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Abstract. The 2008 Wenchuan earthquake lead to various
complex multi-hazard chains that included seismically trig-
gered landslide initiation, landslide runout, river damming,
dam breaching, and flooding. The modeling of the interac-
tions between such hazardous processes is challenging due
to the complexity and uncertainty. Here we present an event-
based physically based model that is able to simulate multi-
hazard land surface process chains within a single unified
simulation. The final model is used to simulate a multi-
hazard chain event in the Hongchun watershed, where co-
seismic landslides led to a landslide dam and, 2 years later, a
debris flow that breached the landslide dam. While most as-
pects of the multi-hazard chain are predicted well, the correct
prediction of slope failures remains the biggest challenge.
Although the results should be treated carefully, the devel-
opment of such a model provides a significant progress in
the applicability of multi-hazard chain simulations.

1 Introduction

Many of the damaging events that involve land surface pro-
cesses are not caused by individual but rather multiple in-
teracting hazardous processes. Such combinations can take
place because the same triggering events (e.g., extreme rain-
fall) trigger various hazardous processes (e.g., flash floods,
landslides, and debris flows) that interact and that may im-
pact the same elements at risk. For multi-hazard assess-
ment, the hazard intensities and impact can differ signifi-
cantly when compared to the individual hazardous processes
(Gill and Malamud, 2014; Van Westen and Greiving, 2017).

Hazardous events may also occur in sequence as cascading
or domino events whereby one hazardous process triggers
another either directly or later in time. One particular haz-
ardous example of such cascading hazard events is the nat-
ural damming of rivers by landslides (Costa and Schuster,
1988; Walder and O’Conner, 1997). These landslide dams
occur in mountainous landslide-prone areas around the world
(Swanson et al., 1986; Chai et al., 2000; Dai et al., 2005;
Korup, 2005; Harp and Crone, 2006; Nash et al., 2008; Liu
et al., 2009; Fan et al., 2012). This sequence of hazardous
events starts with a catastrophic slope failure, often caused
by intense precipitation, a seismic trigger, or a combination
of these. The released material moves downslope and can
lose momentum through friction or by entering a sharply in-
cised channel or river. When the volume of the solid materi-
als is large enough, or when the moved landslide body retains
mostly its original strength characteristics, it will form a bar-
rier for water flow which will accumulate to form a dammed
lake. Depending on the strength of the materials compos-
ing the dam, the barrier may breach when the barrier lake
level exceeds the height of the dam due to either acceler-
ated erosion, piping, or barrier collapse (Ermini and Casagli,
2003). During the breach, extreme discharges and solid-laden
floods with high velocity may devastate the downstream ar-
eas (Schuster, 1993; Walder and O’Connor, 1997).

Natural dynamical systems such as the one described
above can be complicated, containing many interactions
and numerous fundamental processes related to hydrology
and sediments (Walder and O’Conner, 1997). Slope fail-
ures, mass movement runout, and flooding are influenced by
catchment-scale hydrology (Bout et al., 2018). Furthermore,
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inter-hazard interactions exist in many varieties, a review of
which can be found in Kappes et al. (2012). In the case of
landslide dam formation and breaching, many interactions
exist between processes that are typically approached indi-
vidually in modeling. Landslide dam-break floods have been
analyzed using both empirical and physically based models
(Evans, 1986; Costa and Schuster, 1988; Peng and Zhang,
2012). Empirical models are simpler to apply but provide less
comprehensive results than physically based models. On the
other hand, physically based models require detailed phys-
ical parameters as input and can be computationally costly.
Whereas the individual components of the hazard chain –
landslide initiation, landslide runout, dam breach, and flood-
ing – have been modeled using physically based models, the
interactions between these processes are generally not simu-
lated within a single model due to their high complexity.

The prediction of landslide volumes resulting from earth-
quakes is a complex problem and requires specialized nu-
merical models. Several physically based simulation tools for
slope failure volume modeling have been developed, such as
CLARA (Hungr et al., 1989), TSLOPE3 (Pyke, 1991), 3D-
SLOPE (Lam and Fredlund, 1993), 3-DSLOPEGIS (Xie et
al., 2003), r.slope.stability (Mergili et al., 2014a), Scoops3D
(Reid et al., 2015), EDDA (Chen and Zhang, 2015), and
OpenLISEM (Bout et al., 2018). CLARA, TSLOPE3, and
3D-SLOPE can only be applied on individual slopes, while
r.slope.stability, Scoops3D, and OpenLISEM are spatially
distributed models, which are based on geographic infor-
mation systems (GISs). These can be applied for landslide
volume estimation over a large area up to several hundred
square kilometers. Numerical modeling of mass movement
runout using two-dimensional approaches has been imple-
mented in a variety of models (Malet et al., 2004; Ricken-
mann et al., 2006; Van Asch et al., 2007; Hürlimann et al.,
2007; Domenech et al., 2019). They need detailed informa-
tion on initial volume, rheology, and entrainment, as well as
an accurate and detailed digital elevation model (DEM) (Hür-
limann et al., 2007). Erosion, the water-driven uptake of sed-
iment, and entrainment, the grain-driven uptake of sediment,
have been used in understanding mass flow soil interactions.
Erosion models, while traditionally focused on agricultural
processes, come in great variety and provide insight into the
flow–surface interactions. Examples are WEPP (Flanagan et
al., 2001), EUROSEM (Morgan et al., 1998), and Delft3D
Sediment (Roelvink and van Banning, 1995).

In the case of multi-hazard chains including landslide
dams, integrated simulations face several critical issues.
When a mass movement enters a channel with a certain wa-
ter level, the landslide material mixes with the water in a dy-
namic manner, which is generally ignored in existing flow
models such as Flo-2D (O’Brien et al., 1993). Similarly, the
volumetric sediment content of water increases when a land-
slide dam is breached, and the material of the dam is en-
trained by the water flow. The entrainment of bed material
is simulated in a limited number of spatial two-dimensional

mass movement models but is rarely initiated from low-
concentration water flow (Hungr et al., 2005). Several mod-
els have shown this functionality but lack the capability of
modeling breaching behavior, and they ignore the resulting
changes in the digital elevation model (Chen and Zhang,
2015; Hu et al.,2016; Baggio et al., 2021). Ignoring these
changes makes the simulation of any breaching behavior im-
possible since increasing outflow must be the result of the
entrainment of a flow path on the landslide dam.

Simplified coupled model approaches have been tested us-
ing separate and non-spatially distributed models for wa-
ter flow and dam breaching. Empirical equations for dam-
breach discharge have been developed and implemented by
Singh and Snorasson (1984), Wang et al. (2008), and in the
BREACH model (Fread, 1988). In these models, mathemat-
ical expressions for the dynamics of the outgoing discharge
during a dam breach are derived from simplified landslide
dam examples. Typically, a feedback loop between outflow-
ing discharge and the amount of material entrained from the
landslide dam determines the dynamics of the hydrograph.
While these provide a useful estimation of the relevant phys-
ical processes during a dam breach, only outgoing discharge
is simulated, and downstream processes are unknown. More-
over, the accuracy is generally low for more complicated
cases (Zhu, 2006). The BREACH model simulates the in-
creasing breach depth in a landslide dam using an iterative
numerical solution. At the sides of the entrained channel, a
limiting angle determines the additional collapse of material.
Valiani et al. (2002) improved this by simulating dam-breach
discharge using a two-dimensional finite element method.

Fan et al. (2012) provided an insightful step towards in-
tegrated modeling by linking a one-dimensional breach out-
flow model with a hydraulic two-dimensional flood simula-
tion. The outflow from the BREACH model determines the
boundary condition for the flood model (SOBEK). With this
combined setup, it was possible to predict the dynamic dam
breaching and the resulting large-scale flood behavior with
significant accuracy. However, this integrated setup was still
limited by the assumptions in the model. The breach model is
one-dimensional and uses a simplified shape for the estima-
tion of breaching dynamics. The setup ignores catchment-
scale hydrological processes that could influence the sur-
face flow. Furthermore, breach outflow can typically con-
tain large amounts of solid material, altering the dynam-
ics of the mixture. Fan et al. (2012) implemented a flood
model in which flow is calculated using the Saint Venant
equations for shallow flow, which ignores forces such as vis-
cosity and implements a fluid-based frictional model (Dhon-
dia and Stelling, 2002). Li et al. (2011a) provided a differ-
ent approach to integrated simulations of landslide dams by
linking the BREACH model with both a regional rainfall-
runoff model and the Flo-2D debris flow model for model-
ing the runout of the breach material. Despite their improved
method, the landslide dam-breach modeling depends on as-
sumptions such as constant flow material properties, a lim-
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iting region for entrainment, and landslide initiation com-
ing from pre-defined boundary conditions. More recently,
Mergili et al. (2017) have shown the application of diluting
mass flows to modeling glacial lake outburst floods. They
developed the r.avaflow model, based on two-phase mixture
equations by Pudasaini (2012), that allows for mixed flow
of water and solids and implements a simplified entrain-
ment process. However, this work does not take into account
catchment-scale processes or actual landslide dam formation.

