Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-1683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Department of Hydrodynamics and Data Assimilation, Institute of Coastal Systems-Analysis and Modelling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Joanna Staneva
Department of Hydrodynamics and Data Assimilation, Institute of Coastal Systems-Analysis and Modelling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Sebastian Grayek
Department of Hydrodynamics and Data Assimilation, Institute of Coastal Systems-Analysis and Modelling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Johannes Schulz-Stellenfleth
Department of Hydrodynamics and Data Assimilation, Institute of Coastal Systems-Analysis and Modelling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Jens Greinert
DeepSea Monitoring, Marine Geosystems, GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
Related authors
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
Short summary
Marine heatwaves (MHWs), which are the unusually warm periods in the ocean, are becoming more frequent and lasting longer in the northwest European Shelf (NWES), particularly near the coast, from 1993 to 2023. However, thermal stratification is weakening, implying that the sea surface warming caused by MHWs is insufficient to counteract the overall stratification decline due to global warming. Moreover, the varying salinity has a notable impact on the trend of density stratification change.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet, 5-opsr, 19, https://doi.org/10.5194/sp-5-opsr-19-2025, https://doi.org/10.5194/sp-5-opsr-19-2025, 2025
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews methods to represent river runoff in operational ocean forecasting systems, from coarse-resolution models to coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global to coastal operational systems, highlighting challenges and future directions.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego A. Narvaez, Heather Regan, Claudia G. Simionato, Gregory C. Smith, Joanna Staneva, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, Jennifer Veitch, and Jorge Zavala Hidalgo
State Planet, 5-opsr, 5, https://doi.org/10.5194/sp-5-opsr-5-2025, https://doi.org/10.5194/sp-5-opsr-5-2025, 2025
Short summary
Short summary
Operational ocean forecasting systems (OOFSs) are crucial for human activities, environmental monitoring, and policymaking. An assessment across eight key regions highlights strengths and gaps, particularly in coastal and biogeochemical forecasting. AI offers improvements, but collaboration, knowledge sharing, and initiatives like the OceanPrediction Decade Collaborative Centre (DCC) are key to enhancing accuracy, accessibility, and global forecasting capabilities.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Johannes Schulz-Stellenfleth and Bughsin Djath
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-59, https://doi.org/10.5194/wes-2025-59, 2025
Preprint under review for WES
Short summary
Short summary
Data acquired by the European Sentinel-1A/B satellites are combined with a semi-empirical model to enable an easy inclusion of atmospheric offshore wind farm wakes in existing atmospheric model data sets. The model improves the agreement of data from an operational forecast centre with insitu measurements in the German Bight significantly.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
Short summary
Marine heatwaves (MHWs), which are the unusually warm periods in the ocean, are becoming more frequent and lasting longer in the northwest European Shelf (NWES), particularly near the coast, from 1993 to 2023. However, thermal stratification is weakening, implying that the sea surface warming caused by MHWs is insufficient to counteract the overall stratification decline due to global warming. Moreover, the varying salinity has a notable impact on the trend of density stratification change.
