Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Bastian van den Bout
CORRESPONDING AUTHOR
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Chenxiao Tang
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences & Ministry of Water Conservancy, Chengdu, China
Cees van Westen
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Victor Jetten
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Related authors
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Lina Hao, Rajaneesh A., Cees van Westen, Sajinkumar K. S., Tapas Ranjan Martha, Pankaj Jaiswal, and Brian G. McAdoo
Earth Syst. Sci. Data, 12, 2899–2918, https://doi.org/10.5194/essd-12-2899-2020, https://doi.org/10.5194/essd-12-2899-2020, 2020
Short summary
Short summary
Kerala in India was subjected to an extreme rainfall event in the monsoon season of 2018 which triggered extensive floods and landslides. In order to study whether the landslides were related to recent land use changes, we generated an accurate and almost complete landslide inventory based on two existing datasets and the detailed interpretation of images from the Google Earth platform. The final dataset contains 4728 landslides with attributes of land use in 2010 and land use in 2018.
Cited articles
Baartman, J. E., Jetten, V. G., Ritsema, C. J., and Vente, J.: Exploring
effects of rainfall intensity and duration on soil erosion at the catchment
scale using openLISEM: Prado catchment, SE Spain, Hydrol. Process., 26, 1034–1049, https://doi.org/10.1002/hyp.8196, 2012.
Baggio, T., Mergili, M., and D'Agostino, V.: Advances in the simulation of
debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th
August 2017, Geomorphology, 381, 107664, https://doi.org/10.1016/j.geomorph.2021.107664, 2021.
bastianvandenbout: LISEM Project, GitHub [software], https://github.com/bastianvandenbout/LISEM, last access: 23 August 2022.
Bout, B., Van Westen, C. J., Lombardo, L., and Jetten, V.: Integration of
two-phase solid fluid equations in a catchment model for flashfloods, debris
flows and shallow slope failures, Environ. Model. Software, 105, 1–16, https://doi.org/10.1016/j.envsoft.2018.03.017, 2018.
Cance, A., Thiery, Y., Fressard, M., Vandromme, R., Maquaire, O., Reid, M.
E., and Mergili, M.: Influence of complex slope hydrogeology on landslide
susceptibility assessment: the case of the Pays d'Auge, Normandy, France,
In Journées Aléas Gravitaires, https://www.researchgate.net/ (last access: 23 August 2022), 2017.
Chai, H., Liu, H., Zhang, Z., and Xu, Z.: The distribution, causes and
effects of damming landslides in China, Journal of the Chengdu Institute of
Technology, 27, 302–307, 2000.
Chen, N. S., Zhou, W., Yang, C. L., Hu, G. Sh., Gao, Y. Ch., and Han, D.: The processes and
mechanism of failure and debris flow initiation for gravel soil
with different clay content, Geomorphology, 121, 222–230,
https://doi.org/10.1016/j.geomorph.2010.04.017, 2010.
Chen, H. X. and Zhang, L. M.: EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes, Geosci. Model Dev., 8, 829–844, https://doi.org/10.5194/gmd-8-829-2015, 2015.
Chen, Y., Duan, H. Y., and Zhou, C. T.: The numerical calculation of highway slope stability under the influence of rainfall, in: Applied Mechanics and Materials, Trans Tech Publications Ltd, 260, 907–911, https://doi.org/10.4028/www.scientific.net/AMM.260-261.907, 2013.
Chen, M. L., Hu, G. S., Chen, N. S., Zhao, C. Y., Zhao, S. J., and Han, D.
W.: Valuation of debris flow mitigation measures in tourist towns: a case
study on Hongchun gully in southwest China, J. Mt. Sci., 13, 1867–1879, 2016.
Chok, Y. H., Jaksa, M. B., Kaggwa, W. S., and Griffiths, D. V.: Assessing
the influence of root reinforcement on slope stability by finite
elements. International Journal of Geo-Engineering, 6, 12, https://doi.org/10.1186/s40703-015-0012-5 2015.
Chow, V.: Open channel hydraulics, McGraw-Hill Book Company, Inc., New York, USA, 314–321, ISBN 070107769, 1959.
Costa, J. E. Schuster, R. L.: The formation and failure of natural dams,
Geol. Soc. Am. Bull., 100, 1054–1068, 1988.
Dai, F. C., Lee, C. F., Deng, J. H., and Tham, L. G.: The 1786
earthquake-triggered landslide dam and subsequent dam-break flood on the
Dadu River, southwestern China, Geomorphology, 65, 205–221, 2005.
