Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy)
Gaia Mattei
Department of Science and Technologies, University of Naples “Parthenope”, Naples 80100, Italy
Diana Di Luccio
CORRESPONDING AUTHOR
Department of Science and Technologies, University of Naples “Parthenope”, Naples 80100, Italy
Guido Benassai
Department of Engineering, University of Naples “Parthenope”, Naples 80100, Italy
Giorgio Anfuso
Departamento de Ciencias de la Tierra, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real 11510, Cádiz, Spain
Giorgio Budillon
Department of Science and Technologies, University of Naples “Parthenope”, Naples 80100, Italy
Pietro Aucelli
Department of Science and Technologies, University of Naples “Parthenope”, Naples 80100, Italy
Related authors
No articles found.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data, 17, 2625–2640, https://doi.org/10.5194/essd-17-2625-2025, https://doi.org/10.5194/essd-17-2625-2025, 2025
Short summary
Short summary
This study presents 30 years of water temperature data from expendable bathythermograph (XBT) probes collected between Aotearoa / New Zealand and the Ross Sea (Antarctica). Gathered during research cruises by the Italian National Antarctic Research Program, the data were rigorously verified and corrected for depth and temperature bias. This dataset provides a valuable insight into the Southern Ocean's climate and enhances satellite observations and ocean models.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025, https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Short summary
This “journey through time” discovers historical information about snow precipitation in the Italian Apennines. In this area, in the second half of the past century, a gradual decline in snow persistence on the ground, as well as in the frequency of occurrence of snowfall events, has been observed, especially in sites located above 1000 m above sea level. The old data rescued in this study strongly enhance our knowledge about past snowfall variability and climate in the Mediterranean area.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Cited articles
Amarouche, K., Akpınar, A., Cakmak, R. E., Houma, F., and Bachari, N. E. I.:
Assessment of storm events along the Algiers coast and their potential
impacts, Ocean Eng., 210, 107432, https://doi.org/10.1016/j.oceaneng.2020.107432, 2020. a
Amores, A., Marcos, M., Carrió, D. S., and Gómez-Pujol, L.: Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean, Nat. Hazards Earth Syst. Sci., 20, 1955–1968, https://doi.org/10.5194/nhess-20-1955-2020, 2020. a
Anfuso, G., Rangel-Buitrago, N., Cortés-Useche, C., Iglesias Castillo, B.,
and Gracia, F.: Characterization of storm events along the Gulf of Cadiz
(eastern central Atlantic Ocean), Int. J. Climatol., 36,
3690–3707, 2016. a
Anfuso, G., Postacchini, M., Di Luccio, D., and Benassai, G.: Coastal
sensitivity/vulnerability characterization and adaptation strategies: a
review, J. Marine Sci. Eng., 9, 72, https://doi.org/10.3390/jmse9010072, 2021. a
Antonioli, F., De Falco, G., Lo Presti, V., Moretti, L., Scardino, G.,Anzidei, M., Bonaldo, D., Carniel, S., Leoni, G., Furlani, S., Marsico, A., Petitta, M., Randazzo, G., Scicchitano, G., and Mastronuzzi, G.: Relative
Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of
the Mediterranean Sea, Water, 12, 2173, https://doi.org/10.3390/w12082173, 2020. a
Aucelli, P., Cinque, A., Giordano, F., and Mattei, G.: A geoarchaeological
survey of the marine extension of the Roman archaeological site Villa del
Pezzolo, Vico Equense, on the Sorrento Peninsula, Italy, Geoarchaeology, 31,
244–252, 2016a. a
Aucelli, P., Cinque, A., Mattei, G., and Pappone, G.: Historical sea level
changes and effects on the coasts of Sorrento Peninsula (Gulf of Naples): New
constrains from recent geoarchaeological investigations, Palaeogeography,
Palaeoclimatology, Palaeoecology, 463, 112–125, 2016b. a
Aucelli, P., Cinque, A., Mattei, G., Pappone, G., and Stefanile, M.: Coastal
landscape evolution of Naples (Southern Italy) since the Roman period from
archaeological and geomorphological data at Palazzo degli Spiriti site,
Quaternary Int., 483, 23–38, 2018a. a
Aucelli, P. P., Cinque, A., Mattei, G., and Pappone, G.: Late Holocene
landscape evolution of the gulf of Naples (Italy) inferred from
geoarchaeological data, J. Maps, 13, 300–310, 2017a. a
Aucelli, P. P., Cinque, A., Mattei, G., Pappone, G., and Stefanile, M.: First
results on the coastal changes related to local sea level variations along
the Puteoli sector (Campi Flegrei, Italy) during the historical times, Alp.
