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Abstract. When choosing an appropriate hydrodynamic
model, there is always a compromise between accuracy and
computational cost, with high-fidelity models being more ex-
pensive than low-fidelity ones. However, when assessing un-
certainty, we can use a multifidelity approach to take advan-
tage of the accuracy of high-fidelity models and the com-
putational efficiency of low-fidelity models. Here, we apply
the multilevel multifidelity Monte Carlo method (MLMF) to
quantify uncertainty by computing statistical estimators of
key output variables with respect to uncertain input data, us-
ing the high-fidelity hydrodynamic model XBeach and the
lower-fidelity coastal flooding model SFINCS (Super-Fast
INundation of CoastS). The multilevel aspect opens up the
further advantageous possibility of applying each of these
models at multiple resolutions. This work represents the first
application of MLMF in the coastal zone and one of its first
applications in any field. For both idealised and real-world
test cases, MLMF can significantly reduce computational
cost for the same accuracy compared to both the standard
Monte Carlo method and to a multilevel approach utilising
only a single model (the multilevel Monte Carlo method).
In particular, here we demonstrate using the case of Myrtle
Beach, South Carolina, USA, that this improvement in com-
putational efficiency allows for in-depth uncertainty analysis
to be conducted in the case of real-world coastal environ-
ments – a task that would previously have been practically
unfeasible. Moreover, for the first time, we show how an in-
verse transform sampling technique can be used to accurately
estimate the cumulative distribution function (CDF) of vari-
ables from the MLMF outputs. MLMF-based estimates of

the expectations and the CDFs of the variables of interest are
of significant value to decision makers when assessing un-
certainty in predictions.

1 Introduction

Throughout history, coastal zones have been attractive re-
gions for human settlement and leisure due to their abundant
resources and the possibilities they offer for commerce and
transport. Nevertheless, living in coastal zones has always
come with the risk of coastal flooding hazards, for example,
from storm surges as well as wave run-up and overtopping.
Hydrodynamic models can simulate these hazards, but these
predictions are often uncertain (Athanasiou et al., 2020), due
to uncertainties in input data as well as in the hydrodynamic
models themselves. Standard practice to assess these uncer-
tainties is to express these uncertain inputs/parameters us-
ing probability distributions. The uncertainty can then be as-
sessed by sampling from these distributions and computing
key output diagnostics such as the mean and variance of key
variables of interest and/or the probability of a hazard event
occurring (see for example Kalyanapu et al., 2012, and Wang
et al., 2017, where they are used to assess impacts from flood-
ing and hurricanes respectively). These statistics can all be
expressed as expectations and can be estimated by comput-
ing statistical estimators. The most straightforward approach
to compute such an estimator is to apply the standard form of
the Monte Carlo method. For a given model X and an uncer-
tain input parameter α, the Monte Carlo estimator f̂ (X) for
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the expectation E[f (X(α))] is given by

f̂ (X)=
1
N

N∑
n=1

f (X(α(n))), (1)

where α(n) are N independent samples taken from the dis-
tribution of the uncertain input parameter. However, this
method requires O(ε−2) model runs to achieve an accuracy
ε (Caflisch, 1998), which can easily make it prohibitively
computationally expensive, especially given the high com-
putational cost of accurate coastal models. In existing re-
search such as Callaghan et al. (2013), low-fidelity models
are used to solve the issue of high computational cost with
Monte Carlo methods, but this leads to less accurate results.

We take an alternative approach and instead compute sta-
tistical estimators using the relatively novel multilevel multi-
fidelity Monte Carlo (MLMF) method, developed in Geraci
et al. (2015), which combines results from a high-fidelity and
a low-fidelity model. MLMF takes advantage of the accuracy
of high-fidelity models and the computational efficiency of
lower-fidelity ones to produce accurate yet computationally
feasible uncertainty analyses. It further improves computa-
tional efficiency by using the hierarchy of model resolution
approach, similar to that used in the multilevel Monte Carlo
method (MLMC) (Giles, 2008). Research into MLMF is still
in its infancy, and this work represents the first application of
MLMF in the coastal zone. It has, however, already been suc-
cessfully applied in aerospace research (Geraci et al., 2017)
and cardiology (Fleeter et al., 2020). Note that MLMC is also
a fairly novel method, but it has already been successfully ap-
plied to coastal zones in Clare et al. (2022), a promising in-
dication that MLMF will be similarly successful in this field.

MLMF does not aim to improve the accuracy relative to
using a standard Monte Carlo method on the high-fidelity
model but to instead use a lower-fidelity model to acceler-
ate the approach and thus make uncertainty studies compu-
tationally feasible. Therefore the key to the successful appli-
cation of MLMF is choosing an accurate high-fidelity model
and an appropriate lower-fidelity model, which reasonably
approximates the high-fidelity one. Coastal flood modelling
is therefore an ideal field on which to apply MLMF because
there exist a large number of high-fidelity but computation-
ally expensive full physics models such as XBeach (Roelvink
et al., 2009), SWASH (Simulating WAves till SHore) (Zi-
jlema et al., 2011) or MIKE 21 (Warren and Bach, 1992)
and lower-fidelity computationally cheaper reduced physics
models such as SFINCS (Super-Fast INundation of CoastS)
(Leijnse et al., 2021), LISFLOOD-FP (Bates et al., 2010)
or SBEACH (Storm-Induced BEAch CHange) (Larson and
Kraus, 1989). Furthermore, this work provides an interest-
ing example of a framework for combining lower- and high-
fidelity models in an area where there is already a lot of re-
search into combining different fidelity models (for example
Callaghan et al., 2013; Leijnse et al., 2021).

In our work, we choose the depth-averaged finite-volume-
based coastal ocean model XBeach as our high-fidelity
model because it can parameterise unresolved wave propa-
gation, such as wind-driven wave fields, and has been suc-
cessfully used numerous times in the coastal zone to sim-
ulate wave propagation and flow including, for example,
in Roelvink et al. (2018) and de Beer et al. (2020). For
our lower-fidelity model, we use the hydrodynamic model
SFINCS because of its ability to simulate the relevant pro-
cesses for compound coastal flooding (Leijnse et al., 2021).
Note that to maximise computational efficiency, SFINCS
does not explicitly solve for short-wavelength wind-driven
waves internally, but instead these can be provided in the
form of a prescribed forcing. The computational efficiency of
SFINCS has already been favourably compared to XBeach
in numerous test cases (see Leijnse, 2018; Leijnse et al.,
2021), where SFINCS is shown to be significantly cheaper
than XBeach, with acceptable differences in accuracy. De-
spite this model choice, we emphasise that we implement our
MLMF algorithm using a model-independent Python wrap-
per developed in our work, which could easily be applied to
other coastal ocean models in future research. Note further
that whilst investigating the accuracy of the specific models
used is beyond the scope of this work, this wrapper approach
means that the numerous verification and validation stud-
ies conducted with XBeach and SFINCS still hold for our
work (for example McCall et al., 2010; Riesenkamp, 2011;
Roelvink et al., 2018; Leijnse et al., 2021).

The aim of this work is to explore how MLMF can be ap-
plied to complex hydrodynamic coastal ocean models to in-
vestigate within a reasonable timeframe, the impact of a va-
riety of uncertain input parameters, such as wave height and
bed slope angle, whilst maintaining accuracy relative to the
standard Monte Carlo method. We apply MLMF to both ide-
alised and real-world test cases, some of which would have
been impractical and unrealistic to run using standard Monte
Carlo methods due to huge computational costs. In many of
these test cases, we conduct a valuable spatial uncertainty
analysis of the coastal flooding, by calculating the expected
value of output variables simultaneously at multiple loca-
tions. Like other Monte Carlo type methods, MLMF quan-
tifies uncertainty by computing estimators of the expected
value of key output variables with respect to uncertain input
parameters. However, in this work we also modify the inverse
transform sampling method from Gregory and Cotter (2017)
to develop a novel method to generate cumulative distribu-
tion functions (CDFs) from MLMF outputs. This provides
information allowing practitioners to determine the probabil-
ity of a variable exceeding a certain value, which can be of
more interest than the expected value.

The remainder of this work is structured as follows: in
Sect. 2 we outline the methodology for applying MLMF to
the coastal flood models and the relevant MLMF theory; in
Sect. 3, we apply MLMF with SFINCS and XBeach to ide-
alised and real-world test cases to estimate both the expected
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Figure 1. Example illustration of how MLMF’s multifidelity multilevel approach using SFINCS and XBeach models on different grid
resolutions results in computational cost savings. Note that the C symbol indicates the order of magnitude of the computational cost for a
single simulation with this model at this grid resolution; i.e. CC indicates O(102) s for a single simulation. The orders of time and number
of scenarios are approximately those for the Myrtle Beach test case in Sect. 3.3.

value and the cumulative distribution function for the consid-
ered output variables; in Sect. 4, we discuss extensions to the
MLMF methodology; and, finally, in Sect. 5, we conclude
this work.

2 Methodology: applying the multilevel multifidelity
Monte Carlo method (MLMF) to assess uncertainty
in coastal flooding

As discussed in Sect. 1, Monte Carlo type methods can be
used to assess uncertainty by estimating the expectations of
functions of an input random variable. In our model scenario,
the input random variable is some source of uncertainty, such
as the friction coefficient, and the function involves running
our numerical model and computing values such as the water
elevation height at specific locations, from the model out-
put. These estimates could be calculated using the standard
Monte Carlo approach, but this is computationally expensive
due to the need to run large numbers of model simulations
to obtain an appropriate accuracy (see Eq. 1 and the discus-
sion below it). The computational cost of running the model
can be reduced by either coarsening the grid resolution; us-
ing a less complex model; or, in the case of this work, making
use of both approaches by using the multilevel multifidelity
Monte Carlo method (MLMF).

Using a coarse grid and/or simpler model gives an esti-
mate which is cheap to compute but (more) incorrect and thus
has an error. This error can be corrected by estimating the
difference between the low- and high-fidelity models and/or
the different resolutions and adding these on to the cheaply
computed expectation. Key to the approach is the observa-
tion that estimating the difference requires fewer simulations
than computing the full estimate, because the variance of the
correction is (hopefully) smaller than the variance of the out-
puts. For the different grid resolutions, the correction is done
by the telescoping sum of the multilevel Monte Carlo method
(MLMC), while for the different fidelity models, the correc-
tion is done by control variate formulae. The challenge is
composing these approaches so that we can do both, which
is what MLMF seeks to do.

