Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-607-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predicting power outages caused by extratropical storms
Finnish Meteorological Institute, B.O. 503, 00101 Helsinki, Finland
Ilona Láng
Finnish Meteorological Institute, B.O. 503, 00101 Helsinki, Finland
Alexander Jung
Aalto University, Department of Computer Science, B.O. 11000, 00076 Aalto, Finland
Antti Mäkelä
Finnish Meteorological Institute, B.O. 503, 00101 Helsinki, Finland
Related authors
No articles found.
Andrea Vajda, Hilppa Gregow, Natalia Korhonen, Jari Lavonen, Katja Anniina Lauri, Risto Makkonen, Joonas Merikanto, Antti Mäkelä, Petri Räisänen, Veli-Matti Vesterinen, Ilona Ylivinkka, Mikko Äijälä, Andrea Böhnisch, and Laura Riuttanen
EGUsphere, https://doi.org/10.5194/egusphere-2026-227, https://doi.org/10.5194/egusphere-2026-227, 2026
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
The paper describes the development of a new graduate course, Living with Changing Climate, designed to help future professionals apply climate information in real-world decisions. Created by experts from several fields, the course combines climate science, data use and real-word applications. Piloting with diverse students revealed challenges and improvements that strengthened the final course, showing how higher education can better prepare learners for climate adaptation and mitigation.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Cited articles
Allen, M., Fernandez, S., Omitaomu, O., and Walker, K.: Application of hybrid
geo-spatially granular fragility curves to improve power outage predictions,
J. Geogr. Nat. Disast., 4, 1–6, https://doi.org/10.4172/2167-0587.1000127, 2014. a
Autonomio: Talos (software), available at: http://github.com/autonomio/talos., last access: 22 June 2020. a
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009. a
Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization,
J. Mach. Learn. Res., 13, 281–305, 2012. a
Brown, I. and Mues, C.: An experimental comparison of classification algorithms for imbalanced credit scoring data sets, Exp. Syst. Appl., 39, 3446–3453, 2012. a
Campbell, R. J. and Lowry, S.: Weather-related power outages and electric
system resiliency, Tech. rep., Congressional Research Service, Library of
Congress, Washington, D.C., 2012. a
Chan, T. F., Golub, G. H., and LeVeque, R. J.: Updating formulae and a pairwise algorithm for computing sample variances, in: COMPSTAT 1982 5th Symposium held at Toulouse 1982, 30–41, https://doi.org/10.1007/978-3-642-51461-6, 1982. a
Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines, ACM Trans. Intel. Syst. Technol., 2, 27, https://doi.org/10.1145/1961189.1961199, 2011. a
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: SMOTE:
synthetic minority over-sampling technique, J. Artif. Intel. Res., 16, 321–357, 2002. a
Chen, P.-C. and Kezunovic, M.: Fuzzy logic approach to predictive risk analysis in distribution outage management, IEEE T. Smart Grid, 7, 2827–2836, 2016. a
Chen, S. H., Jakeman, A. J., and Norton, J. P.: Artificial intelligence
techniques: an introduction to their use for modelling environmental systems,
Math. Comput. Simul., 78, 379–400, 2008. a
Csilléry, K., Kunstler, G., Courbaud, B., Allard, D., Lassegues, P.,
Haslinger, K., and Gardiner, B.: Coupled effects of wind-storms and drought
on tree mortality across 115 forest stands from the Western Alps and the Jura
mountains, Global Change Biol., 23, 5092–5107, https://doi.org/10.1111/gcb.13773, 2017. a
Donat, M. G., Leckebusch, G. C., Wild, S., and Ulbrich, U.: Future changes in
European winter storm losses and extreme wind speeds inferred from GCM and
RCM multi-model simulations, Nat. Hazards Earth Syst. Sci., 11, 1351–1370, https://doi.org/10.5194/nhess-11-1351-2011, 2011. a