Mediterr. Quat, 31, 3–16, 2018b. a
Aucelli, P. P., Mattei, G., Caporizzo, C., Cinque, A., Troisi, S., Peluso, F.,
Stefanile, M., and Pappone, G.: Ancient coastal changes due to ground
movements and human interventions in the Roman Portus Julius (Pozzuoli Gulf,
Italy): Results from photogrammetric and direct surveys, Water, 12, 658, https://doi.org/10.3390/w12030658,
2020. a
Aucelli, P. P., Mattei, G., Caporizzo, C., Cinque, A., Amato, L., Stefanile,
M., and Pappone, G.: Multi-proxy analysis of relative sea-level and
paleoshoreline changes during the last 2300 years in the Campi Flegrei
caldera, Southern Italy, Quaternary Int., 602, 110–130,
https://doi.org/10.1016/j.quaint.2021.03.03, 2021. a
Aucelli, P. P. C., Di Paola, G., Incontri, P., Rizzo, A., Vilardo, G.,
Benassai, G., Buonocore, B., and Pappone, G.: Coastal inundation risk
assessment due to subsidence and sea level rise in a Mediterranean alluvial
plain (Volturno coastal plain–southern Italy), Estuar. Coast. Shelf
Sci., 198, 597–609, 2017b. a
Bakkensen, L. A.: Mediterranean hurricanes and associated damage estimates,
J. Extreme Events, 4, 1750008, https://doi.org/10.1142/S2345737617500087, 2017. a
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.:
Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116,
11195–11200, 2019. a
Benassai, G. and Ascione, I.: Implementation and validation of wave watch III
model offshore the coastlines of Southern Italy, in: International Conference
on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 47470, 553–560, 2006. a
Benassai, G., De Maio, A., and Sansone, E.: Altezze e periodi delle onde
significative nel Golfo di Napoli dall’aprile 1986 al giugno 1987, Ann.
IUN, 61, 3–9, 1994. a
Benassai, G., Migliaccio, M., Montuori, A., and Ricchi, A.: Wave simulations
through SAR COSMO-SkyMed wind retrieval and verification with buoy data, in:
The Twenty-second International Offshore and Polar Engineering Conference,
OnePetro, Rhodes, Greece, 2012. a
Benassai, G., Migliaccio, M., and Montuori, A.: Sea wave numerical simulations
with COSMO-SkyMed© SAR data, J. Coast. Res., 65,
660–665, 2013. a
Benassai, G., Migliaccio, M., and Nunziata, F.: The use of
COSMO-SkyMed© SAR data for coastal management, J. Marine
Sci. Technol., 20, 542–550, 2015. a
Biolchi, S., Denamiel, C., Devoto, S., Korbar, T., Macovaz, V., Scicchitano,
G., Vilibić, I., and Furlani, S.: Impact of the October 2018 storm Vaia
on coastal boulders in the northern Adriatic Sea, Water, 11, 2229, https://doi.org/10.3390/w11112229, 2019. a
Buccino, M., Di Paola, G., Ciccaglione, M. C., Del Giudice, G., and Rosskopf,
C. M.: A medium-term study of Molise coast evolution based on the one-line
equation and “equivalent wave” concept, Water, 12, 2831, https://doi.org/10.3390/w12102831, 2020. a
Buonocore, B., Sansone, E., and Zambardino, G.: Rilievi ondametrici nel Golfo
di Napoli, Ann. IUN, 67, 203–211, 2003. a
Castagno, P., de Ruggiero, P., Pierini, S., Zambianchi, E., De Alteris, A.,
De Stefano, M., and Budillon, G.: Hydrographic and dynamical characterisation
of the Bagnoli-Coroglio Bay (Gulf of Naples, Tyrrhenian Sea), Chem.