The theory for MLMF is the focus of Sect. 2.1, whilst
details on the control variate multifidelity approaches and
MLMC can be found in Appendix A and Appendix B re-
spectively. As described in Geraci et al. (2015), the standard
MLMF approach cannot estimate the probability of an out-
put variable exceeding a certain value. The latter is often
also of significant interest for flooding problems, and thus
in Sect. 2.2, we present a novel theory to extend MLMF for
the estimation of probabilities. The implementation and ap-
plication of the MLMF method in this work is then described
in Sect. 2.3, and we conclude this methodology section with
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a brief remark on different methods to assess uncertainty in
Sect. 4.

2.1 Multilevel multifidelity Monte Carlo method
(MLMF)

MLMF seeks to improve the efficiency of uncertainty anal-
yses by running fewer simulations at the more expensive
finer resolutions than at the cheaper coarser resolutions and
by running fewer high-fidelity model simulations than low-
fidelity ones (see Fig. 1). In this section, we describe the the-
ory for the standard MLMF approach, following Geraci et al.
(2015) throughout. A pictorial representation of this algo-
rithm is shown in Fig. 2, and a full statement of the algorithm
is included at the end of the section.

To fix ideas, we consider a hypothetical scenario, where
the variable of interest is the water elevation height at a
given location after a given time and the uncertain parameter
is the friction coefficient which we assume follows a nor-
mal distribution. The desired grid resolution in our model
is 1x = 5000/210 (≈ 5)m. Note that this hypothetical sce-
nario is similar to the example used as the first test case in
this work. Moreover, throughout this work, we use HF and
LF to denote the high-fidelity XBeach model and low-fidelity
SFINCS model respectively.

We denote the MLMF estimator for the water depth at the
finest grid resolution L as Q̂HF,CV

ML
. Here the finest grid res-

olution is the grid resolution we would like to evaluate our
model at; for our hypothetical scenario the finest grid reso-
lution is1x =M/2L = 5000/210 (≈ 5)m. Note that follow-
ing standard notation, ·̂ denotes that Q̂HF,CV

ML
is an estimator.

An estimator represents the rule for calculating an estimate of
a variable of interest given data. In our hypothetical scenario,
the estimator is the rule; the variable of interest is the water
elevation height; the data are our model runs; and the esti-
mate is then the numerical approximation of the mean water
elevation that we obtain using our model runs. For MLMF,
the rule for the estimator is a combination of the multilevel
MLMC estimator of Eq. (B3) with the multifidelity control
variate of Eq. (A1). The multilevel part of the estimator uses
linearity of expectations (see Eq. B1) to construct the follow-
ing telescoping sum:

Q̂
HF,CV
ML

= Q̂
HF,CV
Mlµ

+

L∑
l=lµ+1

[
Q̂

HF,CV
Ml

− Q̂
HF,CV
Ml−1

]
, (2)

where Ml denotes different resolutions at which the estima-
tor is evaluated, with lµ being the coarsest resolution. In
our hypothetical scenario, the estimator is evaluated at res-
olutions of [5000/24, 5000/25, 5000/26, 5000/27, 5000/28,
5000/29, 5000/210

]m. Equation (2) finds the multilevel mul-
tifidelity estimate of water elevation at the finest resolution
by calculating the multifidelity estimate at the coarsest reso-
lution (5000/24 m), adding to this the difference between the
multifidelity estimates at the coarsest resolution (5000/24 m)

and the slightly finer resolution (5000/25 m), etc., up to and
including the second finest and finest resolutions pair of
5000/29 and 5000/210 m. By the linearity of expectations,
the sum of these differences is an estimate for the expected
value of the water elevation on the finest resolution that is as
accurate as simply calculating a standard Monte Carlo esti-
mate on the finest resolution. The advantage is that calculat-
ing the estimate using this approach is less computationally
expensive than using the standard Monte Carlo approach be-
cause the width of the distribution of the model outputs at
each resolution Xl is much larger than the width of the dis-
tribution of the difference between the outputs (Xl −Xl−1).
Figure 3 illustrates this for two resolutions of the hypotheti-
cal scenario computed using XBeach. The narrower the dis-
tribution (i.e. the smaller the variance), the fewer samples are
needed to estimate its mean (see Fig. 9 for example). Note
that the distribution of the difference is very narrow in this
example; for more complex cases it may be wider, although
it should still remain narrower than the distribution of the in-
dividual outputs.

Combining multilevel estimators with the multifidelity
control variate (Eq. A1), the full rule for the MLMF esti-
mator is

Q̂
HF,CV
ML

=

L∑
l=lµ

(
ŶHF
Ml
+αl

(
Ŷ LF
Ml
− Ê

[
Y LF
Ml

]))
, (3)

where

Ŷ ∗Ml
=

N
−1
lµ

∑Nlµ
i=1X

(i)
lµ

l = lµ,

N−1
l

∑Nl
i=1

(
X
(i)
l −X

(i)
l−1

)
l > lµ,

(4)

where the superscript ∗ here can indicate results from either
XBeach (HF) or SFINCS (LF). In our hypothetical scenario,
Xl is the water elevation height from the model run using
a grid resolution of 1x = 5000/2l m, with Xl−1 being the
same but for a grid resolution of 1x = 5000/2l−1 m. For
each difference pair, (i) denotes that the value sampled from
the normal distribution for the uncertain friction coefficient is
the same for both the finer-resolution Xil simulation and the
coarser-resolution Xi−1

l simulation. Thus, Ŷ ∗Ml
is the mean

of the difference between two model runs conducted at dif-
ferent resolutions with the same random number (i.e. value
sampled from the distribution) used for friction for each pair.
Moreover, for each (i), the same random number is used for
the XBeach model pair and the SFINCS model pair; i.e. the
same random numbers are used to construct both ŶHF

Ml
and

Ŷ LF
Ml

. Note that constructing estimators like this means that
the coarsest level, lµ, is left without a pair and that there-
fore Ŷ ∗Mlµ

is just the mean of the model runs conducted at the
coarsest resolution. Note further that, although not strictly
necessary, here we choose to run both SFINCS and XBeach
at the same resolutions, as it seems sensible to assume that
this will maximise correlation between the outputs at each
level.
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Figure 2. Flowchart of the multimodel approach to MLMF using HF (XBeach) and LF (SFINCS).

Figure 3. Distribution of outputs generated by XBeach for the hy-
pothetical scenario at the finest resolution and at the second finest
resolution considered, as well as the distribution of the difference
between these output values. Note that the distribution for the dif-
ference between the output values is much narrower, meaning fewer
samples are required to get a good estimate of the mean. For refer-
ence, in this hypothetical scenario the variance at resolution 1x =
5000/29 m is 0.0587; the variance at resolution 1x = 5000/210 m
is 0.0580; and the variance of the difference between outputs at
[5000/29, 5000/210] m is 9.82× 10−6.

The other terms in Eq. (3) come from the multifidelity es-
timator. The notation Ê[·] denotes the estimator for the ex-
pected value – statistically speaking we cannot know the ac-
tual expected value (E) of Y LF

Ml
because this would require

knowing the exact distribution of Y LF
Ml

. Thus, the best we can
do is calculate an estimate of the expected value using data
from SFINCS runs at different resolutions, i.e. use an estima-
tor. This subtlety is discussed in more detail in Appendix A.
Finally αl is a coefficient which weights the SFINCS model
outputs and is defined as

αl =−ρl

√√√√Var(ŶHF
Ml
)

Var(Ŷ LF
Ml
)
, (5)

where ρl is the Pearson correlation coefficient. In our hypo-
thetical scenario, ρl is the correlation between the water ele-
vation calculated by XBeach and that calculated by SFINCS
at each resolution l. We refer the reader to Appendix A for
more details on multifidelity estimators.

To make calculating the variance of the water depth esti-
mator simpler, we follow standard practice throughout and
independently sample the values for the friction coefficient
for each ŶMl

. Hence the variance of the MLMF estimator is

Var
[
Q̂

HF,CV
ML

]
=

L∑
l=lµ

(
NHF
l

)−1
Var

[
ŶHF
l

](
1−

rl

1+ rl
ρ2
l

)
, (6)

using independence. Here NHF
l is the number of XBeach

(HF) simulations required at level l to compute ŶHF
Ml

(which
is also the number of SFINCS (LF) simulations required to
compute Ŷ LF

Ml
), and rl is the factor of extra SFINCS simu-

lations required to compute Ê
[
Y LF
Ml

]
. Note that, throughout
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this work and for simplicity, we refer to NHF
l as the num-

ber of XBeach simulations required, because the total num-
ber of SFINCS simulations required is the combined quantity
(1+ rl)NHF

l and not just NHF
l .

