Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-607-2021
https://doi.org/10.5194/nhess-21-607-2021
Research article
 | 
11 Feb 2021
Research article |  | 11 Feb 2021

Predicting power outages caused by extratropical storms

Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä

Related authors

Lessons learned from developing the transdisciplinary master’s-level course "Living with changing climate”
Andrea Vajda, Hilppa Gregow, Natalia Korhonen, Jari Lavonen, Katja Anniina Lauri, Risto Makkonen, Joonas Merikanto, Antti Mäkelä, Petri Räisänen, Veli-Matti Vesterinen, Ilona Ylivinkka, Mikko Äijälä, Andrea Böhnisch, and Laura Riuttanen
EGUsphere, https://doi.org/10.5194/egusphere-2026-227,https://doi.org/10.5194/egusphere-2026-227, 2026
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary

Cited articles

Allen, M., Fernandez, S., Omitaomu, O., and Walker, K.: Application of hybrid geo-spatially granular fragility curves to improve power outage predictions, J. Geogr. Nat. Disast., 4, 1–6, https://doi.org/10.4172/2167-0587.1000127, 2014. a
Autonomio: Talos (software), available at: http://github.com/autonomio/talos., last access: 22 June 2020. a
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009. a
Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281–305, 2012. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Share
Altmetrics
Final-revised paper
Preprint