents requires landslide
inventories related to rainfall events only. However, modern
automated landslide mappers for continuous monitoring and
historical landslide inventories rarely report the landslide-
triggering mechanism. Missing triggers in the landslide in-
ventories decrease their efficacy for landslide hazard models.
In this work, we developed a Python library, Landsifier, con-
taining three methods for landslide trigger classification by
exploiting landslide planforms and 3D shapes. To develop
the first two of these methods, we combined geometric and
topological features with machine learning, and in the third
method, we used deep learning. The latter two methods are
new; i.e., we are reporting them here for the first time.

We use seven landslide inventories spread over the
Japanese archipelago. Six of these seven inventories have
known triggers, while the seventh inventory has a miss-
ing trigger. We applied each method to all possible sets of
five training inventories and one testing inventory using six
known triggered inventories. Moreover, we took different
training and testing sets of landslides by mixing all known
triggered landslide inventories following the k-fold cross-
validation. The achieved results demonstrate that the meth-
ods are robust and capable of classifying triggers of landslide
inventories with high accuracy (70 %–95 %). To demonstrate
the real-world application of our toolbox, we also applied the
three methods to the seventh inventory without any trigger-
ing information and classified it as an earthquake-triggered
inventory.

The Python-based Landsifier library provides a user-
friendly computational package to implement the methods
described above to the landslide research community. Two
of the three methods included in the library are new and in-
troduced here for the first time, while the third method is
published in our previous work. To the best of our knowl-
edge, Landsifier is the first Python tool developed for land-
slide trigger classification, and also such a tool does not
exist in other programming languages. We anticipate that
the landslide research community will find the Landsifier li-
brary helpful in finding the trigger mechanism of invento-

ries or individual landslides. The presented methods and the
library could be deployed in any region of the world with
adequate training data from areas with similar climatic and
tectonic features. The Landsifier library also contains use-
ful functions like finding geometric properties of landslides
polygons, downloading DEMs corresponding to an inven-
tory region, and converting landslide polygons to landslide
3D shapes; these elements could be useful for the landslide
research community.

Furthermore, methods in the Landsifier library are easy
to use as they require only shapefiles of landslide poly-
gons as input. Landsifier is a modular software; we hope
the landslide community will further improve the offered
tool and expand the available functions for new applica-
tions such as classifying landslide types, assessing landslide-
prone regions, and other possible uses listed in the discus-
sion section. At the moment, we have made the code avail-
able on the corresponding author’s GitHub: https://github.
com/kamalrana7843/Landsifier.git (last access: 17 Novem-
ber 2022). Moreover, we published the Landsifier library un-
der an open-source license so that it is accessible via the
Python terminal using the import command. In Sect. S2, we
provide details of the library and brief descriptions of the
available functionalities.

Code availability. The source code is and future up-
dates will be available in the Zenodo repository
(https://doi.org/10.5281/zenodo.7332187; Rana, 2022).

Data availability. The landslide inventories used in this paper are
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