Because ρ2
l < 1 is by definition a correlation coefficient,

Eq. (6) shows that the greater the correlation between the
two models, the greater the reduction in the variance of the
estimator. We thus seek to maximise this correlation. Geraci
et al. (2017) show that, because the multifidelity control vari-
ate is unbiased, correlation can be artificially increased by
modifying the estimator Ŷ LF

l using

Y̊ LF
l = γlX̂

LF
l − X̂

LF
l−1, (7)

where the modification factor γl adds an extra degree of
freedom to maximise the correlation. Therefore, instead of
Eq. (3), we use

Q̂
HF,CV
ML

=

L∑
l=lµ

(
ŶHF
Ml
+αl

(
Y̊ LF
l − Ê

[
Y̊ LF
l

]))
, (8)

and the new correlation coefficient ρ̊2
l is dependent on γl and

is equal to

ρ̊2
l = ρ

2
l

Cov2
(
ŶHF
l , Y̊ LF

l

)
Cov2

(
ŶHF
l , Ŷ LF

l

) Var
[
Ŷ LF
l

]
Var

[
Y̊ LF
l

] , (9)

where we correct a typographical error in the formula given
in Geraci et al. (2017). By differentiating Eq. (9) with respect
to γl , we find the correlation is maximised when

γl =

Cov
(
ŶHF
l ,XLF

l−1

)
Cov

(
XLF
l ,X

LF
l−1
)

−Var
[
XLF
l−1
]

Cov
(
ŶHF
l ,XLF

l

)
Var

[
XLF
l

]
Cov

(
ŶHF
l ,XLF

l−1

)
−Cov

(
ŶHF
l ,XLF

l

)
Cov

(
XLF
l ,X

LF
l−1
)
. (10)

Note that when using the modified estimator of Eq. (7) the
formulae previously stated in this section remain the same,
but Ŷ LF

l and ρl are replaced with Y̊ LF
l and ρ̊l respectively in

all formulae.
Finally, using Eqs. (A3) and (B6), the overall cost of the

MLMF algorithm (i.e. finding the water elevation at grid res-
olution L) is

C =

L∑
l=lµ

NHF
l

(
CHF
l +C

LF
l (1+ rl)

)
. (11)

In order to obtain the optimum values for NHF
l and rl in

Eq. (6), we minimise this cost with respect to the variance
constraint as

Var
[
Q̂

HF,CV
ML

]
< ε2/2, (12)

which results in the following optimum formula for the factor
of extra SFINCS simulations of

rl =−1+

√
ρ̊2
l

1− ρ̊2
l

ωl, (13)

where ωl = CHF
l /CLF

l is the ratio of the cost of running
XBeach and SFINCS, and the following optimum formula
for the number of XBeach simulations of

NHF
l =

2
ε2

 L∑
k=lµ

Var
[
Y̊HF
k

]
CHF
k

1− ρ̊2
l

1/2

3k(rk)


√√√√
(1− ρ̊2

l )
Var

[
Y̊HF
l

]
CHF
l

, (14)

where

3k(rk)= 1−
rk

1+ rk
ρ̊2
k , (15)

and as in Eq. (B7), ε should be viewed as a user-defined ac-
curacy tolerance.

Calculating Eq. (14) requires estimates of the variance and
cost. Therefore we run 50 initial simulations for each model
at each resolution (see Step 1 of Algorithm 1) and use the
kurtosis to check whether this provides a good enough esti-
mate of the variance. Following Giles (2008), if the kurtosis
is less than 100, then we consider our estimate of the vari-
ance to be good enough. Note further that if we are interested
in the value of the variable of interest at multiple locations,
NHF
l must be calculated separately for each location. In the

algorithm, we run maxNl over all locations, and then when
calculating the estimator of Eq. (3) at each location, we sub-
sample the optimum number for that specific location from
the full output.

2.1.1 MLMF algorithm

Given the theory outlined above, the MLMF algorithm used
in this study is summarised in Algorithm 1.
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Algorithm 1 Multilevel multifidelity Monte Carlo method.

1: Estimate the variance and cost of the MLMF estimator,
as well as the correlation and cost ratio between the HF
and LF models at user-specified levels using an initial
estimate for the number of simulations. The same set of
random numbers must be used for the HF and LF mod-
els.

2: Start with L= lµ.
3: Define optimal NHF

l using (14) and rl using (13) with
increased correlation factor (9) when required.

4: If the optimal NHF
l is greater than the number of simula-

tions of the HF and LF models from Step 1, evaluate the
extra simulations required.

5: If the optimal rlNHF
l is greater than the number of sim-

ulations of the LF model after Step 4, evaluate the extra
simulations of LF required.

6: If the algorithm has not converged and L < Lmax, set L
equal to L+ 1 and return to Step 3.

7: If algorithm converged or L≥ Lmax, STOP.

2.2 Cumulative distribution functions

In this section so far, we have described the standard MLMF
framework outlined in Geraci et al. (2015), the objective of
which is to find the expectation of the output variable of inter-
est. However, the probability of a variable exceeding a cer-
tain value is often of significant value in the study of natu-
ral hazards. This probability is complicated to estimate be-
cause MLMF computes very few values at the finest resolu-
tion from which we could build the distribution.

To resolve this, in this work we develop our own novel
technique to find the cumulative distribution function (CDF)
from the MLMF outputs, using a modified version of the
inverse transform sampling method from Gregory and Cot-
ter (2017). The output of a cumulative distribution func-
tion P(X ≤ x) is some value between 0 and 1. Returning
to the hypothetical example used throughout this section,
X is the water elevation as a variable, and x is its value.
For evaluating uncertainty, we would like to know the value
of x which the water elevation at a given location after a
given time is below for 25% of cases, 50% of cases, etc.
In other words, we are interested in the inverse cumulative
distribution function F−1(u), where u∼ U[0,1] and F(x)=
P(X ≤ x). If F is strictly increasing and absolutely contin-
uous, then x ≡ F−1(u) is unique. A simple consistent esti-
mate for x can then be found by sorting the values such that
X1 <X2 < .. . < XN and then

F̂−1(u)=XdN×ue. (16)

In other words, suppose in our hypothetical scenario we
have 100 values for the water elevation at a given location
after a given time. Then this expression simply says that the
value x, which the water elevation does not exceed 25 % of
the time, is the 25th largest value. Gregory and Cotter (2017)

show that this estimate is consistent because it converges
in probability to x as N→∞. Note that here converges in
probability means that the probability of XdN×ue being more
than a small distance ε from x tends to zero as N→∞. In
Gregory and Cotter (2017), they then use a formula to ap-
proximate F−1

L (u) from the MLMC outputs. In this work,
we modify that formula to make it applicable for MLMF out-
puts so that the inverse cumulative distribution function for
MLMF is approximated by

F−1
L (u)≈ RHF(X)

dNHF
lµ
×ue

lµ

+αlµ

(
R̊LF(X)

dNHF
lµ
×ue

lµ
− Ê

[
Y̊ LF
l

])
+

L∑
l=lµ+1

(
RHF(X)

dNHF
l ×ue

l −RHF(X)
dNHF

l−1×ue

l−1

)

+

L∑
l=lµ+1

αl

(
R̊LF(X)

dNHF
l ×ue

l − R̊LF(X)
dNHF

l ×ue

l−1 − Ê
[
Y̊ LF
l

])
, (17)

where RHF(X)il and R̊LF(X)il represent the ith-order statis-
tic of Xl on each level l of XBeach and modified correlation
SFINCS (see 7) respectively. In other words, suppose that
in our hypothetical scenario we want to know the value x
which the water elevation does not exceed 25 % of the time.
We then pick the lower quartile value (i.e. the value not ex-
ceeded 25 % of the time at each resolution for both models)
and add them together following the rule of the MLMF esti-
mator. Note that, unlike with Eq. (B1), there cannot be exact
cancellation because using this method means the approxi-
mations at each level are no longer unbiased.

2.3 Implementation

In this work, we construct our own Python MLMF wrapper
around both SFINCS and XBeach to implement the MLMF
algorithm. This wrapper can be shared on distributed cores of
an HPC (high-performance computing) cluster to increase ef-
ficiency. Given the use of distributed cores, any times quoted
in this work are the total simulation times multiplied by
the number of cores used. The different steps performed
when running the models in the wrapper are illustrated in
the flowchart of Fig. 2. Note, in particular, that in this wrap-
per, the models are run and post-processed separately, mean-
ing there is no issue with different input or output formats.
Therefore, our MLMF wrapper is model-independent, mean-
ing it can be easily applied to other models and applications
in further work.

For the models themselves, we use XBeach version
1.23.5526 from the XBeachX release and use the surfbeat
mode to simulate the waves approaching the beach (Roelvink
et al., 2018). SFINCS is not yet released in the public do-
main, but we use a version similar to that used in Leijnse
et al. (2021).
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3 Applying MLMF to coastal-zone test cases

We can now apply the outlined MLMF algorithm to both ide-
alised and real-world coastal flooding test cases to calculate
the expectation of an output variable at multiple locations
based on uncertain input data. Note that throughout, for sim-
plicity, we only consider one uncertain input parameter per
test case (see Sect. 4).

In the first 1D test case, the water level is estimated at var-
ious locations as a result of a propagating non-breaking wave
entering a domain under an uncertain Manning friction coef-
ficient (Sect. 3.1). In the second 1D test case, the wave run-up
height is estimated for a simplified linear beach under the un-
certainty in the beach slope (Sect. 3.2). In the final 2D real
world case of Myrtle Beach, the maximum water depth due
to flooding is estimated at various locations influenced by an
uncertain offshore water level (Sect. 3.3).

3.1 Non-breaking wave test case

For our first test case, we consider the 1D case of a non-
breaking wave propagating over a horizontal plane from
Hunter et al. (2005) and Bates et al. (2010), which has al-
ready been simulated using SFINCS and XBeach in Leijnse
(2018). The domain is initially dry, and the wave is gener-
ated by imposing a rising water elevation boundary condition
and a constant velocity boundary condition (u(x = 0, t)=
1ms−1) at the inlet. Note that this test case can thus be in-
terpreted as a propagating wet–dry interface, but, following
Hunter et al. (2005) and Bates et al. (2010), we refer to it
as a wave. In this test case, we evaluate the uncertainty as-
sociated with the spatially uniform Manning friction coeffi-
cient nm and set this parameter to have a normal distribu-
tion nm ∼N (0.03,0.01) sm−1/3. Note that, as Manning co-
efficients must be non-negative, any sampled values below 0
are discarded. We choose the Manning coefficient as our un-
certain parameter because Bates et al. (2010) note that this
test case is particularly sensitive to this parameter, and thus
this is a good test for our MLMF framework. The remaining
parameters are the same as those in Leijnse (2018), and, in
particular, we keep the simulated time at 1 h and the length
in the x direction equal to 5000 m. The quantity of interest
is the expected value of the water elevation at the end of
the simulation at x = 1000m, x = 1500m, x = 2000m and
x = 2500m.

The advantage of this test case is that, due to the horizon-
tal slope and the constant velocity condition at the inlet, the
inviscid shallow-water equations can be solved analytically
with the following result:

h(x, t)=

(
−

7
3
n2

mu
2(x− ut)

)3/7

, (18)

where h is the water level at any given location x and time
t and u is the prescribed flow velocity at the boundary. The
full analytical derivation can be found in Hunter et al. (2005),

Figure 4. Comparing the final water elevation from using SFINCS
and XBeach at dx = 78m and dx = 156m (corresponding to 64
and 32 elements in the x direction respectively) with the analyti-
cal result for the non-breaking wave test case. A Manning friction
coefficient of 0.0364 sm−1/3 is used in all simulations.

although in Eq. (18) we correct a typographical error in that
work. Following Hunter et al. (2005) and Leijnse (2018), u
is set equal to 1 ms−1. Using this analytical result, we can
get a good estimate of the expected value of the true solu-
tion. However, we cannot find the “true” expected value be-
cause of the uncertainty in nm and must instead run a Monte
Carlo simulation varying nm in Eq. (18). Note that evaluating
Eq. (18) is trivial, and therefore the Monte Carlo simulation
on the analytical result is very fast.