De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., and
Muys, B.: Root tensile strength and root distribution of typical
Mediterranean plant species and their contribution to soil shear
strength, Plant Soil, 305, 207–226, 2008.
Dhondia, J. F. and Stelling, G. S.: Application of the one dimensional-two
dimensional integrated hydraulic model for flood simulation and damage
assessment, Hydroinformatics 2002: Proceedings of the Fifth International
Conference on Hydroinformatics, Cardiff, UK, ISBN 9812387870, 2002.
Domènech, G., Fan, X., Scaringi, G., van Asch, T. W., Xu, Q., Huang, R., and Hales, T. C.: Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake, Engineering Geology, 250, 34–44, 2019.
Ermini, L. and Casagli, N.: Prediction of the behavior of landslide dams
using a geomorphological dimensionless index, Earth Surf. Proc. Land., 28, 31–47, 2003.
Evans, S. G.: The maximum discharge of outburst floods caused by the
breaching of man-made and natural dams, Can. Geotch. J., 23, 385–387,
1986.
Fan, X., Tang, C. X., van Westen, C. J., and Alkema, D.: Simulating dam-breach flood scenarios of the Tangjiashan landslide dam induced by the Wenchuan Earthquake, Nat. Hazards Earth Syst. Sci., 12, 3031–3044, https://doi.org/10.5194/nhess-12-3031-2012, 2012.
Flanagan, D. C., Ascough, J. C., Nearing, M. A., and Laflen, J. M.: The water erosion prediction project (WEPP) model, in: Landscape erosion and evolution modeling, Springer, Boston, MA, 145–199, https://doi.org/10.1007/978-1-4615-0575-4_7, 2001.
Fread, D. L.: BREACH, an erosion model for earthen dam failures, Hydrologic Research Laboratory, National Weather Service, NOAA, https://www.rivermechanics.net/images/models/breach.pdf (last access: 23 August 2022), 1988.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions
of natural hazards, Rev. Geophys., 52, 680–722, 2014.
Green, W. H. and Ampt, G. A.: Studies in soil physics, J. Agric. Sci., 4, 1–24, 1911.
Hao, H., Yang, X., Huang, Y., Liu, K., and Zeng, Z.: Emergency Investigation
Report of Niujuan Catchment Debris Flows, Unpublished Report,
Sichuan Huadi Construction Engineering Co., Ltd., 2011, in Chinese, unpublished.
Harp, E. L. and Crone, A. J.: Landslides Triggered by the 8 October 2005,
Pakistan Earthquake and Associated Landslide-Dammed Reservoirs, U.S.
Geological Survey Open-file Report, 13, 2006–1052, 2006.
Hu, W., Dong, X. J., Xu, Q., Wang, G. H., Van Asch, T. W. J., and Hicher,
P. Y.: Initiation processes for run-off generated debris flows in the
Wenchuan earthquake area of China, Geomorphology, 253, 468–477, 2016.
Huang, Y. Y., Han, H., Tang, C., and Liu, S. J.: Plant community composition
and interspecific relationships among dominant species on a post-seismic
landslide in Hongchun Gully, China, J. Mt. Sci., 14, 1985–1994, 2017.
Hungr, O., Salgado, F. M., and Byrne, P. M.: Evaluation of a
three-dimensional method of slope stability analysis, Can. Geotech.
J., 26, 679–686, 1989.
Hungr, O., McDougall, S., and Bovis, M.: Entrainment of material by debris
flows. In Debris-flow hazards and related phenomena, Springer, Berlin, Heidelberg, 135–158, https://doi.org/10.1007/3-540-27129-5_7, 2005.
Hürlimann, M., Medina, V., Bateman A., Copons, R., Altimir, J.:
Comparison of different techniques to analyse the mobility of debris flows
during hazard assessment-Case study in La Comella catchment, Andorra, edited by:
Chen I. and Majors, Debris-Flow Hazard Mitigation-Mechanics, Prediction
and Assessment, Millpress, Netherlands, 411–422, ISBN 9789059660595, 2007.
Iverson, R. M. and Ouyang, C.: Entrainment of bed material by
Earth-surface mass flows: Review and reformulation of depth-integrated
theory, Rev. Geophys., 53, 27–58, 2015.