Dozat, T.: Incorporating nesterov momentum into adam, in: 4th International Conference on Learning Representations, 2–4 May 2016, San Juan, Puerto Rico, available at: https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ (last access: 10 February 2021), 2016. a
Eskandarpour, R. and Khodaei, A.: Machine Learning Based Power Grid Outage
Prediction in Response to Extreme Events, IEEE T. Power Syst., 32, 3315–3316, 2017. a
European Centre for Medium-Range Weather Forecasts: ERA5: large 10 m winds,
available at: https://confluence.ecmwf.int/display/CKB/ERA5:+large+10m+winds (last access: 10 May 2020), 2019. a
Finnish Energy: Energy distribution interruptions 2011 – Finnish Energy,
Tech. rep., Finnish Energy, available at:
https://energia.fi/files/605/Keskeytystilasto_2011.pdf (last access: 16 February 2020), 2011. a
Finnish Energy: Energy distribution interruptions 2013 – Finnish Energy,
Tech. rep., Finnish Energy, available at:
https://energia.fi/files/605/Keskeytystilasto_2013.pdf (last access: 4 June 2020), 2013. a
Finnish Meteorological Institute: Climate Statistics Report (December 2011), Helsinki, Finland, 1–24, 2011. a
Finnish Meteorological Institute: Rauli nousi myrskyjen raskaaseen sarjaan | Ilmastokatsaus – Ilmatieteen laitos, Ilmastokatsaus,
available at: http://www.ilmastokatsaus.fi/2016/08/29/rauli-nousi-myrskyjen-raskaaseen-sarjaan/
(last access: 15 June 2020), 2016. a
Finnish Meteorological Institute: Kesäkuun 2018 kuukausikatsaus | Ilmastokatsaus – Ilmatieteen laitos, available at:
http://www.ilmastokatsaus.fi/2018/07/04/kesakuun-2018-kuukausikatsaus/ (last access: 15 June 2020), 2018. a
Finnish Meteorological Institute – Twitter: Ilmatieteen laitos Twitterissä: “#Juhannus'aaton-#myrsky #Pauliina lukuina klo 15.30:
kovin puuska 32,5 m/s ja 10min keskituuli 26,5 m/s (Kaskinen Sälgrund),
maa-alueilla Helsinki Kumpula puuska 22,7 m/s. Vaasa Klemettilä 24 h
sademäärä 41 mm.”/Twitter, available at:
https://twitter.com/meteorologit/status/1010144460703969280, last access: 17 June 2020. a
Gardiner, B., Blennow, K., Carnus, J., Fleischner, P., Ingemarson, F.,
Landmann, G., Lindner, M., Marzano, M., Nicoll, B., Orazio, C., Peyron, J.,
Reviron, M., Schelhaas, M., Schuck, A., Spielmann, M., and Usbeck, T.:
Destructive storms in European Forests: Past and Forthcoming Impacts. Final
report to European Commission – DG Environment, European Forest Institute,
Wageningen, the Netherlands, 2010. a, b
Gardiner, B., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., and
Nicoll, B.: Living with Storm Damage to Forests What Science Can Tell Us What
Science Can Tell Us, European Forest Institute, EFI, Joensuu, Finland,
https://doi.org/10.13140/2.1.1730.2400, 2013. a, b
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, in: Deep Learning, MIT Press, Cambridge, Massachusetts, USA, 164–223, 2016. a
Gregow, H., Laaksonen, A., and Alper, M. E.: Increasing large scale windstorm
damage in Western, Central and Northern European forests, 1951–2010, Scient. Rep., 7, 46397, https://doi.org/10.1038/srep46397, 2017. a
Guikema, S. D., Quiring, S. M., and Han, S. R.: Prestorm Estimation of Hurricane Damage to Electric Power Distribution Systems, Risk Anal., 30,
1744–1752, https://doi.org/10.1111/j.1539-6924.2010.01510.x, 2010. a
Guikema, S. D., Nateghi, R., Quiring, S. M., Staid, A., Reilly, A. C., and Gao, M.: Predicting Hurricane Power Outages to Support Storm Response Planning, IEEE Access, 2, 1364–1373, https://doi.org/10.1109/ACCESS.2014.2365716, 2014. a
Haarsma, R. J., Hazeleger, W., Severijns, C., De Vries, H., Sterl, A.,
Bintanja, R., Van Oldenborgh, G. J., and Van Den Brink, H. W.: More hurricanes to hit western Europe due to global warming, Geophys. Res. Lett., 40, 1783–1788, https://doi.org/10.1002/grl.50360, 2013. a