Before running the full MLMF algorithm, we run a small
test using a spatially uniform Manning friction coefficient of
0.0364 sm−1/3 to compare the final water elevations from the
SFINCS and XBeach models with the analytical result ob-
tained from Eq. (18) and check they all approximately agree.
We also check how the output variable varies with grid size
for both models. Figure 4 shows that the XBeach results
agree more closely with the analytical result than SFINCS’,
which is to be expected, as XBeach is the HF model. Nev-
ertheless, the SFINCS results are not very different from the
analytical result, indicating that it represents a good choice
for the LF model. The effect of using a different resolution in
both models is less clear in Fig. 4, probably because there is
both model error (here due to the numerical model possess-
ing viscous dissipation, while the analytical result is derived
from the inviscid equations) and discretisation error (the er-
ror arising from using a finite mesh to solve the model equa-
tions). These two different types of error can, to some extent,
cancel each other out if they have opposite signs. Hence in
this example, the observed behaviour may be a consequence
of the discretisation error decreasing, whilst the model error
stays the same as the resolution becomes finer, leading to an
apparent increase in the total error.

For our MLMF simulation, we use grids with 2l mesh
cells in both SFINCS and XBeach, where the coarsest grid
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Figure 5. Comparing the real and modified correlation values between SFINCS and XBeach to find water elevation at specific locations
in the non-breaking wave test case. Note that each colour represents a specific output location. (a) Absolute value of modified correlation
(Eq. 9). (b) Difference between absolute value of modified and real correlation.

size is l = 4 and the finest is l = 10, and consider nm ∼

N (0.03,0.01). Table 1 compares the computational cost of
running each of the models at these levels and shows that
SFINCS is always much faster than XBeach. As the level
number increases (i.e. the grid resolution becomes finer), un-
surprisingly, the cost of both models increases, and, after
level 8, this leads to the cost efficiency improvement from us-
ing SFINCS over XBeach increasing. The latter suggests that
computational efficiency improvements will increase as the
test case complexity increases and indicates that large com-
putational cost improvements can be made by using MLMF.
Before running the full MLMF algorithm (Algorithm 1), we
first run Step 1 to determine key MLMF parameter values
at each location. The left panel of Fig. 5 shows that using
the modified correlation in Eq. (9) means that SFINCS and
XBeach are well correlated for almost every output location
at every level, with almost perfect correlation at some loca-
tions. The worst correlation is at x = 2500 m, likely because
SFINCS struggles with accurately simulating the front of the
wave (see Fig. 4). The impact of using this modified corre-
lation formula is clearly shown in the right panel of Fig. 5,
which shows large increases in the modified correlation com-
pared to the original correlation, especially at level 6.

We can thus proceed to the next steps of the MLMF al-
gorithm and compare our MLMF results to the analytical
estimate (recall this is an estimate of the expected value of
the true solution rather than the true expected value because
of the uncertainty in nm). We also compare our MLMF re-
sults with those obtained using the MLMC approach with
SFINCS and XBeach separately. We initially use an accu-
racy tolerance of ε = 1× 10−3 in Eqs. (14) and (B7) to cal-
culate the optimum number of simulations for MLMF and
MLMC respectively. Note that, to calculate both the MLMC
and MLMF estimators at level 10 (the finest level consid-
ered in this test case), we require simulations at the previ-
ous levels too (see Eqs. B4 and 3). Therefore we can trun-
cate the MLMC and MLMF simulations and directly analyse
how the error changes on the addition of each extra level.

Table 1. Summary of average time taken to run SFINCS and
XBeach at each level for the non-breaking wave test case. As can be
seen from Eqs. (B4) and (3), at every level (apart from the coarsest
level) a pair of simulations at two different resolutions is required.
These resolutions are shown in the “grid resolution pair” column,
and we recall that the same resolutions are used in each model.

Average time for Cost Grid resolution
single-level run (s) ratio

XBeach SFINCS (ωl) pair (m)

Level 4 1.72 0.0548 31 5000/(24, )

Level 5 3.85 0.138 28 5000/(25,24)

Level 6 6.98 0.215 32 5000/(26,25)

Level 7 11.8 0.383 31 5000/(27,26)

Level 8 24.8 0.735 34 5000/(28,27)

Level 9 62.2 1.44 43 5000/(29,28)

Level 10 191 2.60 73 5000/(210,29)

Figure 6 shows that, in general, the error in both the single-
model MLMC approaches and the MLMF approach with re-
spect to the analytical estimate decreases as the grid resolu-
tion becomes finer. Furthermore, Fig. 6a shows that the er-
ror from MLMC with XBeach and MLMF are very similar.
In contrast, Fig. 6b shows that MLMC with SFINCS is sig-
nificantly less accurate than either MLMF or MLMC with
XBeach, again justifying our choices of HF and LF models.

The error to the analytical estimate shown in Fig. 6 in-
cludes both model error and discretisation error, but the main
error component reduced by MLMC and MLMF is the dis-
cretisation error. Thus, we isolate the discretisation error by
comparing the expected values of MLMF and MLMC to the
expected values from using the standard Monte Carlo method
with 500 000 simulations of XBeach at the finest resolution
considered (1024 mesh cells in the x direction). Note that to
run this Monte Carlo simulation takes 1000 core days or al-
most a month of wall clock time on the 40-core computer we
had available. Figure 7 shows that, as the level becomes finer,
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Figure 6. Error (RMSE) with respect to the analytical estimate for the final water elevation at the locations of interest in the non-breaking
wave test case, as the resolution level becomes finer. The x axis indicates the finest level considered by the MLMC and MLMF estimators
for that error, and both the error from using MLMF and the error from using MLMC with a single model are shown. Here a tolerance of
ε = 1× 10−3 is chosen in Eqs. (B7) and (14) for MLMF and MLMC respectively.

Figure 7. Error (RMSE) between the MLMF result and the Monte
Carlo (MC) result for the analytical estimate for the final water ele-
vation at the locations of interest in the non-breaking wave test case,
as the resolution level becomes finer. The x axis indicates the finest
level considered by the MLMC and MLMF estimators for that error.
Both the error from using MLMF and the error from using MLMC
with a single model are shown. Here a tolerance of ε = 1× 10−3 is
chosen in Eqs. (14) and (B7) for MLMF and MLMC respectively.

the error to the Monte Carlo result (i.e. the discretisation er-
ror) decreases uniformly for both MLMF and MLMC with
XBeach, showing MLMF and MLMC are working correctly.
Furthermore, as with the total error, the MLMF error and the
XBeach (MLMC) error are very similar.

All the test case results shown so far in this section use
the same accuracy tolerance of ε = 1× 10−3 in Eqs. (14)
and (B7). If MLMF is working as expected, the error in the
MLMF result should decrease as the ε value decreases. Thus
to verify this we re-run the test case using a range of tolerance
values. Figure 8 shows that, indeed as ε decreases, both the
error in the MLMF result and the error in the XBeach MLMC
result decrease (with respect to the Monte Carlo result). More

importantly, the MLMF error is of the same order of magni-
tude as the XBeach MLMC error. Furthermore, Fig. 9 shows
that MLMF achieves this accuracy using significantly fewer
HF simulations, with generally a difference of 1 order of
magnitude. To do so, MLMF also requires (rl + 1)NHF

l LF
simulations. Figure 10 shows that rl is approximately 10 at
all levels for this test case (i.e. O(10) times more LF simula-
tions are required than HF simulations), a small factor given
the computational cost savings shown in Table 1 from using
SFINCS. Figure 9 also shows that the optimum number of
XBeach simulations required for both MLMC and MLMF
does not decrease uniformly but instead increases at level 10
relative to the coarser level 9 for a large ε. However, the num-
ber of simulations is so small (less than 10 and also less than
the total number of processing cores used) that this does not
make a significant difference to the computational cost. Thus,
overall, Figs. 9 and 10 suggest that notable computational
cost savings can be made in this test case by using MLMF.

As discussed in Sect. 2.2, we can use the modified inverse
transform sampling method of Eq. (17) to also generate the
cumulative distribution function (CDF) from the MLMF out-
puts (here produced using ε = 1× 10−3). These can then be
used to readily assess the likelihood of a certain high water
level occurring and greatly improve our understanding of the
test case. Figure 11 demonstrates how the CDF generated in
this manner agrees qualitatively with the CDF generated us-
ing Monte Carlo outputs. Using this figure we can determine,
for example, that the elevation height at x = 2500m is very
certain, but at x = 1000m there is an almost equal probability
that it could be less than 1.5 m or more than 2.5 m. In physical
terms, this means that friction is important for determining
the slope of the final water level close to the boundary, but
the final wave-front shape is more stable and less affected
by friction. The agreement between the MLMF and Monte
Carlo CDFs is quantified in Table 2, where we calculate the
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Figure 8. Error (RMSE) between the MLMF result and the Monte
Carlo (MC) result as the tolerance value ε in Eq. (14) is varied in the
non-breaking wave test case. This is compared to the error (RMSE)
when varying ε in Eq. (B7) when using MLMC with XBeach.

Figure 9. Optimum number of XBeach (HF) simulations required
by MLMF (Eq. 14) and MLMC (Eq. B7) for the non-breaking wave
test case. The number required by MLMF is always substantially
fewer than that required by MLMC.

L2 error norm and maximum error norm between them. Note
that we evaluate the CDFs at 100 equally spaced points, and,
therefore, the implementation of the L2 error norm is equiv-
alent to calculating the RMSE between the two CDFs. The
small error norms in Table 2 give us confidence in our new
modified inverse transform sampling method’s ability to ac-
curately generate CDFs.