Jafarzadeh, F., Shahrabi, M. M., and Jahromi, H. F.: On the role of
topographic amplification in seismic slope instabilities, Journal of Rock Mechanics and Geotechnical Engineering, 7, 163–170,
2015.
Jetten, V. G. and de Roo, A. P.: Spatial analysis of erosion conservation measures with LISEM. In Landscape erosion and evolution modeling, Springer, Boston, MA, 429–445, https://doi.org/10.1007/978-1-4615-0575-4_14, 2001.
Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., and Zhang,
X.: Analysis of NDVI and scaled difference vegetation index retrievals of
vegetation fraction, Remote Sens. Environ., 101, 366–378, 2006.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of
analyzing multi-hazard risk: a review, Natural Hazards, 64, 1925–1958, https://doi.org/10.1007/s11069-012-0294-2, 2012.
Kalacska, M., Sánchez-Azofeifa, G. A., Rivard, B., Calvo-Alvarado, J.
C., Journet, A. R. P., Arroyo-Mora, J. P., and Ortiz-Ortiz, D.: Leaf area
index measurements in a tropical moist forest: A case study from Costa
Rica, Remote Sens. Environ., 91, 134–152, 2004.
Korup, O.: Geomorphic hazard assessment of landslide dams in South Westland,
New Zealand: Fundamental problems and approaches, Geomorphology, 66,
167–188, 2005.
Kuriakose, S. L., Devkota, S., Rossiter, D. G., and Jetten, V. G.:
Prediction of soil depth using environmental variables in an anthropogenic
landscape, a case study in the Western Ghats of Kerala,
India, Catena, 79, 27–38, 2009.
Lam, L. and Fredlund, D. G.: A general limit equilibrium model for three-dimensional slope stability analysis. Canadian geotechnical journal, 30, 905–919, 1993.
Lehmann, P., von Ruette, J., and Or, D.: Deforestation effects on rainfall‐induced shallow landslides: Remote sensing and physically‐based modelling, Water Resour. Res., 55, 9962–9976, 2019.
Li, D., Hao, H., Ma, j., Wu, X., Yan, Z., Li, G., Wang, H., Gao, J., Liu,
H., Huang, Y., Yang, X., Zeng, Z., Liu, J., Gao, L., Shen, T., Cao, N.,
Zhang, Y., Li, Z., Liu, K., Li, D., and Xian, Z.: Emergency Mitigation
Engineering Design on the Catastrohic Hongchun Catchment Debris Flow,
Yingxiu, Wenchuan County, Unpublished report, Guanghan Institute
of Geological Engineering Investigation, 2011a, in Chinese, unpublished.
Li, M. H., Sung, R. T., Dong, J. J., Lee, C. T., and Chen, C. C.: The
formation and breaching of a short-lived landslide dam at Hsiaolin Village,
Taiwan – Part II: Simulation of debris flow with landslide dam
breach, Engin. Geol., 123, 60–71, 2011b.
Liu, N., Zhang, J., Lin, W., Cheng, W., and Chen, Z.: Draining Tangjiashan
Barrier Lake after Wenchuan Earthquake and the flood propagation after the
dam break, Sci. China Ser. E., 52, 801–809, 2009.
Malet, J.-P., Remaître, A., Maquaire, O.: Runout modeling and extension
of the threatened area associated with muddy debris flows, Geomorphologie:
relief, processus, Environnement, 3, 195–210, 2004.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014a.
Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., and Fellin, W.:
Spatially distributed three-dimensional slope stability modelling in a
raster GIS, Geomorphology, 206, 178–195, 2014b.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J. T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex
hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley, Cordillera Blanca, Perú, Earth Surf. Proc. Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2018a.
Mergili, M., Frank, B., Fischer, J. T., Huggel, C., and Pudasaini, S. P.:
Computational experiments on the 1962 and 1970 landslide events at
Huascarán (Peru) with r. avaflow: Lessons learned for predictive mass
flow simulations, Geomorphology, 322, 15–28, 2018b.
Mohadjer, S., Ehlers, T. A., Bendick, R., Stübner, K., and Strube, T.: A Quaternary fault database for central Asia, Nat. Hazards Earth Syst. Sci., 16, 529–542, https://doi.org/10.5194/nhess-16-529-2016, 2016.
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W.
A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E.: The European Soil Erosion Model
(EUROSEM): a dynamic approach for predicting sediment transport from fields
and small catchments, The Journal of the British Geomorphological Group, Earth Surf. Proc. Land., 23, 527–544, 1998.