In this research, we aim to simulate a complex multi-
hazard chain using a physically based integrated model. We
aim to present an updated version of the OpenLISEM hazard
model and analyze the application of this model to complex
co-seismic hazard chains. The model includes a complete
spatial simulation of a landslide dam process chain, including
initial slope failure, landslide runout, deposition, lake forma-
tion, dam breaching, and flooding. To test the behavior of the
developed model, simulations and validation will be shown
for a case study of a dam-break flood event in the Hongchun
watershed, which occurred in 2010 near the town of Yinxiu,
close to the epicenter of the 2008 Wenchuan earthquake, in
Sichuan Province, China. Finally, we investigate the predic-
tive capabilities of complex multi-hazard multi-stage simula-
tions by analyzing the sensitivity of the model to changes in
input parameters.

The investigation of the Hongchun watershed builds on
previous works in the literature. Tang et al. (2011, 2015) de-
scribe the co-seismic and post-seismic landslide events be-
tween 2008 and 2011 in this area. Several other studies have
simulated the event using a variety of modeling techniques.
Ouyang et al. (2015) applied shallow-flow depth-averaged
debris flow equations in order to understand the event as
a simplified runout process. Zhang et al. (2018) utilized
a depth-averaged smooth particle hydrodynamics model to
simulate both runout from landslides and the later debris
flow. The authors show a novel application of such meth-
ods to a multi-stage event, however, without an integration in
catchment-scale hydrology and a physical implementation of
entrainment and breaching of the landslide dam. Domenech
et al. (2019) used a multi-event debris flow model including
entrainment to study the effect of material depletion on de-
bris flow initiation in the Hongchun watershed. Using results
of modeling studies, Chen et al. (2016) performed a cost–
benefit analysis for the mitigation measures to protect the
touristic town of Yinxiu, located directly opposite to the out-
let of the Hongchun watershed on the other side of the Min
River.

In this research, there is a focus on the integrated nature of
the developed multi-hazard model. Multi-hazard multi-stage
behavior is simulated for a series of interacting earthquake,
landslide, debris flow, and flood processes in the Hongchun
watershed. In order to simulate the behavior of this com-
plex event, we develop an extended and improved version of
OpenLISEM Hazard. To analyze the uncertainties in mod-
eling such process chains, we employ ensemble simulations

Figure 1. A schematic overview of processes, fluxes, and storage
within the OpenLISEM model.

and analyze spatial hazard probabilities to estimate reliabil-
ity. Finally, we discuss the benefits, downsides, and poten-
tial application of modeling methods that involve integrated
multi-hazard process chains.

2 Theoretical model background

This section presents the theoretical background and govern-
ing equations for the components of our multi-hazard model.
One of the important cornerstones is the work by Puda-
saini (2012), who developed a set of physically based two-
phase mass movement equations that can adapt the internal
forces in the flow based on the local volumetric solid con-
centration. This allows us to simulate the behavior of land-
slides, the flow of water, and the interactions between mass
movements and water flow (Mergili et al., 2018a). Using
these equations, Bout et al. (2018) developed an integrated
model for slope hydrology, slope failure, mass movements,
and runout.

We have implemented a series of new processes within the
physically based OpenLISEM Hazard model. In this section,
we describe the relevant theory of existing functionality, as
well as the addition of terrain-altering entrainment by mix-
ture flows and the simulation of co-seismic shallow land-
slides. An overview of the processes is provided in Fig. 1.

2.1 Hydrology

The principle setup of the model starts with the surface as-
pects of the hydrological cycle. Spatially and temporally dis-
tributed rainfall forms the main input of water. We implement
a set of equations for interception and micro-surface storage
based on the original version of OpenLISEM (Jetten and de
Roo, 2001; Baartman et al., 2012). The Green and Ampt infil-
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tration model is implemented, which assumes a wetting front
moving down into the soil due to infiltrating rainfall (Green
and Ampt, 1911). The resulting potential infiltration is sub-
tracted from the available surface water (Eq. 1).

fpot =−Ks

(
ψ
θs − θi

F
+ 1

)
, (1)

where fpot is the potential infiltration rate (m s−1),F is the
cumulative infiltrated water (m), θs is the porosity (m3 m−3),
θi is the initial soil moisture content (m3 m−3), ψ is the ma-
tric pressure at the wetting front (h= ψ +Z) (m), and Ks is
the saturated conductivity (m s−1).

A separate modeling component is used to simulate sev-
eral months of groundwater dynamics and generate the initial
ground water conditions for the OpenLISEM Hazard sim-
ulation, which simulates the effects of a single rainstorm.
Groundwater flow is estimated using a depth-averaged Darcy
equation (Eq. 2), as is common in regional hydrological mod-
els (Van Beek, 2002).

Vd =Ks ·
dh
dx
, (2)

where h is the hydraulic head (m), and Vd is the Darcy flow
velocity (m s−1).

2.2 Slope stability and failure

Hydrology influences slope stability and can eventually lead
to failure. Slope failure is based on the iterative failure
method (Bout et al., 2018). This technique reverses the factor
of safety (Eq. 3) to solve for the remaining depth of material
at which the local situation becomes stable. The locally al-
tered terrain then results in changed forces in the surrounding
cells. Through iteration, the method keeps removing material
until no unstable cell is left and the minimum required ma-
terial for a stable terrain has been removed. We added the
seismic forcing in the factor of safety calculation following
Morgenstern and Sangrey (1978).

FOS=
c′ +

(
((γ −mγw)hs +mγwz)cos(β)2 −hsγα sin(β)cos(β)

)
tan(φ)

((γ −mγw)hs)sin(β)cos(β)+hsγα cos(β)2
, (3)

where FOS is the factor of safety (−), β is the slope of the
soil section (−), c′ is the apparent cohesion of the soil (kPa),
α is the peak horizontal earthquake acceleration (m s−2), φ
is the internal friction angle of the soil (−), γ is the density
of the slope material (kg m−3), γw is the density of water
(kg m−3), m is the fraction of the soil depth that is saturated
from the basal boundary (−), and hs is the depth of the failure
plane (m).

The apparent cohesion consists of additional root cohesion
and a matric suction term. The acceleration is assumed to be,
as in the most critical situation, the estimated peak horizontal
ground acceleration. To account for subsurface force propa-
gation, we include an iterative force solution. This is an ex-
tension of similar approaches in Cheng and Zhou (2013) and

Figure 2. Subsurface force distribution is solved through iteratively
finding a steady state (Fd = driving force, Fc = resisting force).

Chen et al., (2010). In the proposed implementation, forces
are iteratively solved throughout the entire terrain description
(Fig. 2).

In the three-dimensional case, where the x and y compo-
nents of the seismic forcing and slope steepness influence the
propagation, this can be expressed as Eq. (4).

∇F up+ (C−D) · (S ·F lat)= 0, (4)

with C the force capacity (numerator of Eq. 3), D the force
demand (denominator of Eq. 3), S the normalized slope
vector (−), and F lat the vector of laterally acting forces
(kg m s−2).

We assume that excess force is transferred downslope, but
the fractured top material is unable to transfer force resis-
tance upslope.

We assume in the setup of the model that a failure plane
can develop in the soil materials at any depth. Equation (3)
can be inverted to find the value of h, for which the safety
factor is 1. To solve this equation for h, we first express the
slope based on the local elevation differences and create a
shortened equation for the factor of safety (Eqs. 5 and 6).

β = atan
(

max(zx−1− zx,zx − zx+1)

dx

)
, (5)

FOS= 1=
C1+C2 · cos

(
atan

(
z−z0

dx

))2
· tan(φ)

C3 · sin
(
atan

(
z−z0

dx

))
· cos

(
atan

(
z−z0

dx

)) , (6)

where the simplified constants are given by equations C1 =

c,C2 = ((γ −mγw)hs+mγwhs), andC3 = ((γ −mγw)hs),
β is the slope angle (−), z is the elevation above the failure
surface (m), and z0 is the lowest neighboring elevation (m).
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Solving this equation can be done using the trigonometric
identities (Eqs. 7 and 8).

cos(atan(x))=
1

√
1+ x2

(7)

sin(atan(x))=
x

√
1+ x2

(8)

Finally, we find the lowest real root to the second-order poly-
nomial equation of the form

hs = a+ (b) x+ (c)x
2, (9)

where

a = C1 h
2
0−C1 dx2, (10)

b = 2C1h0−C3 h0 FOS−C3 h0 FOS dx C2dx2, (11)
c = C1−C3 FOS dx. (12)

Using Eq. (9) the critical depth can be found where the ma-
terial on the slope is in equilibrium. By multiplying the area
of a pixel with the slope material height above this critical
depth, a failure volume can be calculated. This volume con-
sists of solids and water, depending on the soil saturation
level, and is then added to the flow equations that simulate
Mohr–Coulomb mixture flow.

2.3 Flow dynamics

Once a volume of flowing material is introduced (either
through hydrology or slope failure), its movement must be
described. The dynamics of mass and momentum are cal-
culated using a discretization of the continuity equation for
mass and momentum of both solids and fluids (Eqs. 13, 14,
and 15). Equation (13) described the conservation of mass,
and Eq. (14) describes the conservation of momentum. On
the left-hand side the storage term and advective terms are
found. External forces and mass sources are added on the
right-hand side.

∂h

∂t
+
∂ (hux)

∂x
+
∂
(
huy

)
∂y

= R− I, (13)

∂hux

∂t
+
∂(hu2

x)

∂x
+
∂(huxuy)

∂y
= g h(Sx − Sf,x), (14)

∂huy

∂t
+
∂(hu2

y)

∂y
+
∂(huxuy)∂x

=
g h(Sy − Sf,y), (15)

with h being the flow height (m), u the flow velocity (m s−1),
R the rainfall (m), I the infiltration (m), g the gravitational
acceleration (m s−2), S the friction term (m s−2), and Sf the
momentum source term (m s−2).