Finally, throughout this section, we have assumed that
either we can approximate the expected value of the true
solution or we can approximate the expected value of the
XBeach simulation by using Monte Carlo with large num-
bers of simulations at fine resolutions. However, if MLMF
is to be of use, we need to apply it to cases where the
“true” value is not known. In these cases, the only param-
eter the practitioner can use to check accuracy is the toler-
ance value ε in the constraint of Eq. (12), which we recall
here is Var

[
Q̂

HF,CV
ML

]
< ε2/2. Figure 12 compares the com-

putational cost required by MLMF, MLMC and the Monte

Figure 10. Factor of total LF simulations (rl+1) required by MLMF
compared to number of HF simulations for the non-breaking wave
test case, where rl is Eq. (13).

Figure 11. CDFs generated from MLMF outputs using the modified
inverse transform sampling method (Eq. 17) compared with those
generated using Monte Carlo (MC) outputs for the non-breaking
wave test case.

Carlo method to satisfy this constraint. MLMC and MLMF
ensure this through the formulae for the optimum number of
simulations and, thus, for these methods, ε is plotted against
the computational cost of the optimum number of simula-
tions used. For the Monte Carlo method, the value of ε is
equal to the square root of twice the variance calculated after
each simulation and is plotted against the time taken to run
that number of simulations. This is an imperfect measure of
accuracy for Monte Carlo but the best available to us. Fig-
ure 12 shows that, even for this simple test case, MLMF is
more than a hundred times faster than Monte Carlo and, on
average, 5 times faster than MLMC combined with XBeach
alone. This is a very promising result for such a simple 1D
test case and suggests that MLMF represents a good method
for improving computational efficiency whilst still achieving
accurate results.
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Table 2. L2 error norm and maximum error norm between the MLMF and Monte Carlo CDFs for the non-breaking wave test cases. Note
that the error norms are unitless because the CDFs are unitless.

Test case L2 Error norm Max error norm

Non-breaking wave test case – 1000 m 1.5× 10−2 4.5× 10−2

Non-breaking wave test case – 1500 m 1.4× 10−2 4.0× 10−2

Non-breaking wave test case – 2000 m 1.6× 10−2 7.1× 10−2

Non-breaking wave test case – 2500 m 9.3× 10−3 3.9× 10−2

Figure 12. Comparing the computational cost required to achieve
tolerance ε using MLMF, XBeach with MLMC and the Monte
Carlo method for the non-breaking wave test case.

3.2 Carrier–Greenspan test case

For our second test case, we consider the 1D Carrier–
Greenspan test case, first introduced in Carrier and
Greenspan (1958), where a harmonic, non-breaking infra-
gravity wave travels over a plane sloping frictionless beach.
This test case is more complex than our first case because it
requires the simulation of run-up and run-down, but Leijnse
(2018) and Leijnse et al. (2021) show it can be successfully
simulated using both SFINCS and XBeach. Following these
works, we generate a wave train using a varying elevation
boundary condition at the inlet, which results in a wave pe-
riod of 48 s.

In this section, we evaluate the uncertainty associated with
the linear bed slope and assume it has a normal distribution,
with slope ∼N (0.04,0.02). Note that any samples below
0.005 (i.e. slope 1 : 200) are discarded because otherwise the
domain is completely wet. We choose the slope as our un-
certain parameter because it represents a significant source
of uncertainty, as discussed in Unguendoli (2018), particu-
larly when simulating run-up and run-down as is the case
here. The remaining parameters are the same as those used
in Leijnse (2018); in particular, the length in the x direction
is 150 m, and the simulated period is 384 s. An advantage of
the Carrier–Greenspan test case is that there exists an ana-

Figure 13. Comparing the maximum elevation height achieved at
every point in the domain over the entire simulation when using
SFINCS and XBeach at dx = 2.3m and dx = 4.7m (corresponding
to 64 and 32 mesh cells in the x direction respectively) with the an-
alytical result for the Carrier–Greenspan test case. A slope of 0.041
is used in all simulations. Note that the water elevation height does
not always meet the bed level because the bed level is slightly dif-
ferently defined at the different resolutions.

lytical result. A full derivation of the analytical result used
in our work is given in Carrier and Greenspan (1958) and
is based on solving the dimensionless inviscid shallow-water
equations where friction is ignored.

When a wave runs up a slope, often the quantity of most
interest is not the water depth at a particular location in time
but, instead, the (maximum) run-up height. Thus, for this
test case, our quantity of interest is the maximum run-up
height over the whole simulated period. Here we take the
run-up height to be the water elevation above a fixed datum
in the last wet cell in the domain (water depths higher than
0.005 m). We first test how the maximum elevation height
over the whole domain depends on the resolution and model
used in the simulation. Figure 13 shows that both models at
both resolutions underpredict the run-up height relative to the
analytical result and that, whilst the XBeach high-resolution
result is the most accurate and the SFINCS low-resolution
result is the least accurate, the high-resolution result using
SFINCS is better than the low-resolution result of XBeach,
which is a promising outcome.
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Table 3. Summary of average time taken to run SFINCS and
XBeach at each level for the Carrier–Greenspan test case. As can be
seen from Eqs. (B4) and (3), at every level (apart from the coarsest
level) a pair of simulations at two different resolutions is required.
These resolutions are shown in the “grid resolution pair” column,
and we recall that the same resolutions are used in each model.

Average time for Cost Grid resolution
single-level run (s) ratio

XBeach SFINCS (ωl) pair (m)

Level 5 2.86 0.66 4 150/(25, )

Level 6 8.57 1.17 7 150/(26,25)

Level 7 17.3 1.12 15 150/(27,26)

Level 8 35.4 1.15 31 150/(28,27)

Level 9 76.6 1.33 58 150/(29,28)

Figure 14. Comparing the real and modified correlation values
between SFINCS and XBeach to determine the maximum run-up
height in the Carrier–Greenspan test case.

For our MLMF simulation, we use grids with 2l mesh cells
in both SFINCS and XBeach, where the coarsest grid size is
l = 5 and the finest is l = 9. Table 3 compares the computa-
tional cost of running each of the models at these levels and
shows that, as with the previous test case, SFINCS is always
much faster than XBeach. As the resolution becomes finer,
the computational cost of XBeach increases, but the com-
putational cost of SFINCS remains relatively constant. We
hypothesise this is because there is always a start-up cost to
begin the SFINCS model run, and this dominates the overall
cost for such a small test case with a short runtime. As with
the previous test case, the cost ratio between SFINCS and
XBeach increases as the resolution becomes finer, which is
again a promising indication of the efficiency gains we can
expect from using MLMF. Before running the full MLMF
algorithm (Algorithm 1), we determine the values of key
MLMF parameters using Step 1. The correlation is of par-
ticular interest, and Fig. 14 shows that using the modified
correlation formula of Eq. (9) leads to increased correlation
between the two models at all levels, although this increase
is small.

Running the next steps in the MLMF algorithm, we can
compare our MLMF results to the analytical estimate and to
the Monte Carlo result estimated using 400 000 simulations
of XBeach at the finest resolution (512 mesh cells in the x di-
rection), which takes almost 400 d of core time to run. Note
that, as in the previous test case, due to the uncertainty in the
slope, the analytical estimate is not the “true” expected value
but instead an estimate of the expected value of the true so-
lution. We also run the MLMC algorithm with SFINCS and
XBeach separately. Note that we initially choose a tolerance
of ε = 1×10−3 in Eqs. (14) and (B7) for MLMF and MLMC
respectively. As in the previous test case, we can truncate the
MLMC and MLMF simulations at intermediate levels and di-
rectly analyse how the error changes on the addition of each
extra level. Figure 15a shows that the error to the analytical
estimate decreases uniformly for all methods, indicating that
the error could be further decreased by using finer levels of
resolution. Furthermore the figure shows that the error using
MLMF and MLMC with XBeach is lower than that using
SFINCS. This justifies that XBeach is the HF model for this
test case and that the MLMF approach can achieve the same,
or lower, error than using only the HF model. Furthermore,
Fig. 15b shows a similar trend for the error to the Monte
Carlo result, with the error decreasing uniformly for all meth-
ods and having a similar value for MLMF and MLMC with
XBeach.

So far in this section we have only considered a single tol-
erance value. Therefore, we re-run this test case using differ-
ent tolerance values ε in Eqs. (14) and (B7) for MLMF and
MLMC respectively. Figure 16 shows that the MLMF and
XBeach MLMC errors decrease as the tolerance decreases.
Most importantly, this figure shows that MLMF is approxi-
mately as accurate as using MLMC with XBeach. Addition-
ally, Fig. 17 shows that the optimum number of HF simula-
tions required by the MLMF algorithm to achieve this accu-
racy is always less than that required by MLMC. To achieve
this, MLMF also requires (rl + 1)NHF

l LF simulations, and
Fig. 18 shows that rl is less than 10 at all levels for this test
case. Furthermore, at level 7 (and, to a lesser extent, level 8),
the difference between the optimum number of simulations
required is smaller than at other levels because the correlation
between SFINCS and XBeach is lower (see Fig. 14), mean-
ing MLMF and MLMC with XBeach are almost equivalent.
This is also reflected in a lower factor of total LF simulations
in Fig. 18. This highlights the importance of choosing two
closely correlated models to ensure optimum efficiency from
using the MLMF method.

As in the previous test case, we can apply the modified
inverse transform sampling method to the MLMF output
(from using ε = 1× 10−3) to generate a CDF. This CDF
can be used to readily assess flooding potential; for exam-
ple, Fig. 19 shows that the probability the run-up height will
exceed 5.48 m is 5 %. This information can then be used, for
example, to inform a local authority that it would be unwise
to place a permanent building structure below this height, but
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Figure 15. Error (RMSE) in the maximum run-up height as the resolution level becomes finer for the Carrier–Greenspan test case. The
x axis indicates the finest level considered by the MLMC and MLMF estimator for that error and the errors from using MLMF and from
using MLMC with a single model are both shown. A tolerance of ε = 1× 10−3 is used in Eqs. (14) and (B7) for MLMF and MLMC
respectively.