Han, S. R., Guikema, S. D., and Quiring, S. M.: Improving the predictive
accuracy of hurricane power outage forecasts using generalized additive
models, Risk Anal., 29, 1443–1453, https://doi.org/10.1111/j.1539-6924.2009.01280.x, 2009. a
Hanewinkel, M.: Neural networks for assessing the risk of windthrow on the
forest division level: a case study in southwest Germany, Eur. J. Forest Res., 124, 243–249, 2005. a
Hanninen, K. and Naukkarinen, J.: 570 000 customers experienced power losses at the end of the year, (Loppuvuoden sähkökatkoista kärsi 570 000 asiakasta – Energiateollisuus, available at:
http://www.mynewsdesk.com/fi/pressreleases/loppuvuoden-saehkoekatkoista-kaersi-570-000-asiakasta-725038 (last access: 11 June 2020), 2012. a
He, J., Wanik, D. W., Hartman, B. M., Anagnostou, E. N., Astitha, M., and
Frediani, M. E.: Nonparametric Tree-Based Predictive Modeling of Storm
Outages on an Electric Distribution Network, Risk Anal., 37, 441–458,
https://doi.org/10.1111/risa.12652, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2018. a, b
Hersbach, H., Bell, W., Berrisford, P., Horányi, A. J. M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global
reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF newsletter, European Centre for Medium-Range Weather Forecasts, Reading, UK, 17–24,
https://doi.org/10.21957/vf291hehd7, 2019. a, b
Holdaway, M. R.: Spatial modeling and interpolation of monthly temperature
using kriging, Clim. Res., 6, 215–225, 1996. a
Ilta-Sanomat: Rauli-myrsky repii Suomea: lähes 200000 taloutta ilman
sähköjä – Kotimaa – Ilta-Sanomat, available at:
https://www.is.fi/kotimaa/art-2000001248969.html (last access: 15 June 2020), 2016. a
IPCC: Impacts of 1.5 ∘C global warming on natural and human systems, Global warming of 1.5 ∘C, An IPCC Special Report, Intergovernmental Panel on Climate Change, Geneva, Swizerland, 2018. a
Jokinen, P., Vajda, A., and Gregow, H.: The benefits of emergency rescue and
reanalysis data in decadal storm damage assessment studies, Adv. Sci. Res., 12, 97–101, https://doi.org/10.5194/asr-12-97-2015, 2015. a
Kankanala, P., Pahwa, A., and Das, S.: Regression models for outages due to
wind and lightning on overhead distribution feeders, in: 2011 IEEE Power and Energy Society General Meeting, 24–28 July 2011, Detroit, Michigan, USA, 1–4, 2011. a
Kankanala, P., Pahwa, A., and Das, S.: Estimation of Overhead Distribution
System Outages Caused by Wind and Lightning Using an Artificial Neural
Network, in: International Conference on Power System Operation & Planning, 12–14 November 2012, Las Vegas, USA, 2012. a
Kankanala, P., Das, S., and Pahwa, A.: AdaBoost+: An Ensemble Learning Approach for Estimating Weather-Related Outages in Distribution Systems, IEEE T. Power Syst., 29, 359–367, 2014. a
Karthick, S., Malathi, D., Sudarsan, J., and Nithiyanantham, S.: Performance,
evaluation and prediction of weather and cyclone categorization using various
algorithms, Model. Earth Syst. Environ., https://doi.org/10.1007/s40808-020-00887-7, in press, 2020. a, b
Korhonen, K., Packalen, T., and Kangas, A.: The National Forest Inventory (NFI), available at: http://kartta.luke.fi/index-en.html, last access: 20 February 2019. a
Kossin, J. P. and Sitkowski, M.: An objective model for identifying secondary
eyewall formation in hurricanes, Mon. Weather Rev., 137, 876–892, 2009. a
Kron, W. and Schuck A.: After the floods, Tech. rep., Münchener
Rückversicherungs-Gesellschaft (Munich Reinsurance Company), available at:
https://www.munichre.com/content/dam/munichre/global/content-pieces/documents/302-08121_en.pdf/_jcr_content/renditions/original./302-08121_en.pdf
(last access: 5 June 2020), 2013. a
Kufeoglu, S. and Lehtonen, M.: Cyclone Dagmar of 2011 and its impacts in
Finland, in: IEEE PES Innovative Smart Grid Technologies Conference Europe,