The momentum source terms predominantly determine the
behavior of the flow. Here we implement pressure and fric-
tion forces for fluids as is typical for shallow water assump-
tions (O’Brien et al., 1993).

Sx =−
d
(
g h2

2

)
dx

− g hSfx , (16)

Sy =−
d
(
g h2

2

)
dy

− g hSfy . (17)

The friction slope terms, which are the friction forces divided
by the water height and the gravitational acceleration, can
be calculated using the Darcy–Weisbach friction law (Chow,
1959) (Eq. 16).

Sf =
g

n2
u |u|

h
4
3
, (18)

with n being the Manning’s n friction coefficient (s m−
1
3 ).

The momentum source terms within OpenLISEM Hazard
are based on the work by Pudasaini (2012). This set of equa-
tions contains a physically based two-phase momentum bal-
ance. Besides pressure and gravitational forces, it includes
viscous forces, non-Newtonian viscosity, two-phase drag,
and a Mohr–Coulomb type friction force for the solid phase
(Eqs. 19, 20, 21, 22). Based on the current and local state
of flow, forces change in magnitude. This approach allows
for a smooth transition between non-viscous flow, hyper-
concentrated streamflow, debris flows, or landslide runout by
automatically scaling and solving the interactions between
solids and fluids.

Sx,s = αs

(
g

(
∂b

∂x

)
−
us

|us |
tan
(
∂Pbs

)
− εPbs

(
∂b

∂x

))
− εαsγPbf

(
∂h

∂x
+
∂b

∂x

)
+CDG

(
uf − us

) ∣∣uf −us
∣∣j−1 (19)

Sy,s = αs

(
g

(
∂b

∂y

)
−
vs

|us |
tan
(
∂Pbs

)
− εPbs

(
∂b

∂y

))
− εαsγPbf

(
∂h

∂y
+
∂b

∂y

)
+CDG

(
vf − vs

) ∣∣uf −us
∣∣j−1 (20)

Sx,f = αf

{
g

(
∂b

∂x

)
− ε

[
1
h

∂

∂x

(
h2

2
Pbf

)
+Pbf

∂b

∂x

−
1

αfNRe

(
2
∂2uf

∂x2 +
∂2vf

∂y∂x
+
∂2uf

∂y2 −
χuf

ε2h2

)

+
1

αfNRe

(
2
∂

∂x

(
∂αs

∂x

(
uf − us

))
+
∂

∂y

(
∂αs

∂x

(
vf − vs

)
+
∂αs

∂y

(
uf − us

)))
−
ξαs

(
vf − vs

)
ε2αfNReAh

2

]}
−

1
γ
CDG

(
uf − us

)
∣∣uf −us

∣∣j−1 (21)
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Sy,f = αf

{
g

(
∂b

∂y

)
− ε

[
1
h

∂

∂y

(
h2

2
Pbf

)
+Pbf

∂b

∂y

−
1

αfNRe

(
2
∂2vf

∂y2 +
∂2uf

∂y∂x
+
∂2vf

∂y2 −
χvf

ε2h2

)

+
1

αfNRe

(
2
∂

∂y

(
∂αs

∂y

(
vf − vs

))
+
∂

∂y

(
∂αs

∂y

(
uf − us

)
+
∂αs

∂x

(
vf − vs

)))
−
ξαs

(
uf − us

)
ε2αfNReAh

2

]}
−

1
γ
CDG

(
uf − us

)
∣∣uf −us

∣∣j−1 (22)

Ss is the momentum source term for solids (m s−2), Sf is the
momentum source term for fluids (m s−2), αs and αf are the
volume fraction for solid and fluid phases (−), Pb is the pres-
sure at the base surface (Kg m−1s−2), b is the basal surface
of the flow (m),NRe is the Reynolds number (−),NReA is the
quasi-Reynolds number (−), CDG is the drag coefficient (−),
ρf is the density of the fluid (kg m−3), ρs is the density of the
solids (kg m−3), γ is the density ratio between the fluid and
solid phase (−), χ is the vertical shearing of fluid velocity
(m s−1), ε is the aspect ratio of the model (−), and ξ is the
vertical distribution of αs (m−1).

Our model follows the equations by Pudasaini (2012) for
the definitions of the regular and interface Reynolds number,
which represents the ratio between inertial and viscous forces
within the fluid (Eqs. 23 and 24).

NRe =

√
gL Hρf

αfη
, (23)

NReA =

√
gL Hρf

Aη
, (24)

where L is the length scale of the flow (m), H is the height
of the flow (m), η is the viscosity (kg s−1 m−1), and A is the
mobility of the interface, which is a scaling parameter for
non-Newtonian viscous-fluid stresses ( ≈ 1−αs) (−).

To apply these two-phase equations successfully in a
catchment-based model, we replace the frictional force for
the water phase with the Darcy–Weisbach equation for wa-
ter flow friction. To complete the set of equations that gov-
ern debris flow dynamics, several flow properties were esti-
mated based on the volumetric sediment content. Viscosity is
based on an empirical relation by O’Brien and Julien (1985)
(Eq. 25).

η = αeβαs , (25)

where αs is the volumetric solid content of the flow (−), α is
the first viscosity parameter (−), and β is the second viscos-
ity parameter (−).

The drag coefficient is based on the relation provided by
Pudasaini (2012) (Eqs. 26, 27, 28, and 29).

CD G =

αfαs

(
1− ρf

ρs

)
εUT (P F (Re)+ (1−P) G(Re))

, (26)

Re =
ρf d UT

ηf
, (27)

F =
ρf

180ρs

(
αf

αs

)3

Re, (28)

G= α
M(Re)−1
f , (29)

where F and G are the scalar functions describing the flow
velocity of solids and fluids respectively (−), Re is the par-
ticle Reynolds number (−), d is the median grain diameter
(−), UT is the settling velocity (m s−1), and M is an empir-
ical parameter depending on the Reynolds number (≈ 0.2)
(−).

Finally, the settling velocity of small (d<100µm) grains is
estimated by Stokes equations for a homogeneous sphere in
water (Stokes, 1850). For larger grains (>1 mm), the equa-
tion by Zanke (1977) is used (Eq. 30).

UT = 10
η
ρf

2

d


√√√√√1+

0.01
(
(ρs−ρf)
ρf

g d3
)

η
ρf

− 1

 , (30)

in which UT is the settling (or terminal) velocity of a solid
grain (m s−1), η is the dynamic viscosity of the fluid (Pa s),
ρf is the density of the fluid (kg m−3), ρs is the density of the
solids (kg m−3), and d is the grain diameter (m).

2.4 Deposition and dam formation

Flows such as the ones described by the equations presented
above have complex interactions with the basal surface. In
particular, material in the flow can be deposited, or material
from the terrain can be entrained. Deposition occurs when the
flow velocities of a solid–fluid mixture have sufficiently low
velocities and when drag forces are insignificant compared to
shear resistance. Then, water and solids are subtracted from
flow volumes to form a saturated deposits layer. Further de-
position occurs as an active process, during flow, based on
the deposition equations of Takahashi (1992). These equa-
tions use local stability analysis and the ratio between the
flow velocity and the critical velocity to estimate deposition
of solids (Eqs. 31, 32, 33, and 34). Using these generalized
deposition equations, a variety of more specific deposition-
based processes can be potentially simulated. For example,
deposition of landslide material in a river would equate to
landslide dam formation in rivers.

D =

(
1−

|u|

p|u|cr

)
αeq−α

αb V, (31)
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|u|cr =

2
5d50

√
gsin(θc)ρ

0.02ρs
1(

αb

α

)− 1
3
− 1

h1.5, (32)

tan(θc)=
α (ρs− ρw) tan

(
φb)

α (ρs− ρw)+ ρw
, (33)

αeq =
ρw tan(θ)

(ρs− ρw)(tan
(
φb
)
− tan(θ))

, (34)

where D is the deposition rate (m s−1), |u|cr is the critical
velocity for deposition (m s−1), p is the calibration factor for
the critical velocity for deposition (−), αeq is the equilibrium
volumetric solid concentration (−), αb is the volumetric solid
concentration of the bed material (−), and d50 is the median
grain size (m).

2.5 Entrainment equations

In order to estimate entrainment, we implement the equations
by Takahashi et al. (1992) in a similar manner as was done
in the Edda model (Chen and Zhang, 2015). The expressions
for the entrainment rate are provided by Eqs. (35), (36), and
(37).

E =K(τ − τc), (35)
τ = ρ g h Sf, (36)

τc = c
b
+ (1−Cs)α (ρs− ρw)g h cos(θ)2 tan(φb), (37)

where E is the rate of change in the basal topography (ero-
sion rate) (m s−1), τ is the shear stress (Pa), τc is the critical
shear stress (Pa), Sf is the surface friction term (−), τy is the
yield stress (Pa), K is the resistance parameter for laminar
flow (−), ntd is the turbulent dispersive coefficient (m

1
2 s−1),

cb is the cohesion of the bed material (Pa), and Cs is the co-
efficient of suspension (−).