Carolina B. Gramcianinov, Joanna Staneva, Celia R. G. Souza, Priscila Linhares, Ricardo de Camargo, and Pedro L. da Silva Dias
State Planet, 1-osr7, 12, https://doi.org/10.5194/sp-1-osr7-12-2023, https://doi.org/10.5194/sp-1-osr7-12-2023, 2023
Short summary
Short summary
We analyse extreme wave event trends in the south-western South Atlantic in the last 29 years using wave products and coastal hazard records. The results show important regional changes associated with increased mean sea wave height, wave period, and wave power. We also find a rise in the number of coastal hazards related to waves affecting the state of São Paulo, Brazil, which partially agrees with the increase in extreme waves in the adjacent ocean sector but is also driven by local factors.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Cited articles
Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., and
Janssen, P.: Surface wave effects on water temperature in the Baltic Sea:
simulations with the coupled NEMO-WAM model, Ocean Dynam., 66, 917–930,
https://doi.org/10.1007/s10236-016-0963-x, 2016. a
Babanin, A. V.: On a wave-induced turbulence and a wave-mixed upper ocean
layer, Geophys. Res. Lett., 33, L20605, https://doi.org/10.1029/2006GL027308, 2006. a
Becker, G. A.: Beiträge zur hydrographie und wärmebilanz der Nordsee,
Deutsche Hydrografische Zeitschrift, 34, 167–262, https://doi.org/10.1007/BF02225959,
1981. a
Behrens, A.: Third generation spectral wave model WAM Cycle 6, GitHub [code], https://github.com/mywave/WAM, last access: 11 May 2022. a
Bensoussan, N., Romano, J. C., Harmelin, J. G., and Garrabou, J.: High
resolution characterization of northwest Mediterranean coastal waters thermal
regimes: to better understand responses of benthic communities to climate
change, Estuar. Coast. Shelf S., 87, 431–441,
https://doi.org/10.1016/j.ecss.2010.01.008, 2010. a
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts
of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett, 42,
3414–3420, https://doi.org/10.1002/2015GL063306, 2015. a
Borges, A., Royer, C., Martin, J. L., Champenois, W., and Gypens, N.: Response
of marine methane dissolved concentrations and emissions in the Southern
North Sea to the European 2018 heatwave, Cont. Shelf Res., 190,
104004, https://doi.org/10.1016/j.csr.2019.104004, 2019. a
Breivik, Ø., Mogensen, K., Bidlot, J. R., Balmaseda, M. A., and Janssen, P.
A. E. M.: Surface wave effects in the NEMO ocean model: Forced and coupled
experiments, J. Geophys. Res., 120, 2973–2992,
https://doi.org/10.1002/2014JC010565, 2015. a
Chen, W., Schulz-Stellenfleth, J., Grayek, S., and Staneva, J.: Impacts of the
assimilation of satellite sea surface temperature data on volume and heat
budget estimates for the North Sea, J. Geophys. Res.-Oceans,
126, e2020JC017059, https://doi.org/10.1029/2020JC017059, 2021. a, b, c
Davies, A. M., Kwong, S. C. M., and Flather, R. A.: On determining the role of
wind wave turbulence and grid resolution upon computed storm driven currents,
Cont. Shelf Res., 20, 1825–1888,
https://doi.org/10.1016/S0278-4343(00)00052-2, 2000. a
Egbert, G. D. and Erofeeva., S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204,
2002. a
Elliott, A. and Clarke, T.: Seasonal stratification in the northwest European
shelf seas, Cont. Shelf Res., 11, 467–492,
https://doi.org/10.1016/0278-4343(91)90054-A, 1991. a
Feng, M., McPhaden, M., Xie, S., and Hafner, J.: La Niña forces
unprecedented Leeuwin Current warming in 2011, Sci. Rep.-UK, 3, 1277,
https://doi.org/10.1038/srep01277, 2013. a
Fernand, L., Weston, K., Morris, T., Greenwood, N., Brown, J., and Jickells,
T.: The contribution of the deep chlorophyll maximum to primary production
in a seasonally stratified shelf sea, the North Sea, Biogeochemistry, 113,
153–166, https://doi.org/10.1007/s10533-013-9831-7, 2013. a
Fettweis, M., Baeye, M., Van der Zande, D., Van den Eynde, D., and Joon
Lee, B.: Seasonality of floc strength in the southern North Sea, J.
