Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2491-2022
https://doi.org/10.5194/nhess-22-2491-2022
Research article
 | 
03 Aug 2022
Research article |  | 03 Aug 2022

Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding

Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott

Related authors

Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2409.18792,https://doi.org/https://doi.org/10.48550/arXiv.2409.18792, 2024
Short summary
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024,https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2649,https://doi.org/10.5194/egusphere-2024-2649, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary
Probabilistic tsunami hazard analysis of Batukaras, a tourism village in Indonesia
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
Nat. Hazards Earth Syst. Sci., 25, 1057–1069, https://doi.org/10.5194/nhess-25-1057-2025,https://doi.org/10.5194/nhess-25-1057-2025, 2025
Short summary
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025,https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025,https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary

Cited articles

Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M. I., Ranasinghe, R., and Kwadijk, J.: Uncertainties in projections of sandy beach erosion due to sea level rise: an analysis at the European scale, Sci. Rep., 10, 1–14, 2020. a
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, 2010. a, b, c, d
Caflisch, R. E.: Monte carlo and quasi-monte carlo methods, Acta Numer., 7, 1–49, 1998. a
Callaghan, D. P., Ranasinghe, R., and Roelvink, D.: Probabilistic estimation of storm erosion using analytical, semi-empirical, and process based storm erosion models, Coast. Eng., 82, 64–75, 2013. a, b
Carrier, G. F. and Greenspan, H. P.: Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4, 97–109, 1958. a, b
Download
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Share
Altmetrics
Final-revised paper
Preprint