Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-2419-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Elke Magda Inge Meyer
CORRESPONDING AUTHOR
Helmholtz-Zentrum Hereon, Institute of Coastal Systems, Geesthacht,
21502, Germany
Ralf Weisse
Helmholtz-Zentrum Hereon, Institute of Coastal Systems, Geesthacht,
21502, Germany
Iris Grabemann
Helmholtz-Zentrum Hereon, Institute of Coastal Systems, Geesthacht,
21502, Germany
Birger Tinz
Deutscher Wetterdienst, Hamburg, 20359, Germany
Robert Scholz
Deutscher Wetterdienst, Hamburg, 20359, Germany
Deutscher Wetterdienst, Leipzig, 04288, Germany
Related authors
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Nikolaus Groll and Iris Grabemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-5715, https://doi.org/10.5194/egusphere-2025-5715, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Climate change may alter wave patterns in the North Sea and Baltic Sea. By 2100, waves could shrink in the west but grow in the east and much of the Baltic, especially under high emissions. These shifts, noticeable by mid-century, may affect shipping and coasts. While trends are clear, uncertainties remain, so further research is essential.
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025, https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Short summary
In recent years, the western Baltic Sea has experienced severe storm surges. By analysing the individual contributions and the total water level, these events can be put into a climate perspective. It was found that individual contributions were not exceptional in all events, and no clear trend can be identified. Often the combination of the individual contributions leads to the extreme events of recent years. This points to the importance of analysing composite events.
Daniel Krieger and Ralf Weisse
EGUsphere, https://doi.org/10.5194/egusphere-2025-111, https://doi.org/10.5194/egusphere-2025-111, 2025
Short summary
Short summary
We analyze storms over the Northeast Atlantic Ocean and the German Bight and how their statistics change over past, present, and future. We look at data from many different climate model runs that cover a variety of possible future climate states. We find that storms are generally predicted to be weaker in the future, even though the wind directions that typically happen during storms occur more frequently. We also find that the most extreme storms may become more likely than nowadays.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Cited articles
Brecht, B. and Frank, H.: OptempS-MohoWif Optimierung empirischer
Sturmflutvorhersagen und Modellierung hoch auflösender Windfelder
(Teilprojekt B: Modellierung hoch auflösender Windfelder an der
deutschen Nordseeküste), https://izw.baw.de/publikationen/kfki-projekte-berichte/0/108_2_1_e36167.pdf (last access: 11 July 2022), 2015.
Buizza, R., Brönnimann, S., Haimberger, L., Laloyaux, P., Martin, M. J., Fuentes, M., Alonso-Balmaseda, M., Becker, A., Blaschek, M., Dahlgren, P., de Boisseson, E., Dee, D., Doutriaux-Boucher, M., Feng, X., John, V. O., Haines, K., Jourdain, S., Kosaka, Y., Lea, D., Lemarié, F., Mayer, M., Messina, P., Perruche, C., Peylin, P., Pullainen, J., Rayner, N., Rustemeier, E., Schepers, D., Saunders, R., Schulz, J., Sterin, A., Stichelberger, S., Storto, A., Testut, C., Valente, M., Vidard, A., Vuichard, N., Weaver, A., While, J., and Ziese, M.: The EU-FP7 ERA-CLIM2 Project Contribution to Advancing Science and Production of Earth System Climate Reanalyses, B. Am. Meteorol. Soc., 99, 1003–1014, 2018.
Callies, U., Plüß, A., Kappenberg, J., and Kapitza, H.: Particle
tracking in the vicinity of Helgoland, North Sea: a model comparison, Ocean
Dynam., 61, 2121–2139, https://doi.org/10.1007/s10236-011-0474-8, 2011.
Casulli, V. and Cattani, E.: Stability, accuracy and efficiency of a
semi-implicit method for three-dimensional shallow water flow, Comput. Math.
Appl., 27, 99–112, 1994.