Geophys. Res.-Oceans, 119, 1911–1926,
https://doi.org/10.1002/2013JC009750, 2014. a
GEOMAR: RV Poseidon Fahrtbericht/Cruise Report POS526, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, GEOMAR Report, N. Ser. 051, 86 pp. https://doi.org/10.3289/geomar_rep_ns_51_2019, 2019. a
Günther, H., Hasselmann, S., and Janssen, P. A. E. M.: The WAM model,
Cycle 4, Hamburg, 26, 109 pp., 1992. a
Gurvan, M., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D., Müeller, S., Nurser, G., Bell, M., Samson, G., Mathiot, P., Mele, F., and Moulin, A.: NEMO ocean engine, in: Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v4.2.0, Number 27), Zenodo [code], https://doi.org/10.5281/zenodo.6334656, 2022. a
Herring, S. C., Hoerling, M. P., Kossin, J. P., Peterson, T. C., and Stott,
T. C.: Introduction to explaining extreme events of 2014 from a climate
perspective, B. Am. Meteorol. Soc., 96, S1–S4,
2015. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, 2020. a
Hill, A. E., James, I. D., Linden, P. F., Matthews, J. P., Prandle, D., Simpson, J. H., Gmitrowicz, E. M., Smeed, D. A., Lwiza, K. M. M., Durazo, R., and Fox, A. D.: Dynamics of tidal mixing fronts in the North Sea, In: Understanding the North Sea System, Springer, Dordrecht, 53–68, https://doi.org/10.1007/978-94-011-1236-9_5, 1994. a
Hobday, A. J. and Pecl, G. T.: Identification of global marine hotspots:
sentinels for change and vanguards for adaptation action, Rev. Fish
Biol. Fisher., 24, 415–425, https://doi.org/10.1007/s11160-013-9326-6, 2014. a
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C.,
Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M.,
Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., and
Wernberg, T.: A hierarchical approach to defining marine heatwaves, Prog.
Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016. a, b, c
Ho-Hagemann, H. T. M., Gröger, M., Rockel, B., Zahn, M., Geyer, B., and
Meier, H.: Effects of air-sea coupling over the North Sea and the Baltic Sea
on simulated summer precipitation over Central Europe, Clim. Dynam., 49,
3851–3876, https://doi.org/10.1007/s00382-017-3546-8, 2017. a
Hu, Z., Kumar, A., Jha, B., Zhu, J., and Huang, B.: Persistence and
predictions of the remarkable warm anomaly in the northeastern Pacific Ocean
during 2014–16, J. Climate, 30, 689–702, https://doi.org/10.1175/JCLI-D-16-0348.1,
2017. a, b
Huang, D., Su, J., and Backhaus, J. O.: Modelling the seasonal thermal
stratification and baroclinic circulation in the Bohai Sea, Cont.
Shelf Res., 19, 1485–1505, https://doi.org/10.1016/S0278-4343(99)00026-6, 1999. a
Imbery, F., Friedrich, K., Haeseler, S., Koppe, C., Janssen, W., and Bissolli,
P.: Vorläufiger Rückblick auf den Sommer 2018 –eine Bilanz
extremer Wetterereignisse, Tech. rep., Deutscher Wetterdienst (DWD), https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20180803_bericht_sommer2018.pdf (last access: 3 May 2022), 2018. a
IPCC: AR6 Climate Change 2021: The Physical Science Basis, Cambridge University Press, in press, 2022. a
Klonaris, G., Van Eeden, F., Verbeurgt, J., Troch, P., Constales, D., Poppe,
H., and De Wulf, A.: ROMS Based Hydrodynamic Modelling Focusing on the
Belgian Part of the Southern North Sea, J. Mar. Sci. Eng., 9, 58,
https://doi.org/10.3390/jmse9010058, 2021. a
Luyten, P., Jones, J., Proctor, R., Tabor, A., Tett, P., and Wild-Allen, K.:
COHERENS – A coupled hydrodynamical–ecological model for regional and
shelf seas: User documentation, Management Unit of the Mathematical Models of the North Sea (MUMM), 914 pp., 1999. a
Luyten, P. J., Jones, J. E., and Proctor, R.: A numerical study of the
long-and short-term temperature variability and thermal circulation in the
North Sea, J. Phys. Oceanogr., 33, 37–56,
https://doi.org/10.1175/1520-0485(2003)033<0037:ANSOTL>2.0.CO;2, 2003. a, b, c
Lwiza, K., Bowers, D., and Simpson, J.: Residual and tidal flow at a tidal
mixing front in the North Sea, Cont. Shelf Res., 11, 1379–1395,
https://doi.org/10.1016/0278-4343(91)90041-4, 1991. a
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pole de modélisation,
Institut Pierre-Simon Laplace (IPSL) No. 27, France, ISSN 1288-1619, https://www.nemo-ocean.eu/doc/ (last access: 3 May 2022), 2016. a
Manta, G., de Mello, S., Trinchin, R., Badagian, J., and Barreiro, M.: The
2017 record marine heatwave in the southwestern Atlantic shelf, Geophys. Res.