The surface shear term is calculated from the momentum
conservation equation as the sum of all surface frictional
terms. We adapt the expressions to conform to the momen-
tum jump boundary condition, as provided by Iverson and
Ouyang (2015) (Eq. 38).

dz
dt
= E =

τ − τc

ρeffub
, (38)

where ρeff is the total effective density of the flow (kg m3),
and ub is the basal velocity (m s−1).

Iverson and Ouyang (2015) indicate that the equations by
Takahashi et al. (1992) do not include a distinction between
basal and mean velocities and do not conserve momentum.
The basal velocity differs from the mean velocity of the flow
according to a vertical velocity profile. Our model descrip-
tion does not include an estimate of the basal flow veloc-
ity. Therefore, we use the entrainment coefficient as a scal-
ing device to convert from the mean velocity to a basal ve-
locity (ub ≈Kū), with ū the depth-averaged velocity of the

flow. This approach was similarly taken by Pudasaini and
Fischer (2016). Therefore,

dz
dt
= E ≈

τ − τc

ρeffKū
. (39)

Furthermore, we ignore vertical velocities in the model setup,
a both common and necessary assumption that has given
good results in other models (Iverson and Ouyang, 2015).
Finally, we alter the mass and momentum source terms to in-
clude the produced mass and momentum from entrainment
and thereby hold to conservation of these quantities. We in-
troduce into the flow, based on the entrainment rates, a new
mixture of solids and fluids. The momentum of the flowing
material is additionally increased by adding the momentum
of the entrained mass, which gains a velocity equal to the es-
timated basal velocity. Lateral entrainment includes collapse
due to slope failure which is included by solving for stable
depth. This is automatically solved by the iterative failure
method as described previously. Slope failure is based on a
local safety factor estimation which is inverted as is done for
slope stability.

2.6 Flowchart and numerical implementation

A flowchart of the full model is given in Fig. 3. Hydrol-
ogy forms the basis of the simulated cycle. From this, other
sediment- and solid-related processes are linked. At each
time step, properties of the flow are determined based on the
actual water and solid content. Furthermore, solid properties
such as density, friction angle, and size are advected with the
solids. The flowcharts indicate the data required for each step
of the simulation. This highlights the downside of integrated
modeling approaches: the increase in required input data.

Similar catchment-integrated simulations that include hy-
drology, entrainment, and debris flow initiation have been
used successfully by the EDDA model (Chen and Zhang,
2015; Hu et al. 2016) and by the STREP TRAMM model
(Lehmann et al., 2019). These models predict entrainment of
slope material or landslide deposits but do not alter the el-
evation model. By using recent developments in numerical
schemes, elevation model changes can be simulated with-
out erroneous feedbacks between terrain and flow. The nu-
merical scheme within the model is based on the monotonic
upstream cell-centered scheme (MUSCL) (Van Leer, 1979).
This scheme uses piecewise linear reconstructions of both
the terrain surface and the flow properties. This terrain re-
construction estimates local slope and, in rough terrain, also
includes cell boundary elevation differences. Besides shear
stress from the bottom surface in a cell, cell boundary barri-
ers can also provide shear resistance to the flow. Our imple-
mentation of entrainment therefore takes into account direct
and lateral entrainment.

https://doi.org/10.5194/nhess-22-3183-2022 Nat. Hazards Earth Syst. Sci., 22, 3183–3209, 2022



3190 B. van den Bout et al.: Physically based modeling of co-seismic landslide, debris flow, and flood cascade

Figure 3. A schematic overview of the OpenLISEM Hazard model, including the link with the most relevant input data.

3 Study case

The integrated OpenLISEM multi-hazard model was applied
in the Hongchun watershed, located near the town of Yingxiu
in the epicentral area of the 2008 Wenchuan earthquake, in
Sichuan province, China. This watershed experienced nu-
merous co-seismic landslides and a catastrophic debris flow
event in 2010. The debris flow deposits from this watershed
dammed the main Min River and flooded the town of Yinxiu
(Fig. 4).

This watershed has an area of 5.3 km2, and elevation
ranges between 900 and 1700 m. The very steep slopes of
this watershed (>30◦ slope for more than 86 % of the catch-
ment) were covered by dense forests before the earthquake in
2008. The steep terrain and sharply incised channels provide
few locations for human settlements. The touristic town of
Yinxiu is located adjacent to the Min River and opposite of
the outlet of the Hongchun watershed. The lithology of the
area consists mainly of highly fractured granitic rocks, with
some pyroclastic rocks, limestones, and sandstones (Tang et
al., 2011). The texture of the weathered material is predomi-
nantly clay loam with large amounts of gravel. The Beichuan
thrust fault runs straight through the watershed (Fig. 4; Ma-
hodja et al., 2016). In 2008, the fault was ruptured in the
Wenchuan earthquake (Mw7.9). After the earthquake, nu-
merous landslides occurred in the area, leaving large volumes
of deposits in the streams and channels and removing the
vegetation from 50 % of the area. A detailed co-seismic land-
slide inventory from Tang et al. (2016) is shown in Fig. 4. The

northern part of the catchment, which is part of the hanging
wall, was more impacted than the southern part. One of the
largest landslides in the watershed blocked the main chan-
nel of the Hongchun catchment (Fig. 4), with the deposits
exceeding 8 m in depth and 70 m in width.

3.1 The multi-hazard event of 2010

In 2010, 2 years after the earthquake the area experienced
several rainy weeks followed by a high-intensity rainfall
event. This event consisted of two peaks of several hours of
rainfall, with intensities up to 33 and 31 mm h−1 and a total
event duration of 15 h. In total, 220 mm of rainfall fell in the
two days surrounding the event.

During this event, a debris flow was generated by entrain-
ment of loose landslide deposits, and the landslide dam lo-
cated in the central channel was breached. Due to the dam
breaching, the volume of the flow increased substantially,
also due to more entrainment downstream. Upon leaving the
Hongchun watershed, the debris flow material deposited in
the Min River, with a thickness of up to 15 m high and an es-
timated total volume of 7.11×105 m3 (Tang et al., 2011). The
Min River, which experienced a high discharge at this mo-
ment, was diverted laterally and flooded parts of the nearby
newly reconstructed the town of Yinxiu (Fig. 6). For a more
detailed description of the event, see also Tang et al. (2011)
and Ouyang et al. (2015). A schematic overview of the event
is provided in Fig. 5.
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Figure 4. An overview of the Hongchun watershed: (top) hillshade image with co-seismic landslide map from Tang et al. (2016); (bottom)
post-event natural color composite from the Pléiades satellite showing the situation in 2017. The construction of massive debris flow mitiga-
tion works in the outlet of the watershed is clearly visible, as is the continued mass movement activity 9 years after the earthquake. (Right)
Aerial image of the 2010 debris flow blocking the Min River and causing flooding in the town of Yinxiu. Top-right imagery from PLEIADES
©CNES 2010, distribution Airbus DS, and bottom imagery from PLEIADES ©CNES 2017, distribution Airbus DS.

In summary, the study area experienced two different
multi-hazard chains that will be simulated.

– Co-seismic chain. The first one was experienced during
the earthquake, when ground shaking and topographic
amplification triggered a series of co-seismic landslides,
some of which blocked the Hongchun stream.

– Post-earthquake chain. Heavy rainfall triggered debris
flows due to entrainment, which broke the co-seismic
landslide dam. The resulting debris flow dammed the
Min River, which was diverted into the town of Yingxiu.

All simulations include entrainment of estimated soil depth,
hydrology, and the related surface processes as described in
the theory section.

3.2 Model input and parameters

The input data are based on a combination of laboratory or
field measurements and drone- or satellite-based spatial data
products (Table 1).

A pre-earthquake digital terrain model with 20 m spa-
tial resolution was obtained from the local government. Un-
fortunately, we were not able to obtain better-quality pre-
earthquake elevation data. Because of this a comparison of
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Table 1. List of input data and sources for the multi-stage multi-hazard modeling with OpenLISEM Hazard.

Spatial input parameters

Base map Parameter Source

Elevation Pre-earthquake DTM (z) 20 m resolution elevation product from interpolated contour lines
(unknown date)

Post-earthquake DTM (z) Drone photogrammetry 2 m surface elevation (filtered to DTM using
PIX4D vegetation filter) (obtained fall 2018)

Land surface Land cover classes Sentinel-2 classification at 10 m resolution
(trained spectral angle mapper)

Manning’s n (n) Literature comparison with field photos

NDVI Landsat-8 images at 30 m resolution (2008)
SPOT-4 product at 4 m resolution (2010)

Vegetation cover Estimated from NDVI using empirical method (Kalacska et al., 2004;
Jiang et al., 2006)

Root cohesion (cr) Measured in field (12 samples) and extended based on land cover
classes.

Soil material Texture (d50) Measured from field samples (4 samples)

Saturated conductivity (ksat) Measured from field samples (4 samples)

Internal friction angle (φ) Measured from field samples (16 samples)
Literature values

Cohesion (c) Measured from field samples (16 samples)

Porosity (θs ), matric suction (ψ) Literature values derived from texture (Saxton et al., 2006)

Density (ρ) Measured from field samples (16 samples)

Initial moisture (θi) Ground water model run for 3 months using GPM 30 min interval satel-
lite precipitation estimates.

Soil depth (hs) Soil depth modeling calibrated using landslide scarp depth (method
from Ruette et al., 2013)

ShakeMap Peak ground acceleration (θs ) USGS ShakeMap (Worden et al., 2010)

Rainfall Rainfall intensities (R) Rainfall station within Yinxiu provided high-accuracy hourly data. Ad-
ditionally GPM 30 min interval global rainfall product was used for pre-
event ground water modeling.