Cavaleri, L., Bajo, M., Barbariol, F., Bastianini, M., Benetazzo, A.,
Bertotti, L., Chiggiato, J., Ferrarin, C., Trincardi, F., and Umgiesser, G.: The 2019 Flooding of Venice and its implications for future
predictions, Oceanography, 33, 42–49, https://doi.org/10.5670/oceanog.2020.105, 2020.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,
Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M.,
Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F.,
Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century
Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cram, T. A., Compo, G. P., Yin, X., Allan, R. J., McColl, C., Vose, R. S.,
Whitaker, J. S., Matsui, N., Ashcroft, L., Auchmann, R., Bessemoulin, P., Brandsma, T., Brohan, P., Brunet, M., Comeaux, J., Crouthamel, R., Gleason, B. E., Groisman, P. Y., Hersbach, H., Jones, P. D., Jónsson,
T., Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G., Lorrey, A., Lott, N., Lubker, S. J., Luterbacher, J., Marshall, G. J., Maugeri, M., Mock, C. J., Mok, H. Y., Nordli, Ø., Rodwell, M. J., Ross, T. F., Schuster, D., Srnec, L., Valente, M. A.,
Vizi, Z., Wang, X. L., Westcott, N., Woollen, J. S., and Worley, S. J.: The
International Surface Pressure Databank version 2, Geosci. Data J., 2,
31–46, https://doi.org/10.1002/gdj3.25, 2015.
Deutsches Gewässerkundliches Jahrbuch (DGJ):
Küstengebiet der Nordsee 2013, Landesamt
für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein Flintbek, ISSN
2193-6374, 2014.
Deutsches Institut für Normung e.V.: Hydrologie, Teil: 3 Begriffe zur quantitativen Hydrologie, Berlin, DIN 4049-3:
1994-10, Beuth Verlag GmbH, 10772 Berlin, 1994.
DWD: The signal stations along the North and Baltic Sea coasts,
https://www.dwd.de/EN/ourservices/signal_stations/signalstations.html (last access: 7 July 2022), 2022.
Feuchter, D., Jörg, C., Rosenhagen, G., Auchmann, R.,
Martius, O., and Brönnimann, S.: The 1872 Baltic Sea
storm surge, in: Weather extremes during the past 140 years, edited by: Brönnimann, S. and Martius, O.,
Geographica Bernensia G89, 91–98, https://doi.org/10.4480/GB2013.G89.10, 2013.
Gaslikova, L. and Weisse, R.: coastDat-2 TRIM-NP-2d Tide-Surge North Sea, World Data Center for Climate (WDCC) at
DKRZ [data set], https://doi.org/10.1594/WDCC/coastDat-2_TRIM-NP-2d, 2013.
Gaslikova, L., Grabemann, I., and Groll, N.: Changes in North Sea storm
surge conditions for four transient future climate realizations, Nat. Hazards,
66, 1501–1518, https://doi.org/10.1007/s11069-012-0279-1, 2013.
Hasse, L.: Note on the Surface-to-Geostrophic Wind Relationship from
Observations in the German Bight, Bound.-Lay. Meteorol., 6, 197–201, https://doi.org/10.1007/BF00232484,
1974.
Hawkins, E., Burt, S., Brohan, P., Lockwood, M., Richardson, H. Roy, M., and
Thomas, S.: Hourly weather observations from the Scottish Highlands
(1883–1904) rescued by volunteer citizen scientists, Geosci. Data, 6,
160–173, https://doi.org/10.1002/gdj3.79, 2019.
Homeier, H., Stephan H.-J., and Niemeyer, H. D: Historisches Kartenwerk
Niedersächsische Küste der Forschungsstelle Küste, in: Berichte
der Forschungsstelle Küste, Band 43/2010, edited by:
Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten-
und Naturschutz (NLWKN) – Forschungsstelle Küste, Norderney, 2010.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys. Res., 112,
C08003, https://doi.org/10.1029/2006JC004033, 2007.
Kaiserliche Marine: Wetterbericht, Deutsche Seewarte, 1906.
Kapitza, H.: MOPS – A Morphodynamical Prediction System on Cluster Computers,
in: High performance computing for computational science-VECPAR 2008, edited by: Laginha, J. M., Palma, M., Amestoy, P. R., Dayde, M., Mattoso, M., and Lopez, J.,
Lecture Notes in Computer Science, Springer, pp. 63–68, https://doi.org/10.1007/978-3-540-92859-1_8, 2008.
Küste 33: Ingenieurkommision des Niedersächsischen Ministers für
Ernährung, Landwirtschaft und Forsten: Erfahrungen und Folgerungen aus
den Januar-Sturmfluten 1976 für den Küstenschutz in Niedersachsen,
Die Küste, 33, 1–70, 1979.
Laloyaux, P, de Boisseson, E, Balmaseda, M., Bidlot, J.-R., Broennimann, S., Buizza, R., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H., Kosaka, Y., Martin, M., Poli, P. , Rayner, N., Rustemeier, E., and Schepers, D.: CERA-20C: A coupled reanalysis of the twentieth
century, J. Adv. Model. Earth Sys., 10, 1172–1195,
https://doi.org/10.1029/2018MS001273, 2018.