Lett., 45, 12449–12456, https://doi.org/10.1029/2018GL081070, 2018. a
Mathis, M., Elizalde, A., Mikolajewicz, U., and Pohlmann, T.: Variability patterns of the general circulation and sea water temperature in the North Sea, Prog. Oceanogr., 135, 91–112, https://doi.org/10.1016/j.pocean.2015.04.009, 2015. a
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of sea-surface
temperature since 1981 for climate applications, Scientific Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x,
2019. a
Millero, F. J. and Poisso, A.: International one-atmosphere equation of state
of seawater, Deep Sea Research Part A: Oceanographic Research Papers, 28, 625–629,
https://doi.org/10.1016/0198-0149(81)90122-9, 1981. a, b
NEMO: Nucleus for European Modelling of the Ocean, European consortium, https://www.nemo-ocean.eu/, last access: 11 May 2022. a
Nielsen, T. G., Løkkegaard, B., Richardson, R., Pedersen, F. B., and Hansen,
L.: Structure of plankton communities in the Dogger Bank area (North Sea)
during a stratified situation, Mar. Ecol.-Prog. Ser., 95, 115–131, a
O’Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin,
M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An
operational ocean forecast system incorporating NEMO and SST data
assimilation for the tidally driven European North-West shelf, J.
Oper. Oceanogr., 5, 3–17, https://doi.org/10.1080/1755876X.2012.11020128,
2012.
1993. a
Oliver, E., Benthuysen, J. A., Bindoff, N. L., Hobday, A. J., and J.Holbrook,
N.: The unprecedented 2015/16 Tasman Sea marine heatwave, Nat. Commun., 8,
16101, https://doi.org/10.1038/ncomms16101, 2017. a, b
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J.,
Holbrook, N. J., Schlegel, R. W., and Gupta, A. S.: Marine heatwaves, Annu.
Rev. Mar. Sci., 13, 313–342,
https://doi.org/10.1146/annurev-marine-032720-095144, 2020. a, b
Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Sætre, R., and
Becker, G.: Review of the physical oceanography of the North Sea,
Neth. J. Sea Res., 26, 161–238,
https://doi.org/10.1016/0077-7579(90)90091-T, 1990. a
Pearce, A., Lenanton, R., Jackson, G., Moore, J., Feng, M., and Gaughan, D.: The “marine heat wave” off Western Australia during the summer of 2010/11, Fisheries Research Report No. 222, Department of Fisheries, Western Australia, 40pp., https://www.fish.wa.gov.au/documents/research_reports/frr222.pdf, 2011. a
Perkins, S. E. and Alexander, L. V.: On the measurement of heat waves, J.
Climate, 26, 4500–4517, https://doi.org/10.1175/JCLI-D-12-00383.1, 2013. a
Perkins-Kirkpatrick, S., King, A. D., Cougnon, E. A., Grose, M. R., Oliver, E. C. J., Holbrook, N., Lewis, S., and Pourasghar, F.: The role of natural variability and anthropogenic
climate change in the 2017/18 Tasman Sea marine heatwave, B. Am.