Inventory Landslide locations Mapped from high-resolution imagery (Tang et al., 2016)

Global parameters (besides
multipliers for all spatial input data

with default value of 1.0)

α β K C P CV
1 10 0.05 0.1 0.5 0.65

the pre-earthquake contour lines with post-earthquake eleva-
tion does not yield useful data. Post-earthquake surface ele-
vation data were available at 2 m spatial resolution, acquired
from fixed-wing drone flights (see Fig. 6) and filtered using
the Pix4D digital terrain model (DTM) filter to remove veg-
etation (Pix4D, 2017). Flow simulations typically are most

dependent on the accuracy and spatial resolution of the ele-
vation model. In order to have an effective compromise be-
tween detail and computation time, we resampled all input
base maps to the final resolution of 10 m, at which the simu-
lations were carried out.
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Figure 5. (Top) A schematic overview of the stages of the described
event. The events for simulation 1 occurred directly after the earth-
quake in 2008. The events for simulation 2 occurred after the rain-
fall event in 2010. (Bottom) A view of the situation at the landslide
dam in 2014 (as indicated in Fig. 4, photo taken from the south
side of the main gully). From https://www.mergili.at/ (last access:
31 August 2022) with permission from author.

Pre-earthquake normalized difference vegetation index
(NDVI) values were calculated at 30 m resolution Landsat-
8 images from 2008. A post-earthquake NDVI map was ob-
tained from 4 m spatial resolution SPOT images acquired in
2009. NDVI values were used to estimate leaf area index
(LAI) by applying an empirical relation obtained from tropi-
cal forest data (Kalacska et al., 2004). We used it to estimate
fractional vegetation cover using a similar empirical relation-
ships (Jiang et al., 2006).

Spatial seismic acceleration data were obtained from the
USGS ShakeMap product (Worden et al., 2010), developed
using combinations of measurements and intensity predic-
tion equations, and peak ground acceleration (PGA) val-
ues were around 1.5 g for this earthquake in the Hongchun
area. The PGA value reflects estimated surface shaking but
does not take into account the complex variability in site ef-
fects such as amplification due to soil or topography. Land-
slide material strength parameters were obtained from triax-
ial strength tests performed for engineering reports ordered
by the local government (Table 2; Yang, 2010; Hao et al.,
2011; Li et al., 2011b). The consolidated drained triaxial tests
were performed on samples acquired from both the deposi-
tion and source areas, although exact locations are unknown.
The resulting average values for cohesion of 7.3 kPa and in-
ternal friction angle of 27◦ were calculated from 16 samples.

Table 2. Strength parameters for the debris flow material in the
Hongchun catchment (Yang, 2010; Hao et al., 2011; Li et al., 2011b)
and saturated hydraulic conductivity.

Average (16 samples)

Cohesion (kPa) 7.3
Internal friction angle (Degrees) 27.0

Average (16 samples)

Density (kg m−3) 2145
Median grain size (mm) 3.1

Average (4 samples)

Saturated hydraulic conductivity (mm h−1) 65 mm h−1

While the cohesion and density match the values found in
other studies (Ouyang et al., 2015; Domenech et al., 2019),
the internal friction angle was estimated to be between 30 and
40◦ in a previous study (Ouyang et al., 2015), based on mea-
surements of internal friction angle on similar igneous rocks
in the nearby Xiaojigou ravine. The difference between these
values can be explained by the material used in the triaxial
tests. In our case, material from landslide depositional areas
or areas close to a landslide source was used. These samples
contain more fractured and loosened material. Thus, these
measurements will provide a more appropriate value in post-
earthquake entrainment simulations. The root cohesion is not
used for slope stability in the model as roots do not reach
the depth of the typical failure plane. Instead, the root co-
hesion is used to increase shear strength for the entrainment
prediction. Here, vegetation cover influences the predicted
erosion. However, for pre-earthquake slope stability estima-
tions, a value of 35 ◦ was used, as was done in other studies
(Ouyang et al., 2015; Domenech et al., 2019). Textures were
found to be clay loam with large amounts of gravel. Saturated
infiltration rates were measured in the field by using field ring
infiltration tests. Because of the large amounts of gravel and
macro-pores within the materials structure, infiltration val-
ues were relatively high. Values were obtained for a total of
four locations, which gave an average value of 65 mm h−1 for
saturated conductivity. Other soil-related parameters such as
porosity, density, and matric suction were obtained using the
pedo-transfer functions from Saxton et al. (2006).

Soil depth values were obtained by applying the spa-
tial soil depth model from Ruette et al. (2013), which uses
steady-state assumptions to balance material production with
soil movement according to an empirical formulation of ero-
sion and lateral transport. The production of weathered mate-
rial depends on the weathering rate of bedrock. Since weath-
ering rates are generally difficult to obtain, this parameter
becomes the main calibration parameter. Validation was done
using soil depth values obtained from landslide scarps. In this
study, we used the pre- and post-earthquake elevation model
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Figure 6. An overview of the input data for the first-stage simulation in Hongchun catchment: elevation model (a), NDVI (b), and modeled
soil depth (c).

differences provided by Tang et al. (2019). From their data,
we sampled elevation model differences in landslide source
areas to obtain failure depths, assuming that the failures were
at least as deep as the top layer of weathered material. In the
case of shallow landslides, we took the maximum landslide
depth as soil depth. For the larger, deep-seated landslides, no
samples were taken since it was not possible to obtain a good
estimate of the depth of the top layer. Additionally, we sim-
ulated a second layer within the slope stability calculations
with an additional depth of 20 m to capture any deeper ro-
tational slides within the bedrock material. We assumed that
this second layer did not contain groundwater, had an inter-
nal friction angle of 35◦, was subject to subsurface lateral
forcing, and was influenced by the weight of the upper layer.
Calibration results and cumulative distributions of depth val-
ues are shown in Fig. 7.

The effect of vegetation on slope stability and entrainment
rates were taken into account by adding root cohesion. The
recovery of vegetation in the landslide-affected areas devel-
oped through distinct stages (Huang et al., 2017). We esti-
mated the average root cohesion for the various vegetation
classes using a combination of literature data and measure-
ments (Schmidt et al., 2001; De Baets et al., 2008; Chok et
al., 2015). We used the method as described by De Baets et
al. (2008) which requires measuring root critical force and
root diameters for all significant roots within a specific sur-
face area. Then, after converting force to tensile strength, the
total effect of the roots per unit area can be estimated using
Eq. (40).

croot =

∑
Tiniai

A
(sin(θ)+ cos(θ) tan(φ)) , (40)

where croot is the added apparent root cohesive strength
(kPa), i is the root diameter class, Ti is the root tensile
strength (kPa), ni number of roots within the diameter class,
ai is the cross-sectional area of the root, A is the area of

Figure 7. Soil depth simulation results. (a) A comparison of pre-
dicted vs. observed values. (b) Probability distribution for observed
and simulated soil depth values.

the soil occupied by roots (m2), θ is the angle of shear dis-
tortion in the shear zone (◦), and φ is the internal friction
angle (◦). Note that the term related to the shearing angle
(sin(θ)+ cos(θ) tan(φ)) is usually assumed to be approxi-
mately 1.2 (Baets et al., 2008). Here, we used a spatial cal-
culation of this variable.

A total of 12 measurements of root cohesion averaged
over a 0.1 m2 area were done. On average, 108 roots were
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found per test site of 0.1 m2, with an average diameter of
3.6 mm. Average values for young, post-landslide vegetation
were found to be 4.8 kPa, and averages for medium-sized
vegetation were found to be 6.2 kPa. For mixed forest, lit-
erature values were used, and root cohesion was estimated
to have a value of 8 kPa (Chok et al., 2015; Huang et al.,
2017). For each land cover class, the root cohesion from the
closest measured vegetation type was used. Finally, within
each land cover class, we linearly scaled the root cohesion to
fractional vegetation cover values that were derived from the
NDVI both before and after the earthquake.

3.3 Calibration and validation

The predicted co-seismic failure areas were calibrated us-
ing the landslide inventory and mapped deposition based on
aerial imagery and pre- and post-event elevation data differ-
ences. Within the inventory, no separation between source
and deposit areas was provided. Therefore we assumed that,
based on field visits, on average the 25 % highest part of each
landslide polygon represented the source area. In order to
compare the outputs of our model with others, we parame-
terized two other regional slope stability models. The first of
these is Scoops3D, which uses random spheroid sampling to
find the landslides with the lowest failure volumes and low-
est factors of safety for each pixel (Reid et al., 2015). This
model can also use seismic shake maps as input. The second
model is r.slope.stability, which uses random ellipsoid sam-
pling to find the lowest factor of safety and failure depth for
each pixel (Mergili et al., 2014). The version of the model
that was used did not incorporate seismic acceleration, so the
output is calibrated without addition of seismic forcing. Re-
cent developments of this software have added these effects.
The Newmark displacement method (Newmark, 1965) was
not used in our comparison. The primary reasons were the
lack of predicted failure depths and the high similarity to the
infinite slope model. When the critical acceleration is taken
as threshold and failures occur when accelerations go beyond
this value, results are identical to an infinite slope model that
incorporates seismic acceleration. For both Scoops3D and
r.slope.stability, the subsurface description is identical to the
input for OpenLISEM Hazard. As a measure of model fit, we
used Cohen’s kappa value. This metric has benefits over sim-
ple accuracy, especially for modeling landslide occurrence,
since it compensates for the large amounts of true negative
predictions (no landslide in model and inventory) that usu-
ally dominate landslide study sites (Bout et al., 2018).