Lyard, F., Lefèvre, F., Letellier, T., and Francis, O.: Modelling the
global ocean tides: a modern insight from FES2004, Ocean Dynam., 56,
394–415, 2006.
McBride, R. A., Anderson, J. B., Buynevich, I. V., Cleary, W. J., Fenster,
M. S., FitzGerald, D. M., Harris, M. S., Hein, C. J., Klein, A. H. F., Liu,
B., and Wang, P.: Morphodynamics of Barrier Systems: A Synthesis, Treatise
on Geomorphology, Academic Press, 166–244, https://doi.org/10.1016/B978-0-12-374739-6.00279-7, 2013.
Meyer, E.: Reconstruction of the 1906 Storm Tide in the German Bright using
TRIM-NP, FES2004, and ECMWF ERA-20C and CERA-20C reanalyses data, World Data
Center for Climate (WDCC) at
DKRZ [data set], https://doi.org/10.26050/WDCC/storm_tide_1906_ERA-CLIM, 2021a.
Meyer, E.: Reconstruction of the 1906 Storm Tide in the German Bright using
TRIM-NP, FES2004, and NOAA-CIRES-DOE Twentieth Century Reanalysis (20CR)
version 2c and 3, World Data Center for Climate (WDCC) at
DKRZ [data set], https://doi.org/10.26050/WDCC/storm_tide_1906_20CR, 2021b.
Meyer, E., Weisse, R., and Böttinger, M.: The storm tide in March
1906, TIB [video supplement], https://doi.org/10.5446/49529, 2020.
Meyer, E., Scholz, R., and Tinz, B.: Reconstruction of the 1906 Storm Tide
in the German Bright using TRIM-NP, FES2004, and DWD weather data, World
Data Center for Climate (WDCC) at
DKRZ [data set], https://doi.org/10.26050/WDCC/storm_tide_1906_DWD_reconstruct, 2021.
NLWKN: Niedersächsischer Landesbetrieb
für Wasserwirtschaft, Küsten- und
Naturschutz: Generalplan Küstenschutz Niedersachsen/Bremen-Festland, https://www.nlwkn.niedersachsen.de/startseite/hochwasser_kustenschutz/kustenschutz/generalplane_fur_insel_und_kustenschutz/generalplan-kuestenschutz-45183.html (last access: 7 July 2022), 2007.
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger, M.,
Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T. M., Schulz, A., Elizalde, A., and Eden, C.: An evaluation of the
North Sea circulation in global and regional models relevant for ecosystem
simulations, Ocean Model., 116, 70–95, https://doi.org/10.1016/j.ocemod.2017.06.005,
2017.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G., Peubey, C., Theìpaut, J.-N., Treìmolet, Y.,
Hoìlm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.:ERA-20C: an
atmospheric reanalysis of the Twentieth Century, J. Climate, 29, 4083–4097,
https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Rosenhagen, G. and Bork, I.: Rekonstruktion der Sturmflutwetterlage vom 13.
November 1872, Die Küste, 75, MUSTOK, 51–70, 2009.
Schaper, J., Ulm, M., Arns, A., Jensen, J., Ratter, B., and Weisse, R.:
Transdisziplinäres Risikomanagement im Umgang mit
extremen Nordsee-Sturmfluten: Vom Modell zur Wissenschafts-Praxis-Kooperation, Die Küste, 87, 75–114, https://doi.org/10.18171/1.087112, 2019.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D.,
Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J.,
Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R.,
Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E.,
Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le
Blancq, F., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W.
K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C.,
Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K.,
and Wyszyński, P.: Towards a more reliable historical reanalysis:
Improvements for version 3 of the Twentieth Century Reanalysis system,
Q. J. Roy. Meteorol. Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598, 2019.
Streicher, M., Kristandt, J., and Knaack, H.: Optimierung Empirischer
Sturmflutvorhersagen (OptempS-MohoWif A), Niedersäsischer Landesbetrieb
für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), 2015.
van Bebber, W. J.: Bemerkenswerte Stürme, Annalen der Hydrographie und maritimen Meteorologie: Zeitschr. für Seefahrt u. Meereskunde/Deutsche Seewarte in Hamburg,
ISSN 0174-8114,
OCLC-Nr. 183317596, 1906.
Wagner, D., Tinz, B., and von Storch, H.: Signal Stations: Newly Digitized
Historical Climate Data of the German Bight and the Southern Baltic Sea
Coast, J. Atmos. Oceanic Technol., 33, 2735–2741,
https://doi.org/10.1175/JTECH-D-15-0199.1, 2016.
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East...
Special issue
Altmetrics
Final-revised paper
Preprint