Meteorol. Soc, 100, S105–10, https://doi.org/10.1175/BAMS-D-18-0116.1, 2019. a
Pingree, R. and Griffiths, D.: Tidal fronts on the shelf seas around the
British Isles, J. Geophys. Res.-Oceans, 83, 4615–4622,
https://doi.org/10.1029/JC083iC09p04615, 1978. a
Pohlmann, T.: Calculating the development of the thermal vertical
stratification in the North Sea with a three-dimensional baroclinic
circulation model, Cont. Shelf Res., 16, 163–194,
https://doi.org/10.1016/0278-4343(95)00018-V, 1996. a
Rouault, M., Illig, S., Bartholomae, C., Reason, C., and Bentamy, A.:
Propagation and origin of warm anomalies in the Angola Benguela upwelling
system in 2001, J. Mar. Syst., 68, 473–488,
https://doi.org/10.1016/j.jmarsys.2006.11.010, 2007. a
Sas, H., Didderen, K., van der Have, T., Kamermans, P., van den Wijngaard, K.,
and Reuchlin-Hugenholtz, E.: Recommendations for flat oyster restoration in
the North Sea, Tech. rep., Sas Consultancy, https://www.ark.eu/sites/default/files/media/Schelpdierbanken/Recommendations_for_flat_oyster_restoration_in_the_North_Sea.pdf (last access: 3 May 2022), 2019. a
Simpson, J. H.: The shelf-sea fronts: implications of their existence and
behaviour, Philos. T. R. Soc. Lond., 302, 531–546,
https://doi.org/10.1098/rsta.1981.0181, 1981. a
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Gupta, A. S., Payne, B. L., and Moore, P. J.: Marine heatwaves threaten global biodiversity and the provision of ecosystem services, Nat. Clim. Change, 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1, 2019. a
Staneva, J., Alari, V., Breivik, O., Bidlot, J. R., and Mogensen, K.: Effects
of wave-induced forcing on a circulation model of the North Sea, Ocean
Dynam., 67, 81–191, https://doi.org/10.1007/s10236-016-1009-0, 2017. a, b, c, d
Staneva, J., Ricker, M., Carrasco-Alvarez, R., Breivik, Ø., and Schrum, C.:
Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle
Transport Simulations, Water, 13, 473–488, https://doi.org/10.3390/w13040415, 2021. a, b
Stathopoulos, C., Galanis, G., and Kallos, G.: A coupled modeling study of
mechanical and thermodynamical air-ocean interface processes under sea storm
conditions, Dynam. Atmos. Oceans, 91, 101140,
https://doi.org/10.1016/j.dynatmoce.2020.101140, 2020. a
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the
temporal and spatial dynamics of the North Sea using the new model GETM
(general estuarine transport model), Ocean Dynam., 54, 266–283,
https://doi.org/10.1007/s10236-003-0077-0, 2004. a, b
Tan, H. and Cai, R.: What caused the record-breaking warming in East China
Seas during August 2016?, Atmos. Sci. Lett., 19, 853,
https://doi.org/10.1002/asl.853, 2018. a
The Wamdi Group: The WAM Model – A Third Generation Ocean Wave Prediction
Model, J. Phys. Oceanogr., 18, 1775–1810,
https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2, 1988. a
Umlauf, L. and Burchard, H.: A generic lengthscale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003. a
van Haren, H.: Properties of vertical current shear across stratification in
the North Sea, J. Mar. Res., 58, 465–491,
https://doi.org/10.1357/002224000321511115, 2000. a
Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J.,
De Bettignies, T., Bennett, S., and Rousseaux, C. S.: An extreme climatic
event alters marine ecosystem structure in a global biodiversity hotspot,
Nat. Clim. Change, 3, 78–82, https://doi.org/10.1038/NCLIMATE1627, 2013. a
Wernberg, T., Bennett, S., Babcock, R. C., De Bettignies, T., Cure, K.,
Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., Hovey, R. K., et al.:
Climate-driven regime shift of a temperate marine ecosystem, Science, 353,
169–172, https://doi.org/10.1126/science.aad8745, 2016. a
Wu, L., Staneva, J., Breivik, O., Rutgersson, A. adn George Nurser, A. J.,
Clementi, E., and Madec, G.: Wave effects on coastal upwelling and water
level, Ocean Model., 140, 101405, https://doi.org/10.1016/j.ocemod.2019.101405,
2019. a
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
This study links the occurrence and persistence of density stratification in the southern North...
Special issue
Altmetrics
Final-revised paper
Preprint