Morgenstern, N. R., and Sangrey, D. A.: Methods of stability
analysis, Transportation Research Board Special Report, 176, 155–171, https://trid.trb.org/view/86172 (last access: 23 August 2022), 1978.
Nash, T., Bell, D., Davies, T., and Nathan, S.: Analysis of the formation and
failure of Ram Creek landslide dam, South Island, New Zealand, New Zealand,
J. Geol. Geophys., 51, 187–193, 2008.
Newmark, N. M.: Effects of earthquakes on dams and
embankments, Geotechnique, 15, 139–160, 1965.
O'brien, J. S., Julien, P. Y., and Fullerton, W. T.: Two-dimensional water
flood and mudflow simulation, J. Hydraul. Eng., 119, 244–261, 1993.
Ouyang, C., He, S., and Tang, C.: Numerical analysis of dynamics of debris
flow over erodible beds in Wenchuan earthquake-induced area, Eng. Geol., 194, 62–72, 2015.
Peng, M. and Zhang, L. M.: Breaching parameters of landslide dams,
Landslides, 9, 13–31, 2012.
Pix4D, S. A.: Pix4dmapper 3.2 user manual, https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf (last access: 23 August 2022), 2017.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.-Earth Surf., 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Fischer, J. T.: A mechanical erosion model for
two-phase mass flows, preprint, arXiv:1610.01806, 2016.
Pyke, R., TSLOPE3: User Guide, Taga Engineering System and Software,
Lafayette, https://tagasoft.com/wp-content/uploads/2016/10/TSLOPE_Getting_started_Guide.pdf (last access: 23 August 2022), 1991.
Reid, M. E., Christian, S. B., Brien, D. L., and Henderson, S.:
Scoops3D – Software to Analyze Three-Dimensional Slope Stability Throughout
a Digital Landscape, In U.S. Geological Survey Techniques and Methods,
14, 218, https://doi.org/10.3133/tm14A1, 2015.
Rickenmann, D., Laigle, D., McArdell, B. W., and Hübl, J.: Comparison of 2D
debris-flow simulation models with field events, Computat Geosci, 10, 241–264, 2006.
Roelvink, J. A. and Van Banning, G. K. F. M.: Design and development of
DELFT3D and application to coastal morphodynamics, Oceanographic Literature Review, 11, 925 p., 1995.
Ruette, J. V., Lehmann, P., and Or, D.: Rainfall-triggered shallow
landslides at catchment scale: Threshold mechanics-based modeling for
abruptness and localization, Water Resour. Res., 49, 6266–6285, 2013.
Saxton, K. E. and Rawls, W. J.: Soil water characteristic estimates by
texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, 2006.
Schuster, R. L.: Landslide dams – a worldwide phenomenon, Proceedings Annual
Symposium of The Japanese Landslide Society, Kansai Branch, 27 April, Osaka,
31, 38–49, 1993.
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery,
D. R., and Schaub, T.: The variability of root cohesion as an influence on
shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, 2001.
Singh, K. P. and Snorrason, A.: Sensitivity of outflow peaks and flood
stages to the selection of dam breach parameters and simulation
models, J. Hydrol., 68, 295–310, 1984.
Stokes, G. G.: On the effect of internal friction of fluids on the motion of
pendulums, Transactions of the Cambridge Philosophical Society, 9, p. 8, https://www.biodiversitylibrary.org/item/19878#page/7/mode/1up (last access: 23 August 2022), 1850.
Swanson, F. J., Oyagi, N., and Tominaga, M.: Landslide dams in Japan, in:
Landslide dams: process, risk, and mitigation New York: American Society of
Civil Engineers Special Publication, edited by: Schuster, R. L., 3,
273–378, ISBN 9780872625242, 1986.
Tang, C., Zhu, J., Ding, J., Cui, X. F., Chen, L., and Zhang, J. S.:
Catastrophic debris flows triggered by a 14 August 2010 rainfall at the
epicenter of the Wenchuan earthquake, Landslides, 8, 485–497, 2011.
Tang, C., Jiang, Z., and Li, W.: Seismic landslide evolution and debris
flow development: a case study in the Hongchun Catchment, Wenchuan area of
China, in: Engin. Geol. for Society and Territory, Springer, Cham, 2, 445–449, https://doi.org/10.1007/978-3-319-09057-3_72, 2015.