Figure 16. Error (RMSE) between the MLMF result and the Monte
Carlo (MC) result for the Carrier–Greenspan test case as the tol-
erance value ε in Eq. (14) is varied. This is compared to the error
when varying ε in Eq. (B7) for MLMC with XBeach.

a temporary beach structure might be alright. Figure 19 also
shows that the CDF generated using MLMF outputs agrees
fairly well with the Monte Carlo-generated CDF. We have
quantified the agreement between the two CDFs in Table 4,
where we calculate the L2 error norm and maximum error
norm between them. The maximum error norm is larger here
than for the previous test case because MLMF struggles to
represent the steep change in the CDF at around 5.3 m. How-
ever, the L2 error norm, which we recall is equivalent to the
RMSE between the two CDFs, is small and indicates that
overall the MLMF-generated CDF represents a good approx-
imation and gives further confidence in our ability to accu-
rately generate CDFs from MLMF outputs.

Finally, as discussed in the previous test case, in reality, the
“true” value of the quantity of interest is not always known,
and the only parameter available to check accuracy is the tol-

Figure 17. Optimum number of XBeach (HF) simulations required
by MLMF (Eq. 14) and MLMC (Eq. B7) for the Carrier–Greenspan
test case. The number required by MLMF is always substantially
fewer than that required by MLMC.

Table 4. L2 error norm and maximum error norm between the
MLMF and Monte Carlo CDFs for the Carrier–Greenspan test
cases. Note that the error norms are unitless because the CDFs are
unitless.

Test case L2 Error norm Max error norm

Carrier–Greenspan 2.7× 10−2 2.3× 10−1

test case

erance value ε. Figure 20 compares the computational cost
required by MLMF, MLMC and the Monte Carlo method
to satisfy the constraint of Eq. (12) which we recall here is
Var

[
Q̂

HF,CV
ML

]
< ε2/2. As before, for MLMC and MLMF, ε

is the tolerance and is plotted against the cost required to run
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Figure 18. Factor of total LF simulations (rl+1) required by MLMF
compared to number of HF simulations for the Carrier–Greenspan
test case, where rl is Eq. (13).

Figure 19. CDFs generated from MLMF outputs using the mod-
ified inverse transform sampling method (Eq. 17) compared with
those generated using Monte Carlo (MC) outputs, for the Carrier–
Greenspan test case.

the optimum number of simulations for this ε. However, for
Monte Carlo, ε is the square root of twice the variance cal-
culated after each simulation and is plotted against the time
taken to run that number of simulations. Thus, Fig. 20 shows
that using MLMF is at least 3 times as efficient as the Monte
Carlo method for the same tolerance, and using MLMC is
at least twice as efficient. Whilst these improvements from
using MLMF versus MLMC are not as notable as for the
previous test case, they nevertheless show that even small
differences between the number of optimum HF simulations
(see Fig. 17) are sufficient for MLMF to be more efficient
than MLMC.

3.3 Myrtle Beach

The test cases considered so far in this work have been
relatively simple 1D idealised test cases. For our final test
case, we consider the real-world test case of a dune system

Figure 20. Comparing the computational cost required to achieve
tolerance ε using MLMF, XBeach with MLMC and the Monte
Carlo method for the Carrier–Greenspan test case.

near Myrtle Beach, South Carolina, USA (see Fig. 21). The
bed level data of the specific beach of interest are shown in
Fig. 22. The goal of this test case is to estimate the maximum
water depth (with respect to the bed level) due to flooding at
various locations. Over the coming decades, climate change
will lead to changing water levels, but the actual change at
specific locations is uncertain, which in turn leads to uncer-
tainty in the impact of flooding from future storms. Thus, in
this test case, we consider the offshore water level to be un-
certain.

As in the previous test cases, we use XBeach as the HF
model and SFINCS as the LF model in the MLMF algorithm.
To simulate the waves in XBeach we use the surfbeat model
mode with the JONSWAP (Joint North Sea Wave Project)
wave spectrum (Hasselmann et al., 1973) and set the signif-
icant wave height equal to 4 m, the peak wave period equal
to 12 s, the peak enhancement factor (used to alter the spec-
trum for fetch-limited oceans) equal to 3.3 and the main wave
angle perpendicular to the shore equal to 124.3◦. Note that,
as discussed in Sect. 1, SFINCS does not explicitly simulate
short waves (representing here a simplification in the setup
of the LF model), and therefore we do not have to define
a wave spectrum for it. In order to accurately model waves
in the HF model of XBeach, we need a long stretch of wa-
ter before the waves reach the beach, which is not present
in the domain in Fig. 22. Therefore, we extend the domain
offshore, as shown in Fig. 23, when running XBeach but, for
reasons of computational cost, use the original smaller do-
main in SFINCS. For the larger XBeach domain, we main-
tain a uniform grid spacing in the original domain region
(i.e. the region where both SFINCS and XBeach are simu-
lated) so that the grids in each model are the same in that
region. In the extended part of the domain, however, we vary
the cross-shore grid resolution depending on the bed level
so as to make XBeach more computationally efficient (see
Fig. 23). The original non-extended domain is [0, 1000] m
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Figure 21. Location of area of interest in the Myrtle Beach test case. Source: © Google Maps 2021.

Figure 22. Bed level data for original non-extended domain of the
Myrtle Beach test case with locations of interest marked with a cir-
cle. The locations are colour-coded, and these colours are used to
represent them throughout this section. Note that x and y are the
Universal Transverse Mercator (UTM) coordinates for the global
zone that Myrtle Beach is located in (17N).

in Fig. 23, and the extended part is [−5250, 0] m. Note that
we use the cross-shore grid size of the original non-extended
domain as a lower bound for the grid size in the extended do-
main. Therefore the grid in the extended domain also varies
at each level so as to make the cost comparisons between the
levels fair. Finally, the grid size parallel to the shore is kept
constant (10 m) for simplicity and because in this test case
we are most interested in cross-shore changes.

As this is a real-world study, we must also consider tides.
These tides can have a large impact on coastal flooding, and
thus, for this test case, we evaluate the uncertainty in the
maximum tide height htide. In both SFINCS and XBeach,
tides are modelled using a varying elevation height bound-
ary condition at the offshore open boundary, and in this test
case this boundary condition follows

tide(t)=


htide
3600 t 0s≤ t ≤ 3600s,
htide 3600s< t ≤ 7200s,

−
htide
3600 (t − 10800) 7200s< t ≤ 10800s,

(19)

which approximates a slightly sped up tidal signal relative
to real-world tides, for reasons of computational cost. Note
that we run the simulation for 3 h (10 800 s). Due to the pres-
ence of a wave component in XBeach, we expect it to simu-
late overtopping significantly more accurately than SFINCS.
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Figure 23. Varying cross-shore grid resolution based on the bed
level in the extended XBeach domain. In the original non-extended
domain, the cross-shore resolution is 2 m, and thus a maximum res-
olution of 2 m is used in the extended domain. For illustration pur-
poses, we show the cross-shore cross-section on the left-hand side
edge of the domain.

To check whether MLMF still holds for problems with over-
topping, we assume that the maximum tide height has the
distribution htide ∼N (5,0.75)m so as to ensure overtop-
ping of the first row of dunes which are approximately 4 m
high (see Fig. 23). The quantity of interest is then the maxi-
mum water depth at eight different locations in the domain,
which are marked with coloured circles in Fig. 22. Note that
these colours are used to identify these locations in all fig-
ures throughout this section. Figure 24 shows an example
of the maximum elevation height (relative to a fixed datum)
computed by an XBeach simulation for this test case overlaid
on a satellite image of the beach. The figure shows that for
this particular value of htide (4.97 m), a substantial amount of
overtopping occurs.

With the setup of the test case complete, we now consider
the MLMF setup. For the MLMF simulation, we use grids
with dψ × 2le mesh cells in the cross-shore direction in the
original non-extended domain, whereψ is a user-defined fac-
tor here set equal to 155/4. The coarsest grid size is l = 1,
and the finest grid size is l = 4. As the cross-shore distance in
the original non-extended domain is 1240 m, this means the
coarsest cross-shore resolution is 16 m, and the finest one is
2 m. Note that, throughout this test case, the resolution paral-
lel to the shore is kept constant (10 m) as discussed above. As
a first test, we compare how the values of the variable of in-
terest depend on which model is used and the grid resolution.
In order to be able to distinguish between the model results at
different locations, Fig. 25 shows the maximum water depth
(i.e. maximum water elevation height minus bed level) rather
than the maximum water elevation height, which is our vari-

Figure 24. Maximum elevation height (relative to a fixed datum)
from an example XBeach simulation for the Myrtle Beach test case,
showing overtopping. This has been simulated using the grid res-
olution from Fig. 23 and htide = 4.97m. The maximum elevation
height has been overlaid on a satellite image of the location, to high-
light the impact of coastal features on the elevation height.

able of interest. It shows that SFINCS results in lower predic-
tions of the maximum water depth compared to XBeach due
to the former omitting wave-driven processes and, to a lesser
extent, that the coarser resolution also results in an underpre-
diction in both SFINCS and XBeach. The difference between
the SFINCS and XBeach results is roughly the same at all lo-
cations. This simple shift is promising, as it means that the
models are likely to be correlated and MLMF can just adjust
for the shift in predicted values. Furthermore, the maximum
water depth in SFINCS and XBeach follows the same pattern
between locations, which is a promising result.

Table 5 compares the computational cost of running each
of the models at the levels considered and shows that, as with
the previous test cases, SFINCS is substantially faster than
XBeach. Unlike with the other test cases, the cost ratio be-
tween the two models decreases as the resolution becomes
finer. However, for this test case, the cost ratio is so large
that even with this decrease, SFINCS is still 400 times faster
than XBeach at the finest level. This indicates that substantial
computational savings can be made by using a multifidelity
approach in this complex real-world test case.

As with the previous test cases, before running the full
MLMF algorithm, we first analyse the values of key MLMF
parameters determined in Step 1 of the algorithm (Algo-
rithm 1). Figure 26 shows that the modified correlation of
Eq. (9) between SFINCS and XBeach generally decreases as
the resolution level increases and that, at the finest level, the
correlation is very low at some locations. The right panel of
Fig. 26 shows that the modified correlation method is very
beneficial in this test case because it results in a large in-
crease in correlation, especially at level 2. However, at the
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Figure 25. Comparing the maximum water depth achieved at the eight locations of interest using SFINCS and XBeach at two different
resolutions, for the Myrtle Beach test case. A maximum tide height of htide = 4.97m is used in all simulations.