vol. 2015-January, IEEE Computer Society, Istanbul, Turkey, https://doi.org/10.1109/ISGTEurope.2014.7028868, 2015. a, b
Lagerquist, R., McGovern, A., and Smith, T.: Machine learning for real-time
prediction of damaging straight-line convective wind, Weather Forecast., 32, 2175–2193, 2017. a
Lamb, H. and Knud, F.: Historic Storms of the North Sea, British Isles and
Northwest Europe – Google Books, available at:
https://books.google.fi/books?hl=en&lr=&id=P4n1z9rOh5MC&oi=fnd&pg=PR8&ots=ewtYPSlQ1H&sig=VJJ00ehiPL0d1oaTDfa14nFb3zI&redir_esc=y#v=onepage&q=duration&f=false (last access: 30 September 2020), 1991. a
Leckebusch, G. C., Renggli, D., and Ulbrich, U.: Development and application of an objective storm severity measure for the Northeast Atlantic region,
Meteorol. Z., 17, 575–587, https://doi.org/10.1127/0941-2948/2008/0323, 2008. a
Li, Z., Singhee, A., Wang, H., Raman, A., Siegel, S., Heng, F.-L., Mueller, R., and Labut, G.: Spatio-temporal forecasting of weather-driven damage in a
distribution system, in: 2015 IEEE Power & Energy Society General Meeting,
26–30 July 2015, Denver, CO, USA, 1–5, 2015. a
Liu, Y., Zhong, Y., and Qin, Q.: Scene Classification Based on Multiscale
Convolutional Neural Network, IEEE T. Geosci. Remote Sens., 56, 7109–7121, https://doi.org/10.1109/TGRS.2018.2848473, 2018. a
Mäkisara, K., Katila, M., Peräsaari, J., and Tomppo, E.: The multi-source national forest inventory of Finland – methods and results 2013, Natural Resources Institute Finland (Luke), Helsinki, Finland, 215 pp., ISBN 978-952-326-186-0, 2016. a
Masson-Delmotte, T., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.: IPCC, 2018: Summary for Policymakers, in: Global warming of 1.5 ∘C. An IPCC Special
Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global, Geneva, Switzerland, 2018. a
myrskyvaroitus.com: 2018 Syystrombeja, available at:
https://myrskyvaroitus.com/index.php/myrskytieto/myrskyhistoria/202-2018-syystrombeja
(last access: 18 June 2020), 2018. a
Nateghi, R., Guikema, S., and Quiring, S. M.: Power Outage Estimation for
Tropical Cyclones: Improved Accuracy with Simpler Models, Risk Anal., 34,
1069–1078, https://doi.org/10.1111/risa.12131, 2014. a
Niemelä, E.: KESKEYTYSTILASTO 2017 (i), Tech. Rep. 2018-06-14
11:51:52.916, Energiateollisuus Ry, Helsinki, Finland, available at:
https://energia.fi/files/2785/Sahkon_keskeytystilasto_2017.pdf (last access: 16 February 2020), 2018. a
Nurmi, V., Pilli-Sihvola, K., Gregow, H., and Perrels, A.: Overadaptation to
Climate Change? The Case of the 2013 Finnish Electricity Market Act,
Econ. Disast. Clim. Change, 3, 161–190, https://doi.org/10.1007/s41885-018-0038-1, 2019. a
Peltola, H., Kellomäki, S., and Väisänen, H.: Model Computations of the Impact of Climatic Change on the Windthrow Risk of Trees, Climatic Change, 41, 17–36, https://doi.org/10.1023/A:1005399822319, 1999. a, b
Pinto, J. G., Bellenbaum, N., Karremann, M. K., and Della-Marta, P. M.: Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions, J. Geophys. Res.-Atmos., 118, 12476–12485, https://doi.org/10.1002/2013JD020564, 2013. a
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas‐Reyes, F. J.: What global reanalysis best represents near‐surface winds?, Natural Disasters
and Adaptation to Climate Change, 145, 3236–3251, https://doi.org/10.1002/qj.3616, 2019. a
Rasmussen, C. E.: Gaussian processes in machine learning, in: Summer School on Machine Learning, Springer, Cambridge, Massachusetts, USA, 63–71, 2003. a
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.:
Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure, Ecography, 40, 913–929, https://doi.org/10.1111/ecog.02881, 2017. a
Rupp, M.: Machine learning for quantum mechanics in a nutshell, Int. J. Quant. Chem., 115, 1058–1073, 2015. a