The second phase of the modeling first simulates hydrol-
ogy and a debris flow initiated by entrainment. Then, within
the same simulation, the Min River is blocked by debris
flow material, and the town of Yinxiu is flooded. Calibra-
tion for this part of the modeling is based on mapped depo-
sition extent in the Min River, the flood extent in the town
of Yinxiu, and the estimated depositional volume (approxi-
mately 7.11× 105 m3).

Calibration of the entrainment and debris flow runout was
based on the final spatial deposit extent at the catchment out-
let. The calibration parameters for each part of the simulation
are shown in Table 3. An exception to this was the entrain-
ment constant, for which no clear guideline was known to
determine the value for specific terrain types. Based on ear-
lier simulations and flume tests from Takahashi et al. (1992),
a starting value was chosen of 0.05. For initial soil mois-
ture content, the value is cut off at full saturation. Initially,
each parameter was varied by choosing values between 60 %
and 140 % of the original value. After initial calibration was
done, the parameters were adjusted according to the steepest
descent principle in order to find the best set of parameter
values. To have a level of validation in the simulations, the
parameters resulting from calibration of the first chain were
used as input for the second chain.

4 Results

Simulation results for the first chain, co-seismic slope failure
and runout, are shown in Figs. 8 and 9. Both the accuracies
and Cohen’s kappa values for each of the slope stability mod-
els used are shown in Table 8.

The general spatial patterns are predicted reasonably by all
models, but the models differ considerably in details. For the
ellipsoid and spheroid sampling done by r.slope.stability and
Scoops3D, the failures are larger than those actually mapped
(Table 4). For the iterative method, sizes are mixed but much
more similar. Major landslides, in particular in the north, are
predicted with similar size, although not in the exact location,
by all models. The highest accuracy (81 %) is obtained using
r.slope.stability and the highest Cohen’s kappa (0.232) value
with OpenLISEM Hazard. The OpenLISEM Hazard iterative
method shows the best reproduction of the general pattern,
in particular since both Scoops3D and r.slope.stability lack
slope failures in the southern half of the catchment. Of the
three models, r.slope.stabiltiy and OpenLISEM Hazard show
similarity in total failure area when compared to the inven-
tory. Despite the achievements of the model, errors remain
large, and Cohen’s kappa values indicate all models have low
to moderate reliability.

4.1 Runout and the blocking of the Hongchun stream

When slope failures are simulated, OpenLISEM Hazard au-
tomatically introduces landslide runout by transferring the
failed volume and its properties to the Mohr–Coulomb solid–
fluid mixture flow equations. The depth of slope failures de-
termine directly the amount of solids and fluids introduced
(Fig. 9D). The landslide material moved down the slopes into
the main channel of the Hongchun watershed, blocking it in
at least one location (Fig. 9A). The accuracy for the cali-
brated simulation was 64 % with a Cohen’s kappa value of
0.28 (Table 5), which is mainly attributed to the accuracy of
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Table 3. Calibration parameters, their initial values, and their final calibrated values for both chains.

Simulation part Calibration parameters

Co-seismic slope failure Soil depth Internal friction angle Soil cohesion

Original average 4.5 27 7.3
Calibrated multiplier 1.3 0.91 1.2
Hydrology, flow, and entrainment Entrainment constant Initial soil moisture content Manning’s n
Original average 0.005 80 % 0.127
Calibrated multiplier 0.6 1.12 0.82

Figure 8. A comparison of simulated slope failure extent with mapped co-seismic slope failures. (a) OpenLISEM Hazard iterative failure
with subsurface forcing, (b) Scoops3D random spheroid sampling, and (c) r.slope.stability random ellipsoid sampling.

the failures that started this process (Fig. 9B). Runout dis-
tances are similar to those mapped, indicated by the land-
slides reaching the main channels within the Hongchun
catchment but not reaching the Min River. In one location
the channel was blocked by a deposit 12 to 18 m deep which
was simulated with high accuracy as compared to the mapped
blockage (Fig. 9B). Engineering reports indicate a similar
depth (16 m) for the landslide dam (Yang et al., 2010; Hao
et al., 2011; Li et al., 2011b). We considered using the land-
slide initiation polygons from the inventory to increase the
accuracy of the runout simulation. However, since the aim of
this research is to provide a true multi-stage modeling setup,
we used the integrated prediction of slope failures as input in
the runout modeling.

4.2 Validation of failure and runout for the major
central landslide using elevation model differences

Two large landslides occurred in the northern part of
Hongchun catchment. One of those, near the center of the
area, blocked the main channel of the catchment. For this
landslide, pre- and post-earthquake elevation models from li-
dar data are available (Tang et al., 2019), which were used
to calculate the landslide volume. For this particular area, we

compared the predicted elevation model differences based on
slope failure and deposition from our modeling chain with
the results from the lidar DEMs (Fig. 10).

Both the slope failure and runout thicknesses are predicted
with high accuracy for this landslide. The landslide deposits
of around 20 m thickness remained in the main channel with-
out spreading significantly. These deposits have later been
mined as materials for local construction. As can be seen in
Fig. 10 the failure, deposition, and elevation differences are
highly similar with matching spatial patterns.

4.3 Simulation of the second multi-hazard chain

The results from the modeling of the second stage show a
full physically based simulation that reproduces the behavior
and the impact of the event (Fig. 11). This rainfall event with
two distinct peaks resulted in a rainfall amount of 220 mm
in 2 d, which was modeled in time steps of 0.5 s. Due to
the large rainfall volume, runoff increased rapidly leading
to large amounts of sediments that were entrained from the
co-seismic landslide deposits. Within the simulation, entrain-
ment takes place after runoff has been converted into streams.
There, higher water pressures and velocities provide shear
stress on the surface that is sufficient to overcome the mate-
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Figure 9. (a) Initiation depth from the slope failure simulation. (b) The simulated final deposit depth of the landslides. Blockage location
shown with blue outline (mapped landslide dam). (c) A comparison of modeled landslide runout with the mapped landslide inventory. (d)
Maximum landslide runout flow depth.

Table 4. Slope stability simulation accuracy and Cohen’s kappa values.

Model OpenLISEM Hazard Scoops3D r.slope.stability Mapped

True negative (m2) 3 775 700 3 420 700 3 971 800 4 258 397
False positive (m2) 530 100 476 100 627 800 0
False negative (m2) 587 300 939 300 391 200 0
True positive (m2) 315 400 369 400 217 700 950 103
Accuracy 79 72 81 100
Cohen’s kappa 0.232 0.181 0.190 1
Average size (m2) 36 394 140 253 94 028 21 547

rials internal stability. Near the outlet of the watershed, en-
trainment decreased due to a decrease in slope steepness.
This decreased flow velocities but also increased the internal
stability of the available material. Because of this, entrain-
ment stopped, the flowing material lost momentum, and it
was finally deposited in the Min River.

The simulated debris flow reaches the Min River, and the
deposits accumulate in the river. Most of the momentum has
been lost before the material leaves the Hongchun watershed,
and even though the Min River has a velocity of 7 m s−1, the
deposited volume is too large to be eroded by the Min River.
Both the total deposit volume in the river and the extent of
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Figure 10. An overview of the largest central landslide in the Hongchun watershed. (a) The simulated failure depth. (b) The simulated
maximum runout depth. (c) The simulated deposition depth. (d) Post-earthquake satellite image (Worldview, 2011). Note the mining activities
in the landslide deposit area (e) Predicted elevation model differences due to co-seismic landslides. (f) Observed elevation model differences
from pre- and post-earthquake lidar data.

Table 5. Confusion matrix for the landslide runout prediction in
Hongchun watershed.

Model Runout (m2)

True negative 2 092 900
False positive 1 260 500
False negative 613 900
True positive 1 241 200
Accuracy 64
Cohen’s kappa 0.28

Table 6. Confusion matrix, accuracy, and Cohen’s kappa values for
the debris flow deposition and flooding of the Min River.

Model aspect Deposition Flood

True negative (m2) 516 000 331 543
False positive (m2) 28 000 34 510
False negative (m2) 35 000 51 890
True positive (m2) 213 000 546 132
Accuracy 92 91
Cohen’s kappa 0.84 0.81
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Figure 11. Calibrated simulation results for the second chain in the Hongchun watershed. (A) Maximum total flow depth. (B) Final deposit
depth. (C) Entrainment depth. (D) River flood depth. (E, F) Zoom of Hongchun outlet with (E) deposition depth compared with mapped
extent and (F) river flood depth compared to mapped flood extent. (G, H) Zoom of Hongchun landslide dam with (G) entrainment depth and
(H) maximum flow depth.

the deposits compare well to the measured and mapped val-
ues. The deposits were modeled with an accuracy of 92 %
and a Cohen’s kappa value of 0.84 (Table 6). The modeled
deposited volume is 5.82× 105 m3 (the observed estimation
of the deposited volume is 7.11× 105 m3).