Table 5. Summary of average time taken to run SFINCS and
XBeach at each level for the Myrtle Beach test case. As can be seen
from Eqs. (B4) and (3), at every level (apart from the coarsest level)
a pair of simulations at two different resolutions is required. These
resolutions are shown in the “grid resolution pair” column, and we
recall that the same resolutions are used in each model.

Average time for Cost Grid resolution
single-level run (s) ratio

XBeach SFINCS (ωl) pair (m)

Level 1 31 926 14 2236 32(21, )

Level 2 80 115 45 1769 32/(22,21)

Level 3 155 033 178 872 32/(23,22)

Level 4 388 664 963 403 32/(24,23)

finest levels, there is almost no increase in the correlation at
several locations. The conclusion from Fig. 26 is therefore
that, unsurprisingly, the benefits of the more complete and
complex physics implemented in XBeach become greater as
the mesh becomes finer.

Before running the full MLMF algorithm, we also con-
sider how to assess the accuracy of the MLMF algorithm for
this test case. This is a complex computationally expensive
real-world problem for which there is no analytical solution
and for which approximating a “true” solution using the stan-
dard Monte Carlo method at the finest resolution considered
is impractical (each simulation of XBeach at this resolution
takes on average 3 d). Therefore, to assess accuracy, we use
the following general theoretical formula for the root mean
squared error (RMSE):

RMSE=
√
E[(Ŷ −E[XL])2] + (E[XL] −E[X])2, (20)

where X is the true solution, XL is the solution on the finest
level (i.e. level L), and Ŷ can be either the MLMF estimator
Q̂HF
Ml

or the MLMC estimator ŶHF
Ml

. The first term in Eq. (20)
is the only term affected by whether MLMC or MLMF is

used. Therefore given that the purpose of this work is to ver-
ify MLMF, it is not important that the true solution X is
unknown. Instead, for this test case, we use the first term
(the estimator variance) as a proxy for the RMSE and esti-
mate it using the output generated in Step 1 of the MLMC
and MLMF algorithms. As in the previous test cases, we can
truncate the MLMC and MLMF simulations before the finest
level and thus directly analyse how the variance changes on
the addition of each extra level. Figure 27 shows how both the
MLMF variance of Eq. (6) and MLMC variance of Eq. (B5)
vary with level l. For both estimators at all locations, the
general trend is that the variance decreases as the resolu-
tion level increases. This is an important result because it
means that fewer simulations are required on the finer lev-
els. The MLMC variance, however, plateaus and then in-
creases slightly at some locations for the finer resolutions,
whereas the decrease in MLMF is more uniform, indicating
that MLMF is performing better than MLMC for this test
case. More importantly, the variance of the MLMF estimator
is 2 orders of magnitude smaller than that of the MLMC es-
timator. Thus, using the RMSE formula of Eq. (20), MLMF
is more accurate than MLMC, although this is difficult to de-
termine without an approximation to the “true” solution. The
smaller variance also means that MLMF will require fewer
HF simulations than MLMC and, therefore, be more compu-
tationally efficient.

Given these promising results, we can now run the full
MLMF algorithm (Algorithm 1), choosing a tolerance of
ε = 3× 10−2 in Eq. (14). Figure 28 shows the spatial repre-
sentation of the final expected value estimated using MLMF
at the locations of interest. It shows that the expected max-
imum elevation height grows as we move inland, especially
as the water gets funnelled into the inlet. This is a physically
realistic result and therefore gives us further confidence in
the accuracy of our MLMF algorithm. The optimum number
of HF simulations required to estimate the expected values
using MLMC and MLMF is shown in Fig. 29 and calculated
using Eqs. (14) and (B7) respectively with ε = 3×10−2. The
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Figure 26. Comparing the real and modified correlation values between SFINCS and XBeach to determine maximum water elevation at
eight specific locations in the Myrtle Beach test case. (a) Absolute value of modified correlation (Eq. 9). (b) Difference between absolute
value of modified and real correlation.

Figure 27. Comparing the different rates at which variance of the MLMF estimator (Eq. 6) and variance of the MLMC estimator for XBeach
(Eq. B5) decrease as the resolution becomes finer. The x axis indicates the finest level considered by the MLMC and MLMF estimator. Note
that the MLMF variance is 2 orders of magnitude smaller than the MLMC variance.

figure shows that, at all locations, this number decreases as
the resolution level increases for both MLMF and MLMC,
which is an important result for computational efficiency. An
interesting result from Fig. 29 is that locations 2 and 8 re-
quire the least number of HF simulations in both the MLMC
and MLMF algorithms, whilst locations 4 and 5 require the
most. When the locations of interest are offshore and loca-
tions 2 and 8 are the furthest offshore, the water elevation
there is relatively certain. In contrast, locations 4 and 5 are
further inland – at the inlet and behind the dune system – and
predicting elevation height at these locations is more uncer-
tain because it is dependent on the amount of overtopping
that has occurred; hence larger numbers of simulations are
needed to ensure accuracy.

More significantly, Fig. 29 shows that MLMF always re-
quires fewer XBeach (HF) simulations than MLMC, with the
biggest difference being at level 1, where MLMF requires
fewer simulations by an order of magnitude. This difference

can clearly be seen in Fig. 30 which shows the number of
HF simulations required by MLMC divided by the number
of those required by MLMF. As the level becomes finer, the
ratio decreases due to the lower correlation between the two
models at the finer levels seen in Fig. 26. Nevertheless, even
at the finest resolution level, MLMC still requires twice as
many simulations as MLMF, which is particularly signifi-
cant given how computationally expensive the test case is at
this resolution (see Table 5). MLMF requires fewer simula-
tions because it uses rlNHF

l LF simulations. Figure 10 shows
that rl is large at coarse levels, but given the computational
cost savings from using SFINCS shown in Table 5, this is
not an issue. Moreover, as the level number increases and
the SFINCS computational cost increases, rl decreases and
is much less than 10 at the finest level.

As in previous test cases, we can apply the modified in-
verse transform sampling method to the MLMF outputs (here
produced using ε = 3×10−2) to generate a CDF. As already
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Figure 28. Spatial representation of the expected value of the max-
imum elevation height estimated using MLMF with a tolerance of
ε = 3× 10−2 in Eq. (14).

Figure 29. Optimum number of XBeach (HF) simulations required
by MLMF (Eq. 14) and MLMC (Eq. B7) for the Myrtle Beach
test case. Here ε = 3× 10−3 in Eqs. (14) and (B7) for MLMF and
MLMC respectively.

mentioned, it is impractical to run a Monte Carlo simulation
for this test case, and thus, we cannot compare the MLMF-
generated CDF with the Monte Carlo-generated CDF as done
previously. However the small error norms in Tables 2 and
4 give confidence in the accuracy of the MLMF-generated
CDFs for this test case. Figure 32 shows the CDFs for this
test case at all eight locations and greatly improves our under-
standing of the test case. For example, the figure informs that
there is a small but significant probability of the maximum
elevation height at the inlet (location 5) exceeding 10 m. This
is despite the fact that the expected value is only 6.66 m (see
Fig. 28), which might have led the local authority to believe
that they were safe from a 10 m elevation height. This illus-
trates how important it is for the assessment of the impact of
extreme flooding that our MLMF algorithm can accurately
and efficiently calculate both the expected values and CDFs
of output variables.

Finally, we also consider how different tolerance values ε
in Eq. (14) affect our expectation results. The trend in the

Figure 30. Optimum number of XBeach (HF) simulations required
by MLMC divided by the optimum number required by MLMF for
the Myrtle Beach test case. Here ε = 3×10−3 in Eqs. (14) and (B7)
for MLMF and MLMC respectively.

Figure 31. Factor of total LF simulations (rl+1) compared to num-
ber of HF simulations, where rl is Eq. (13) for the Myrtle Beach
test case. Here ε = 3× 10−3 in Eqs. (14) and (B7) for MLMF and
MLMC respectively.

optimum number of HF simulations at each ε (not shown
here for brevity) follows that seen in Fig. 29: MLMF always
requiring fewer simulations than MLMC. Figure 33 shows
that the difference in the optimum number of HF simulations
required translates to MLMF being more than 3 times as ef-
ficient as MLMC for the same level of accuracy. For such
a complex real-world test case, this is a notable result. Al-
though it is impractical to conduct a full analysis using the
Monte Carlo method, we have run a Monte Carlo simulation
for approximately 3× 108 s (1100 simulations). This allows
us to conclude that, for the same tolerance, MLMF is over
6 times faster than Monte Carlo (calculating ε as

√
2Var[·] as

in the previous test cases). Although this is not a large factor,
given the high computational cost, this means that achieving
a tolerance of 0.03 takes an estimated 40 years of computa-
tional time using the Monte Carlo method compared to only
6 years of computational time using MLMF. Furthermore,
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Figure 32. CDFs generated from MLMF outputs using the modified inverse transform sampling method (Eq. 17).

Figure 33. Comparing the computational cost required to achieve
tolerance ε at all locations using MLMF, XBeach with MLMC and
Monte Carlo for the Myrtle Beach test case.

unlike MLMC and MLMF, Monte Carlo must always be run
for longer than strictly necessary to ensure convergence (see
Sect. 3.1 and 3.2). Therefore, this test case concretely demon-
strates that applying MLMF means we can conduct uncer-
tainty analysis of complex real-world problems in an accu-
rate and efficient manner that would have been unfeasible
using the standard Monte Carlo method.

4 Discussion: future extensions to our MLMF
methodology

This works aims to be a proof of concept demonstrating that
MLMF can be used for coastal flooding. Thus, whilst in real-
world cases there will be more than one uncertain input, to
meet this aim it is sufficient to consider only one uncertain
input parameter per test case. Adding more uncertain inputs
would increase the variance of the outputs, and thus all meth-
ods would require larger numbers of simulations and be more
computationally expensive. Note, however, that the method-

ology outlined in Sect. 2 remains the same irrespective of
the number of uncertain inputs and thus considering multiple
uncertain inputs will be the subject of future work.