Schelhaas, M.-J.: Impacts of natural disturbances on the development of
European forest resources: application of model approaches from tree and
stand levels to large-scale scenarios, Dissertationes Forestales, Alterra, Wageningen, the Netherlands, https://doi.org/10.14214/df.56, 2008. a
Schelhaas, M.-J., Nabuurs, G.-J., and Schuck, A.: Natural disturbances in the
European forests in the 19th and 20th centuries, Global Change Biol., 9,
1620–1633, https://doi.org/10.1046/j.1365-2486.2003.00684.x, 2003. a
Seidl, R., Schelhaas, M., Rammer, W., and Verkerk, P.: Increasing forest
disturbances in Europe and their impact on carbon storage, Nat. Clim. Change, 4, 806–810, https://doi.org/10.1038/NCLIMATE2318, 2014. a
Shawe-Taylor, J. and Cristianini, N.: Kernel methods for pattern analysis, Cambridge University Press, Cambridge, 296–297, 2004. a
Shield, S.: Predictive Modeling of Thunderstorm-Related Power Outages, MS Thesis, The Ohio State University, Columbus, Ohio, USA, 2018. a
Singhee, A. and Wang, H.: Probabilistic forecasts of service outage counts from severe weather in a distribution grid, in: 2017 IEEE Power & Energy Society General Meeting, 16–20 July 2017, Chicago, IL, USA, 1–5, 2017. a
Suvanto, S., Henttonen, H. M., Nöjd, P., and Mäkinen, H.: Forest
susceptibility to storm damage is affected by similar factors regardless of
storm type: Comparison of thunder storms and autumn extra-tropical cyclones
in Finland, Forest Ecol. Manage., 381, 17–28, https://doi.org/10.1016/j.foreco.2016.09.005, 2016. a, b
Tervo, R.: SASSE polygon process, Zenodo, https://doi.org/10.5281/zenodo.4525234, 2020 a
Tervo, R. and Sirviö, T: SmartMet Server setup for ERA5, Zenodo, https://doi.org/10.5281/zenodo.4525236, 2020a. a
Ukkonen, P., Manzato, A., and Mäkelä, A.: Evaluation of thunderstorm
predictors for Finland using reanalyses and neural networks, J. Appl. Meteorol. Clim., 56, 2335–2352, 2017. a
Ulbrich, U., Pinto, J. G., Kupfer, H., Leckebusch, G., Spangehl, T., and
Reyers, M.: Changing Northern Hemisphere storm tracks in an ensemble of IPCC
climate change simulations, J. Climate, 21, 1669–1679, 2008. a
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in
the present and future climate: A review, in: Theoretical and Applied
Climatology, vol. 96, Springer, Vienna, 117–131,
https://doi.org/10.1007/s00704-008-0083-8, 2009. a
Virot, E., Ponomarenko, A., Dehandschoewercker, Quéré, D., and Clanet, C.: Critical wind speed at which trees break, Phys. Rev. E, 93, 023001, https://doi.org/10.1103/PhysRevE.93.023001, 2016. a
Wang, G., Xu, T., Tang, T., Yuan, T., and Wang, H.: A Bayesian network model
for prediction of weather-related failures in railway turnout systems, Exp. Sys. Appl., 69, 247–256, https://doi.org/10.1016/j.eswa.2016.10.011, 2017. a
Wilks, D. S. Statistical methods in the atmospheric sciences, in: Vol. 100, Academic Press, Cambridge, Massachusetts, Yhdysvallat, ISBN 978-0-12-385022-5, 2011. a
Williams, C. K. and Rasmussen, C. E.: Gaussian processes for machine learning, in: vol. 2, MIT Press, Cambridge, MA, 2006. a
Yang, F., Wanik, D. W., Cerrai, D., Bhuiyan, M. A. E., and Anagnostou, E. N.:
Quantifying uncertainty in machine learning-based power outage prediction
model training: A tool for sustainable storm restoration, Sustainability, 12,
1525, https://doi.org/10.3390/su12041525, 2020. a
Yue, M., Toto, T., Jensen, M. P., Giangrande, S. E., and Lofaro, R.: A
Bayesian approach-based outage prediction in electric utility systems using
radar measurement data, IEEE T. Smart Grid, 9, 6149–6159,
https://doi.org/10.1109/TSG.2017.2704288, 2018. a
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Predicting the number of power outages caused by extratropical storms is a key challenge for...
Altmetrics
Final-revised paper
Preprint