Clare, M. C. A., Piggott, M. D., and Cotter, C. J.: Assessing erosion and flood risk in the coastal zone through the application of multilevel Monte Carlo methods, Coast. Eng., 174, 104118, 2022.
a,
b
Clare, M. C. A.: MLMF coastal, GitHub,
https://github.com/mc4117/MLMF_coastal, last access: 28 July 2022a. a
de Beer, A., McCall, R., Long, J., Tissier, M., and Reniers, A.: Simulating
wave runup on an intermediate–reflective beach using a wave-resolving and a
wave-averaged version of XBeach, Coast. Eng., 163, 103788,
https://doi.org/10.1016/j.coastaleng.2020.103788, 2020.
a
Dodwell, T. J., Ketelsen, C., Scheichl, R., and Teckentrup, A. L.: Multilevel
Markov chain Monte Carlo, Siam Rev., 61, 509–545, 2019. a
Fleeter, C. M., Geraci, G., Schiavazzi, D. E., Kahn, A. M., and Marsden, A. L.:
Multilevel and multifidelity uncertainty quantification for cardiovascular
hemodynamics, Comput. Method Appl. M., 365,
113030,
https://doi.org/10.1016/j.cma.2020.113030, 2020.
a
Geraci, G., Eldred, M., and Iaccarino, G.: A multifidelity control variate
approach for the multilevel Monte Carlo technique, Center for Turbulence
Research Annual Research Briefs, 169–181, 2015.
a,
b,
c,
d,
e
Geraci, G., Eldred, M. S., and Iaccarino, G.: A multifidelity multilevel Monte
Carlo method for uncertainty propagation in aerospace applications, in: 19th
AIAA Non-Deterministic Approaches Conference, Grapevine, Texas,
https://doi.org/10.2514/6.2017-1951, 2017.
a,
b,
c
Giles, M. B.: Multilevel Monte Carlo Path Simulation, Oper. Res.,
56, 607–617,
https://doi.org/10.1287/opre.1070.0496, 2008.
a,
b,
c,
d,
e,
f
Gregory, A. and Cotter, C. J.: On the calibration of multilevel Monte Carlo
ensemble forecasts, Q. J. Roy. Meteor. Soc.,
143, 1929–1935,
https://doi.org/10.1002/qj.3052, 2017.
a,
b,
c,
d
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, A., Hasselmann, D. E., Kruseman, P., and Meerburg, A.: Measurements
of wind-wave growth and swell decay during the Joint North Sea Wave Project
(JONSWAP), Ergänzungsheft, Reihe A, 8–12, 1973. a
Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., and Werner, M. G.:
An adaptive time step solution for raster-based storage cell modelling of
floodplain inundation, Adv. Water. Resour., 28, 975–991, 2005.
a,
b,
c,
d
Kalyanapu, A., Judi, D., McPherson, T., and Burian, S.: Monte Carlo-based flood
modelling framework for estimating probability weighted flood risk, J. Flood Risk Manag., 5, 37–48, 2012. a
Larson, M. and Kraus, N. C.: SBEACH: numerical model for simulating
storm-induced beach change. Report 1. Empirical foundation and model
development, Tech. rep., Coastal Engineering research center Vicksburg Ms,
1989. a
Leijnse, T.: Computationally Efficient Modelling of Compound Flooding due to
Tropical Cyclones with the Explicit Inclusion of Wave-Driven Processes,
Ph.D. thesis, TU Delft, Delft, The Netherlands,
http://repository.tudelft.nl/ (last access: 28 July 2022), 2018.
a,
b,
c,
d,
e,
f
Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling
compound flooding in coastal systems using a computationally efficient
reduced-physics solver: Including fluvial, pluvial, tidal, wind- and
wave-driven processes, Coast. Eng., 163,
https://doi.org/10.1016/j.coastaleng.2020.103796, 2021.
a,
b,
c,
d,
e,
f,
g
McCall, R. T., De Vries, J. V. T., Plant, N., Van Dongeren, A., Roelvink, J.,
Thompson, D., and Reniers, A.: Two-dimensional time dependent hurricane
overwash and erosion modeling at Santa Rosa Island, Coast. Eng., 57,
668–683, 2010. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 42, 55–61, 2000.
a,
b
Peherstorfer, B., Willcox, K., and Gunzburger, M.: Survey of multifidelity
methods in uncertainty propagation, inference, and optimization, Siam Rev.,
60, 550–591, 2018. a
Riesenkamp, M.: Probabilistic modelling of extreme beach erosion using XBeach,
Ph.D. thesis, TU Delft, Delft, The Netherlands,
http://repository.tudelft.nl/. (last access: 28 July 2022), 2011. a
Roelvink, D., Reniers, A., Van Dongeren, A., De Vries, J. V. T., McCall, R.,
and Lescinski, J.: Modelling storm impacts on beaches, dunes and barrier
islands, Coast. Eng., 56, 1133–1152, 2009. a
Roelvink, D., McCall, R., Mehvar, S., Nederhoff, K., and Dastgheib, A.:
Improving predictions of swash dynamics in XBeach: The role of groupiness
and incident-band runup, Coast. Eng., 134, 103–123,
https://doi.org/10.1016/j.coastaleng.2017.07.004, 2018.
a,
b,
c
Unguendoli, S.: Propagation of uncertainty across modeling chains to evaluate
hydraulic vulnerability in coastal areas, Ph.D. thesis, Università di
Bologna, Bologna, Italy,
http://amsdottorato.unibo.it/8599/1/Unguendoli_Silvia_Tesi.pdf (last access: 28 July 2022),
2018. a
Vikhar, P. A.: Evolutionary algorithms: A critical review and its future
prospects, in: 2016 International conference on global trends in signal
processing, information computing and communication (ICGTSPICC), 261–265, IEEE, Indian Academy Degree College Autonomous, Bangalore, 2016. a
Wang, C., Zhang, H., Feng, K., and Li, Q.: Assessing hurricane damage costs in
the presence of vulnerability model uncertainty, Nat. Hazards, 85,
1621–1635, 2017. a
Warren, I. and Bach, H.: MIKE 21: a modelling system for estuaries, coastal
waters and seas, Environ. Softw., 7, 229–240, 1992. a
Xiong, M., Chen, L., and Ming, J.: Quantify uncertainty by estimating the
probability density function of the output of interest using MLMC based Bayes
method, Discret. Contin. Dyn.-B,
https://doi.org/10.3934/dcdsb.2022095, 2022.
a