Furthermore, for all methods in this work, we assess the
impact of uncertain input parameters by randomly sampling
values from a user-chosen distribution and then running the
models with these parameter values. This again meets the
aim of this work but is the simplest sampling approach. Nev-
ertheless, the flexibility of MLMC and MLMF means that
they can also be combined with other more sophisticated
sampling techniques that can further reduce the number of
model simulations needed. These complex techniques are out
of scope for this work, but we remark briefly upon them here.
One such technique is Latin hypercube sampling (McKay
et al., 2000), which splits the distribution into n equal parti-
tions (where n is the number of samples required), and a sam-
ple is then taken from each partition. This sampling approach
has been shown to improve computational efficiency when
used with both a standard Monte Carlo method (McKay
et al., 2000) and with MLMC (Xiong et al., 2022). Another
technique is evolutionary algorithms (Vikhar, 2016), which
are optimisation algorithms inspired by biological evolution
that start with an initial set of samples (population) and
evolve towards an optimal set. These have also been suc-
cessfully combined with MLMC in Pisaroni et al. (2019) to
further improve efficiency.

There are also other common techniques to improve the
efficiency of assessing uncertainty such as the Markov chain
Monte Carlo (MCMC) method and using machine learning
techniques as emulators. As with the sophisticated sampling
techniques, these can also be combined with MLMC and/or
MLMF to improve the methods further: both multilevel
Markov chain Monte Carlo algorithms (Dodwell et al., 2019)
and combining multifidelity samples with transfer learning
to train machine learning emulators (Chakraborty, 2021) are
fast growing areas of research, making them a promising av-
enue for further work.
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We conclude this section by observing that, although there
are more sophisticated techniques to assess uncertainty than
that applied in this work, the flexibility of the MLMF al-
gorithm means that it can easily be combined with other
more complex statistical approaches, leveraging the advan-
tages of both approaches. Whilst these combined approaches
are beyond the scope of this work, using these techniques on
coastal problems is an interesting and promising avenue for
further research.

5 Conclusions

In this work, we have presented the first successful applica-
tion of MLMF in the field of coastal engineering and one
of the first successful applications of this method in any
field. Using both idealised and real-world test cases, we have
shown that MLMF can significantly improve the compu-
tational efficiency of uncertainty quantification analysis in
coastal flooding for the same accuracy compared to the stan-
dard Monte Carlo method. In particular, we have demon-
strated that this enables uncertainty analysis to be conducted
in real-world coastal environments that would have been un-
feasible with the statistical methods previously applied in this
field. Using our new modified inverse transform sampling
technique, we are also able to accurately generate the cumu-
lative distribution function (CDF) for the output variables of
interest, which is of great value to decision makers. Further-
more, the expected values and CDFs of output variables can
be computed at multiple locations simultaneously with no
additional computational cost, demonstrating the flexibility
of MLMF. In future work, this will enable the construction
of large-scale maps showing the expected value and CDF of
variables of interest at all locations in the domain, facilitating
accurate and timely decision-making. Furthermore, we have
highlighted the benefits of using a multifidelity approach and
shown that using SFINCS as an LF model and XBeach as
an HF model makes MLMF notably more computationally
efficient than MLMC for the same or higher accuracy. Mul-
tifidelity approaches thus represent a very rewarding avenue
for further research, and our new model-independent easily
applicable MLMF wrapper written as part of this work will
greatly facilitate this research.

Finally, this efficient uncertainty quantification can be
used in the future for risk estimation. The latter assumes
that the same scenario happens repeatedly over a given
time period (e.g. rain events over a year) and requires fre-
quency information (e.g. how many times does a certain lo-
cation get flooded per time period). Thus, the information
gathered by using MLMF to probabilistically quantify the
variation/uncertainty in the different scenarios (e.g. rainfall
events) can be used in future work for risk estimation.

Appendix A: Multifidelity estimators

Generally, a multifidelity approach uses a low-fidelity model
to generate surrogate approximations for the outputs of a
high-fidelity model. If applied correctly, the resulting mul-
tifidelity estimator is then as accurate as the equivalent high-
fidelity one. There exist a number of different multifidelity
approaches (see Peherstorfer et al., 2018). MLMF uses the
control variate approach which we outline here following
Geraci et al. (2015) throughout. The multifidelity estimator
is unbiased and given by

Q̂
HF,CV
M,N = Q̂HF

M,N +αF

(
Q̂LF
M,N −E[QLF

M ]

)
, (A1)

where Q̂HF,CV
M,N is the estimator of the expected value of a

variable of interest, E[·] denotes expectation,M indicates the
fixed discretisation level and αF is a scalar. The value of αF
is determined by minimising the variance of Q̂HF,CV

M,N and is
given by

αF =−ρ

√√√√Var(Q̂HF
M,N )

Var(Q̂LF
M,N )

, (A2)

where ρ is the Pearson’s correlation coefficient for the HF
and LF estimators.

Equation (A1) assumes that E
[
QLF
M

]
is known, but this

is almost never true because we do not know the analytical
formula of the distribution of the variable of interest QLF

M .
Therefore, extra simulations of the LF model must be con-
ducted in order to estimate this quantity, with its number de-
noted by 1LF. Even though we use the same random num-
bers for the simulations to construct Q̂HF

M,N and Q̂LF
M,N (see

Fig. 2), in the literature the number of simulations is denoted
by NHF. The number of extra simulations for the LF model
is then 1LF

= rNHF, where the optimum value of r is de-
termined later. Thus, the overall computational cost C of the
multifidelity estimator is

C = CHF
+CLF(1+ r), (A3)

where CHF is the cost of running NHF simulations of the HF
model and CLF is the cost of running NHF simulations of the
LF model. Using Eq. (A1), the variance “Var” of the multifi-
delity estimator is

Var
[
Q̂

HF,CV
M,N

]
= Var

[
Q̂HF
M,N

](
1−

r

1+ r
ρ2
)
. (A4)

Note that ρ2 is less than one by definition, so r greater than
zero means the variance of the estimator is reduced through
using this method.

Appendix B: Multilevel Monte Carlo method (MLMC)

The multilevel Monte Carlo method (MLMC) was first intro-
duced in Giles (2008) and successfully applied in the field of
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coastal engineering in Clare et al. (2022). We refer the reader
to those two works for full details of the method and here
present a brief overview.

MLMC accelerates the Monte Carlo method by consider-
ing the problem at different levels of resolution in a multi-
level environment. It then uses linearity of expectations to
transform this multiresolution expectation to a single expec-
tation at the finest level L using the following formula:

E[XL] = E[Xlµ ] +
L∑
l=1

E[Xl −Xl−1]. (B1)

Here Xl denotes the numerical approximation to the ran-
dom variable X on level l of the multilevel environment pro-
duced by the model, where in our work X could be the water
elevation at a particular location, for example. Thus Xlµ and
XL denote the approximation on the coarsest (lµ) and finest
level (L) respectively. Each level l is defined by its grid size
hl , where

hl ∝M
−lT , (B2)

with T being the total length of the domain and M being the
integer factor the grid size is refined by at each level (follow-
ing standard practice, we useM = 2 throughout). This means
that as the level number l increases, the mesh becomes more
refined. Trivially, if the domain is multidimensional, then T
and hl are also multidimensional.

Equivalently to Eq. (B1), the MLMC expectation estima-
tor Ŷ is defined by

Ŷ =

L∑
l=lµ

Ŷl, (B3)

where Ŷl is the difference estimator for E[Xl−Xl−1] defined
as

Ŷl =

N
−1
lµ

∑Nlµ
i=1X

(i)
lµ

l = lµ,

N−1
l

∑Nl
i=1

(
X
(i)
l −X

(i)
l−1

)
l > lµ.

(B4)

Here Nl is the number of simulations at each level pair (l,
l− 1) and Nlµ is the number of simulations at the coarsest-
resolution level lµ. In this estimator, the same random num-
bers are used to construct the variablesXl andXl−1 to ensure
strong convergence (E[|Xl−Xl−1|] as the grid is refined). In-
dependence between the estimators at each level is enforced
by using different independent samples at each level mean-
ing Cov(Ŷi, Ŷj )= 0 if i 6= j and the variance formula can be
simplified to

Var[Ŷ ] = Var

 L∑
l=lµ

Ŷl

= L∑
l=lµ

N−1
l Var(Ŷl), (B5)

where Var denotes the variance.

A key factor when using the MLMC estimator is determin-
ing the optimum number of simulations to run at each level l
denoted by Nl . We want to balance the accuracy achieved
at the finer levels with the computational efficiency achieved
by running at coarser levels. This balance is achieved by fol-
lowing Giles (2008) and using the Euler–Lagrange method
to minimise the overall cost C defined by

L∑
l=lµ

NlCl, (B6)

with respect to the fixed overall variance ε2/2. Thus, the op-
timum number of simulations at each level is

Nl =

 2
ε2

√
Var(Ŷl)
Cl

 L∑
k=lµ

√
Var(Ŷk)Ck

 , (B7)

where Cl is the cost of running the model at level l and ε
should be seen as a user-defined accuracy tolerance.

However, this formula requires initial estimates of Var(Ŷl)
and Cl , and thus we follow Giles (2008) and run 50 initial
simulations (see Step 2 of Algorithm B1). To ensure this pro-
vides a good variance estimate, we also calculate the kurtosis
(still following Giles, 2008). Following standard practice, if
the kurtosis is greater than 100, this indicates that the vari-
ance estimate is poor and that the number of initial simula-
tions used is insufficient. In this work, we find 50 is always
sufficient, but for more complex test cases, a greater number
may be required. In our implementation of this algorithm,
these initial simulations are stored and used as part of the op-
timal number of simulations in the final estimator and thus
the total cost of running the algorithm is unaffected by these
initial simulations (see Step 4 of Algorithm B1).

Note further that when we are estimating multiple outputs
(i.e. when we consider multiple locations), we must calcu-
late Nl separately for each location. In the algorithm, we run
maxNl over all locations, and then when calculating the esti-
mator (Eq. B4) at each location, we subsample the optimum
number for that specific location from the full output.

We have now outlined MLMC and conclude with Algo-
rithm B1, which is a statement of the MLMC algorithm used
in this work.

Algorithm B1 Multilevel Monte Carlo method.

1: Start with L= 0.
2: Estimate the variance Var(ŶL) using an initial estimate

for the number of simulations NL.
3: Define optimal Nl for l = 0, . . .,L using (B7).
4: If the optimal Nl is greater than the number of simu-

lations you already have, evaluate the extra simulations
needed.

5: If L≥ 2, test for convergence.
6: If L < 2 or the algorithm has not converged, set L equal

to L+ 1 and return to Step 2.
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