As a final stage of the event, the model predicted the flood
behavior in the town of Yinxiu by the Min River as its main
course was blocked by the debris flow deposits. The mod-
eled damming area correlates well with the observed deposit
volumes and flood extents, obtained from the interpretation
of aerial images and field photos from the event (Fig. 14).
The flood accuracy is 91 % with a Cohen’s kappa value of
0.81 (Table 6). Since the elevation data were upscaled from
2 m resolution to 10 m, the multi-story buildings merged with
small streets to become a joined obstacle for the flow, which
corresponds with the visual observations.

While validation using comparison to mapped extent is a
useful tool, it does not guarantee all aspects of the hazard are
correctly simulated (e.g., timing, velocities, heights). While

a model might have correctly predicted the extent of impact,
it might predict the occurrence too early or late, with incor-
rect velocities or flow heights. While we do not have data on
flow heights or velocities, we confirmed with local authori-
ties the debris flow was reported at 03:30 LT (Sichuan local
time, GMT + 8 h). In our simulation, the first peak of solid
material at the outlet occurs at this time (Fig. 12). The ma-
jor peak of debris material occurs later, at 06:00 LT, but we
could not confirm in the town of Yinxiu for how long the
debris kept arriving at the Min River.

5 Discussion

5.1 Uncertainties in modeling the multi-hazard chains

Several major obstacles in the simulation of co-seismic land-
slide occurrence can be identified, which are related to the
assumptions and techniques used in the models. The iterative
method that is implemented in OpenLISEM Hazard assumes
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Figure 12. Time series data for rainfall, total flow height, and solid
flow height at the Hongchun outlet. Reported debris flow occurrence
time is indicated as “debris flow”.

that, at least initially, failure surfaces are parallel to the ter-
rain surface. This assumption can lead to a variety of issues
when the terrain has small-scale variations that do not repre-
sent the overall topography. This assumption is not present in
the random ellipsoid sampling methods. The iterative method
shows similar failure depths and locations but generally sep-
arates slope failures more, whereas the other models show
larger joined failures. The predominant cause of this behav-
ior most likely lies in the subsurface force iteration, where
the potential failure surface is also initially assumed to be
parallel to the surface. Then, when an obstacle exists that al-
ters the slope around several pixels, the subsurface forces are
blocked, and potentially larger failures become disconnected
(Fig. 13).

Secondly, structural geological input data are not avail-
able and cannot be used in the iterative method. For three-
dimensional analysis using random ellipsoid sampling, struc-
tural weaknesses could be implemented by altering strength
properties of specific layers. When such data are avail-
able, applications of the detailed random ellipsoid sampling
method can allow for a greater predictive value (Mergili et
al., 2014; Cance et al., 2017; Tun et al., 2019).

Furthermore, seismic acceleration of material is a complex
and dynamic process, driven by seismic waves compressing
and stretching the sloping materials. Such waves reflect and
refract based on material properties and boundary conditions,
which leads to a variety of topography or material-based am-
plifications. These amplifications are generally important in
landslide hazard modeling (Jafarzadeh et al., 2015). How-
ever, shake maps produced by the USGS utilize empirical
predictive functions to spatially extend ground accelerations
and ignore these crucial local amplification effects. As a re-
sult there is high spatial uncertainty in the peak ground accel-
eration values we have used as input. Such uncertainties can
be overcome by linking slope stability approaches to seismic
wave modeling, a computationally heavy task that has of yet
not been performed for the Wenchuan earthquake.

The final calibrated values of the input parameters were
within a reasonable range (between 50 % and 150 %) with
respect to the original estimated ones. Two parameters stood
out significantly in the calibration process. The first of these,
soil depth, is a crucial parameter as it determines the amount
of material that is released, which is of direct influence in the
runout modeling. This can indirectly influence the amount of
material available for entrainment by flow at a later stage.
In an active landscape, soil depth patterns are determined by
rock weathering rates and mass transport/wasting. Soil depth
increases until there is sufficient material to induce slope fail-
ures or significant erosion. As a result, at many locations,
combinations of soil depth and slope can be near a critical
state. The spatial component of soil depth is therefore of high
importance. Despite its importance, soil depth is very diffi-
cult to measure over larger areas and has a high uncertainty
in most model applications (Kuriakose et al., 2009). Because
information on soil depth is difficult to obtain through di-
rect observation or remote sensing, it is generally obtained
through modeling approaches (Kuriakose et al., 2009; Ruette
et al., 2013). Another reason for the uncertainty in soil depth
information is that a soil layer is a theoretical concept that
does not always translate well into reality, whereas weath-
ering is a more gradual process. A second variable which
was difficult to estimate is the entrainment coefficient. Cur-
rently, there are several types of entrainment equations avail-
able in the literature, but most of these lack significant guide-
lines for selecting practical entrainment parameters (Iverson
and Ouyang, 2015). Besides this coefficient, other parame-
ters used in the entrainment equations, such as soil cohesion,
internal friction angle, and moisture content, were measured
in the laboratory and are common values for geotechnical re-
search. However, the number of samples that are tested for
these geotechnical parameters are always limited, and their
spatial variability is generally high.

5.2 Ensemble simulations

To analyze the uncertainties within the multi-hazard multi-
stage modeling setup, we extended the calibration process to
an ensemble analysis. In total, for each of the six calibration
parameters, three equal-interval values were used (calibrated
values), as well as the values plus or minus a given range of
10 %–50 %, as indicated in Table 7. Thus, the first simulation
was repeated 27 times. The best estimate was used as input
for the second simulation, which was similarly repeated 27
times. In total, 56 simulations were thus performed, out of
which normalized frequencies were generated for hazard oc-
currence. We defined a threshold of 0.25 m above which a
flow is counted as an actual hazard occurrence to avoid that
the results would include runoff with insignificant depths.

Figure 14 shows an ensemble plot for each stage of the
simulation. For each location, these maps show the normal-
ized probability of hazard occurrence within the ensemble of
simulations.
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Figure 13. The upslope (a) and downslope (b) additional forcing that is estimated based on an iterative solution for subsurface force redis-
tribution.

Figure 14. Ensemble simulation results for the Hongchun watershed. Visualized is the normalized probability, based on the ensemble of runs
with varying input parameters, of the hazard occurring at each location. (A) Co-seismic slope failure. (B) Co-seismic landslide runout. (C)
Post-seismic debris flow deposition. (D) Post-seismic river flooding due to blockage.

The four maps in Fig. 14 illustrate how much the variation
of the input parameters influences the simulated hazard for
the four stages of the multi-hazard chain. The prediction of
co-seismic slope failures shows the highest spread and there-
fore the highest influence on the total event variability. The
uncertainty in the input parameters influences the slope fail-
ure equations most since we have simulated the multi-stage
event as an integrated sequence in which the uncertainties
in one process influence various other processes. Despite the
uncertainties, there is a substantial certainty that flooding of

the town of Yinxiu will occur, independent of the input pa-
rameters. For all performed simulations, the deposition vol-
ume in the Min River is never below approximately a third
(2.1×105 m3) of the estimated volume (7.11×105 m3). For at
least 80 % of the simulations, there is at least some flooding
experienced with a depth above 50 cm in Yinxiu. In compar-
ison to other multi-stage hazard studies, these numbers are
relatively high (Mergili et al., 2018b). Mergili et al. (2018b)
reported that threshold behavior and nonlinear effects domi-
nated the alterations in model behavior with changing param-
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Table 7. Parameter settings for the ensemble simulations.

Co-seismic slope failure Soil depth (m) Internal friction angle (radians) Soil cohesion (kPa)

Calibrated value (average) 5.85 24.57 8.8
Variation range (+/− %) 30 % 30 % 30 %
Hydrology, flow, and entrainment Entrainment constant Initial soil moisture content Manning’s n
Calibrated value (average) 0.003 89 % 0.10
Variation range (+/− %) 50 % 10 % 20 %

eters. While the event they describe is quite different from the
Hongchun disaster, there is a similar influence from threshold
effects on the interpretation and certainty of model outcomes.
In this current study, threshold effects most likely exist re-
lated to the landslide dam behavior in both the Hongchun wa-
tershed and the Min River. With altered input, there could be
insufficient material for landslide dam creation or not enough
flow and entrainment for breaching. However, we do not en-
counter scenarios that fall below the threshold of breaching
in our ensemble.

There are several factors that drive the high likelihood of
flooding in the town of Yinxiu. The event is initiated by sev-
eral triggering conditions, or forcings, such as the seismic
acceleration and rainfall, which occur in a very steep water-
shed and determine the behavior of the hazardous processes.
Seismic accelerations during the 2008 earthquake reached
the 10th and highest USGS category for seismic accelera-
tion (>139 % g). Similarly, the 2010 rainfall event resulted
in 220 mm of accumulated rainfall within 48 h, with signif-
icant rainfall in the weeks before. For events with a smaller
return period and lower intensity of the triggering process,
variability and uncertainty in the potential outcomes might be
larger. An example is the occurrence of landslides’ long du-
ration through low-intensity rainfall, which is a much larger
challenge for physically based modeling (van Beek, 2002).
In our case, material strength parameters must deviate sig-
nificantly from their measured and estimated values in order
not to result in slope failure under such extreme seismic ac-
celeration. Thus, the severity of the triggering events causes
the simulations to predominantly show major slope failures,
debris flows, deposition in the Min River, and finally flooding
of the town of Yinxiu.