Tang, C., Van Westen, C. J., Tanyas, H., and Jetten, V. G.: Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake, Nat. Hazards Earth Syst. Sci., 16, 2641–2655, https://doi.org/10.5194/nhess-16-2641-2016, 2016.
Tang, C., Tanyas, H., van Westen, C. J., Tang, C., Fan, X., and Jetten, V.
G.: Analysing post-earthquake mass movement volume dynamics with
multi-source DEMs, Engin. Geol., 248, 89–101, 2019.
Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y.: Routing debris
flows with particle segregation, J. Hydraul. Eng., 118, 1490–1507, 1992.
Tun, Y. W., Llano-Serna, M. A., Pedroso, D. M., and Scheuermann, A.:
Multimodal reliability analysis of 3D slopes with a genetic algorithm, Acta Geotechnica, 14, 207–223, 2019.
Valiani, A., Caleffi, V., and Zanni, A.: Case study: Malpasset dam-break
simulation using a two-dimensional finite volume method, J. Hydraul. Eng., 128, 460–472, 2002.
Van Asch, T. W. J., Malet, J.-P., van Beek, L. P. H., Amitrano, D.: Techniques,
issues and advances in numerical modelling of landslide hazard. Bull. Soc.
Géol. Fr., 2007, 178, 65–88, 2007.
van Beek, L. P. H.: Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment, Nederlandse Geografische Studies, 294, 360 p., ISBN 9068093290, 2002.
van den Bout, B.: OpenLisem Multi-Hazard Model and Datasets, Faculty of Geo-Information and Earth Sciences, ITC, Twente University, DANS [data set], https://doi.org/10.17026/dans-z6j-eepm, 2019.
van den Bout, B.: bastianvandenbout/LISEM: Beta 0.2.4 (source), Zenodo [code], https://doi.org/10.5281/zenodo.7016476, 2022.
Van Leer, B.: Towards the ultimate conservative difference scheme, a
second-order sequel to Godunov's method, J. Comput. Phys., 32, 101–136, 1979.
van Westen, C. J. and Greiving, S.: Risk Assessment for Decision Making,
Environmental hazards Methodologies for Risk Assessment and Management,
Dalezios, N. R., 31–94, ISBN 9781780407128, 2017.
Walder, J. S. and O'Connor, J. E.: Methods for predicting peak discharge of
floods caused by failure of natural and constructed earthen dams, Water
Resour. Res., 33, 2337–48, 1997.
Wang, G., Liu, F., Fu, X., and Li, T.: Simulation of dam breach development
for emergency treatment of the Tangjiashan Quake Lake in China, Science in China Series E: Technological Sciences, 51, 82–94, 2008.
Wasowski, J., Keefer, D. K., and Lee, C. T.: Toward the next generation of
research on earthquake-induced landslides: current issues and future
challenges, Engin. Geol., 122, 1–8, 2011.
Worden, C. B., Wald, D. J., Allen, T. I., Lin, K., Garcia, D., and Cua, G.: A revised ground-motion and intensity interpolation scheme for ShakeMap, Bull. Seismol. Soc. Am., 100, 3083–3096, https://doi.org/10.1785/0120100101, 2010.
Xie, M. W., Esaki, T., Zhou, G. Y., and Mitani, Y.: Three-dimensional
stability evaluation of landslides and a sliding process simulation using a
new geographic information systems component, Environ. Geol., 43,
503–512, https://doi.org/10.1007/s00254-002-0655-3, 2003.
Yang, J.: Emergency Investigation Report of Shaofang Catchment Debris Flows,
Unpublished report, Sichuan Institute of Geological Engineering
Investigation, 2010, in Chinese, unpublished.
Zhang, N., Matsushima, T., and Peng, N.: Numerical investigation of
post-seismic debris flows in the epicentral area of the Wenchuan
earthquake, Bull. Engin. Geol. Environ., 78, 3253–3268, https://doi.org/10.1007/s10064-018-1359-6, 2018.
Zanke, U.: Berechnung Der Sinkgeschwindigkeiten Von Sedimenten, Mitteilungen des Franzius-Instituts für Wasserbau und Küsteningenieurwesen der Technischen Universität Hannover, Hannover, Germany, 46, 234–245, ISSN 0340-0077, 1977.
Zhu, Y.: Breach growth in clay-dikes, Doctoral dissertation, TU Delft, Delft University of Technology, ISBN 9090209646, 2006.
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone...
Altmetrics
Final-revised paper
Preprint