5.3 Usability

A major challenge for the application of such a type of multi-
hazard modeling is the step from back-analyzing past events
to forward prediction of future events. In the case of back-
analysis, calibration is possible on data from the event it-
self, whereas predicting future events must be done without
knowledge of the hazard that will occur. By calibrating on
data of multiple events and validating on other events (check-
ing for accuracy using calibrated input from other events), a
more robust model can be established. When validated on
similar events, a higher level of confidence can be gener-

ated in the abilities of the model to predict future events.
In the case of the Hongchun watershed, the accuracy of the
presented numerical experiments depended on thorough cal-
ibration. This is caused by several factors, such as the un-
certainties in the input data and the limited accuracy of the
assumptions made within the model equations. In studies
where multi-stage multi-hazard events are considered, this
becomes even more difficult due to threshold effects and
stacking uncertainties (Mergili et al., 2018a). Despite these
issues, calibration is possible by performing model runs with
a large set of varying input parameters and comparing the
output with measured data on the event (e.g., discharge, ex-
tent of landslides, debris flows, or floods). Validation options,
on the other hand, may be very limited as similar events are
very rare. Debris flows occur more frequently within the wa-
tershed and can therefore be both calibrated and validated
(Domenech et al., 2019). However, the multi-hazard chain
as described in this research is a rather unique sequence of
events that does not easily allow for validation except when
looking at individual components. Even then the co-seismic
slope failure and runout stages do not occur frequently within
the same region. Thus, we run into two primary issues in
the predictive use of multi-stage and multi-hazard modeling.
Firstly, the complex modeling has internal uncertainties that
propagate, stack and provide a challenge in calibration. Sec-
ondly, such events occur with very low frequency (Kappes
et al., 2012) and can therefore rarely be further calibrated
and validated. Despite the difficulties in the calibration and
validation process for multi-hazard multi-stage modeling, we
have shown that for the Hongchun watershed, many aspects
of the first sequence had a high likelihood despite the un-
certainties. This indicates the possible use in predicting fu-
ture events, especially when ensemble analysis is performed
to show the relative spread of model results. However, this
is computationally intensive and cannot be carried out over
large areas yet.

6 Conclusions

We have investigated the potential for understanding and pre-
dicting complex multi-hazard co-seismic process chains. A
physically based model is used that allows for the simulation
of multi-stage and multi-hazard chain events in mountain-
ous terrain. Catchment-based hydrology was combined with
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slope stability analysis under seismic acceleration. Entrain-
ment of loose material was implemented to alter both topog-
raphy and the composition of the flow. The modeling setup is
able to fully simulate the behavior and impact of multi-stage
and multi-hazard events. The developed model code is avail-
able as part of the ongoing development of the open-source
OpenLISEM Hazard model (https://lisemmodel.com/, last
access: 23 August 2022).

The model was tested in the Hongchun watershed, located
near the epicenter of the 2008 Wenchuan earthquake, in two
sequences of hazard interactions. The first sequences was the
generation of earthquake-induced landslides that resulted in
runout of landslide materials and the blockage of a stream
channel. The second sequence was the triggering of debris
flows by extreme rainfall, resulting in the breaking of the ex-
isting landslide dam, and the formation of a debris flow fan
in the main river, forcing the river to flood the city on its
banks. The modeled slope failures show a reasonable accu-
racy when compared with the actual landslide inventory. The
failure simulation is the least accurate process within the sim-
ulation (accuracy 64 %). Improvements in this process might
be possible using a higher-quality ground shaking input map
that includes topographic amplification and other nonlinear
terrain-induced effects. Furthermore, a better spatial estimate
of the subsurface structure and the three-dimensional vari-
ability of strength parameters could improve the accuracy.
However, current techniques for simulation of regional fail-
ure volumes are still often not achieving the desired accuracy
(Wasowski et al., 2011). Over time, such a type of model-
ing should be able to translate the modeling of seismic ac-
celeration for many earthquake scenarios into a probabilistic
earthquake-induced landslide hazard map.

The runout of the co-seismic landslides and the debris flow
that was triggered 2 years later were predicted with high ac-
curacy. Pre- and post-earthquake elevation model differences
were used to validate the modeling outcomes spatially for
the largest central landslide, where high-accuracy elevations
models were available for both pre- and post-earthquake pe-
riods. In particular, the blocking of the Hongchun stream by
co-seismic landslide runout was simulated with good agree-
ment (accuracy 91 %). During the simulation of the 2010
rainfall event, a debris flow was initiated by entrainment, and
the landslide dam was breached. Eventually, the model sim-
ulated with relatively high accuracy the flood behavior in the
second stage of the event (accuracy 92 %).

The sensitivity of the model was further analyzed by look-
ing at ensemble simulation results. Uncertainty propagated
through the different stages of the simulations. Despite this
uncertainty, the ensemble models showed a high likelihood
of flooding in Yinxiu. The model results show high certainty
due to both the magnitude of the seismic accelerations, rain-
fall intensities, and the equations guiding the gravitational
flows. This does not mean that the model is able to predict
future events with equal reliability. However, it does indi-
cate that, when the inherent uncertainties are taken into ac-

count, predictions from advanced spatially distributed and
physically based models can provide insight and have some
predictive value. Simulation results should be treated with
caution. However, with validation and advancements in the
understanding of the physical processes, multi-stage multi-
hazard modeling might become a useful and trusted tool for
decision makers in multi-hazard risk assessment.
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Appendix A

Table A1. Parameter list.

|u|cr Critical velocity for deposition (m s−1)

F lat Vector of laterally acting forces (kg m s−2)

hs Depth of the failure plane (m)

Sf Surface friction term (−)

Sf Momentum source term (m s−2)

UT Settling (or terminal) velocity of a solid grain (m s−1)

UT Settling velocity (m s−1)

z0 Lowest neighboring elevation (m)

αs Volumetric solid content of the flow (−)

ρf Density of the fluid (kg m−3)

ρs Density of the solids (kg m−3)

τc Critical shear stress (Pa)

C1 = c,
C2 = ((γ −mγw)z+m γwz),
C3 = ((γ −mγw)z)

Simplifying compound parameters (−)

Ks Saturated conductivity (m s−1)

S Normalized slope vector (−)

Ti Root tensile strength (MPa)

Vd Darcy flow velocity (m s−1)

ai Cross-sectional area of the root

c′ Effective cohesion of the soil (kPa)

cb Cohesion of the bed material (Pa)

croot Added apparent root cohesive strength (kPa)

d50 Median grain size (m)

fpot Potential infiltration rate (m s−1)

ni Number of roots within the diameter class

ntd Turbulent dispersive coefficient (m
1
2 s−1)

ub Basal velocity (m s−1)

αb Volumetric solid concentration of the bed material (−)

αeq Equilibrium volumetric solid concentration (−)

γw Density of water (kg m−3)

θi Initial soil moisture content (m3 m−3)

θs Porosity (m3 m−3)
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Table A2. Continued.

ρeff Total effective density of the flow (kg m3)
τy Yield stress (Pa)
D Deposition rate (m s−1)
d Grain diameter (m)
d Median grain diameter (−)
D Force demand (denominator of Eq. 3)
E Rate of change in the basal topography (erosion rate) (m s−1)
F and G Scalar functions describing the flow velocity of solids and fluids respectively (−)
g Gravitational acceleration (m s−2)
h The flow height (m)
h The hydraulic head (m)
I The infiltration (m)
M An empirical parameter depending on the Reynolds number (≈ 0.2) (−).

n Manning’s n friction coefficient (s m−
1
3 ).

R Rainfall (m)
Re Particle Reynolds number (−)
S Friction term (m s−2)
u Flow velocity (m s−1)
α First viscosity parameter (−)
β Second viscosity parameter (−)
η Dynamic viscosity of the fluid (Pa s)
τ Shear stress (Pa)
A Area of the soil occupied by roots (m2)
A Mobility of the interface (−)
C Force capacity (numerator of Eq. 3)
F Cumulative infiltrated water (m)
FOS Factor of safety (−)
H Height of the flow (m)
K Resistance parameter for laminar flow (−)
L Length scale of the flow (m)
i Root diameter class
m Fraction of the soil depth that is saturated from the basal boundary (−)
p Calibration factor for the critical velocity for deposition (−)
z Elevation of the top surface (m)
α Peak horizontal earthquake acceleration (m s−2)
β Slope angle (−)
γ Density of the slope material (kg m−3)
η Viscosity (kg s−1 m−1)
θ Angle of shear distortion in the shear zone (◦)
ψ Matric pressure at the wetting front (h= ψ +Z) (m)
φ Internal friction angle (◦)
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Code availability. The LISEM model, which was used in this
research, is an open-source multi-hazard modeling tool. The
software and source code are available from https://github.com/
bastianvandenbout/LISEM (last access: 23 August 2022; bastian-
vandenbout, 2022), together with documentation and example
datasets. The source is written in C++ and compiles on Windows-
and Linux-based operating systems. Visit the Github repository to
get started (https://github.com/bastianvandenbout/LISEM, last ac-
cess: 23 August 2022; https://doi.org/10.5281/zenodo.7016476; van
den Bout, 2022).

Data availability. A dataset for Hongchun gully, which was studied
in this work, is provided on the LISEM website (https://lisemmodel.
com/, last access: 23 August 2022, or https://doi.org/10.17026/dans-
z6j-eepm; van den Bout, 2019). For more information on how to
download and use this datasets, visit the downloads page.
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