Ecol., 36, 598–618, 2020. a
Cavaleri, L., Bajo, M., Barbariol, F., Bastianini, M., Benetazzo, A., Bertotti, L., Chiggiato, J., Davolio, S., Ferrarin, C., Magnusson, L., Papa, A., Pezzutto, P., Pomaro, A., and Umgiesser, G.: The
October 29, 2018 storm in Northern Italy–an exceptional event and its
modeling, Prog. Oceanogr., 178, 102178, https://doi.org/10.1016/j.pocean.2019.102178, 2019. a
Cinque, A.: La trasgressione versiliana nella Piana del Sarno (Campania),
Geografia Fisica e Dinamica Quaternaria, 14, 63–71, 1991. a
Cinque, A., Irollo, G., Romano, P., Ruello, M. R., Amato, L., and Giampaola,
D.: Ground movements and sea level changes in urban areas: 5000 years of
geological and archaeological record from Naples (Southern Italy), Quaternary
Int., 232, 45–55, 2011. a
Costas, S., Ferreira, O., and Martinez, G.: Why do we decide to live with risk
at the coast?, Ocean Coast. Manage., 118, 1–11, 2015. a
de Ruggiero, P., Napolitano, E., Iacono, R., and Pierini, S.: A high-resolution
modelling study of the circulation along the Campania coastal system, with a
special focus on the Gulf of Naples, Cont. Shelf Res., 122,
85–101, 2016. a
de Ruggiero, P., Napolitano, E., Iacono, R., Pierini, S., and Spezie, G.: A
baroclinic coastal trapped wave event in the Gulf of Naples (Tyrrhenian Sea),
Ocean Dynam., 68, 1683–1694, 2018. a
Dean, R. G. and Dalrymple, R. A.: Water wave mechanics for engineers and
scientists, vol. 2, World Scientific Publishing Company, Singapore, 1991. a
Di Luccio, D., Benassai, G., Budillon, G., Mucerino, L., Montella, R., and Pugliese Carratelli, E.: Wave run-up prediction and observation in a micro-tidal beach, Nat. Hazards Earth Syst. Sci., 18, 2841–2857, https://doi.org/10.5194/nhess-18-2841-2018, 2018.a. a
Di Luccio, D., Benassai, G., Di Paola, G., Rosskopf, C. M., Mucerino, L.,
Montella, R., and Contestabile, P.: Monitoring and modelling coastal
vulnerability and mitigation proposal for an archaeological site (Kaulonia,
Southern Italy), Sustainability, 10, 2017, https://doi.org/10.3390/su10062017, 2018b. a
Di Luccio, D., Benassai, G., Di Paola, G., Mucerino, L., Buono, A., Rosskopf,
C. M., Nunziata, F., Migliaccio, M., Urciuoli, A., and Montella, R.:
Shoreline rotation analysis of embayed beaches by means of in situ and remote
surveys, Sustainability, 11, 725, https://doi.org/10.3390/su11030725, 2019. a
Di Luccio, D., Benassai, G., de Stefano, M., and Montella, R.: Evidences of
atmospheric pressure drop and sea level alteration in the Ligurian Sea, in:
2019 IMEKO TC19 International Workshop on Metrology for the Sea: Learning to
Measure Sea Health Parameters, MetroSea 2019, 22–27, 2020a. a
Di Luccio, D., Buono, A., Corcione, V., Migliaccio, M., and Benassai, G.: An
integrated approach of in-situ data, remote sensing measurements and
numerical simulations to study storm events in the Ligurian Sea, 2020 IMEKO TC-19 International Workshop on Metrology for the Sea, 5–7 October 2020,
Naples, Italy, 28–33,
2021. a
Di Paola, G., Ciccaglione, M., Buccino, M., and Rosskopf, C.: Influence of hard
defence structures on shoreline erosion along Molise coast (southern Italy):
A preliminary investigation, Rendiconti Online Societa Geologica Italiana,
52, 2–11, 2020. a
Dobrynin, M., Murawsky, J., and Yang, S.: Evolution of the global wind wave
climate in CMIP5 experiments, Geophys. Res. Lett., 39, 2012. a
Esnard, A.-M., Brower, D., and Bortz, B.: Coastal Hazards and the Built
Environment on Barrier Islands: A Retrospective View of Nags Head n the Late
1990s, Coastal Manage., 29, 53–72, 2001. a
Fedele, L., Morra, V., Perrotta, A., Scarpati, C., Putignano, M., Orrù, P.,
Schiattarella, M., Aiello, G., D'Argenio, B., and Conforti, A.: Note
illustrative della Carta Geologica d'Italia alla scala 1:50.000, foglio 465
Isola di Procida, Istituto Superiore per la Protezione e la Ricerca
Ambientale, Servizio Geologico d'Italia, available at: https://www.isprambiente.gov.it/Media/carg/note_illustrative/465_Isola_di_Procida.pdf (last access: 7 October 2021), 1, 204, 2015. a
Ferrando, I., Brandolini, P., Federici, B., Lucarelli, A., Sguerso, D.,
Morelli, D., and Corradi, N.: Coastal Modification in Relation to Sea Storm
Effects: Application of 3D Remote Sensing Survey in Sanremo Marina (Liguria,
NW Italy), Water, 13, 1040, https://doi.org/10.3390/w13081040, 2021. a
Godschalk, D. R., Norton, R., Richardson, C., and Salvesen, D.: Avoiding
coastal hazard areas: Best state mitigation practices, Environ.
Geosci., 7, 13–22, 2000. a
Gulev, S. K. and Grigorieva, V.: Last century changes in ocean wind wave height
from global visual wave data, Geophys. Res. Lett., 31, 2004. a
Iannace, A., Merola, D., Perrone, V., Amato, A., Cinque, A., Santacroce, R., Sbrana, A., Sulpizio, R., Budillon, F., Conforti, A., and D'Argenio, B.: Note
illustrative della carta geologica d'Italia alla scala 1:50.000 Foglio
466–485 Sorrento-Termini, Servizio Geologico d'Italia, ISPRA, available at: https://www.isprambiente.gov.it/Media/carg/note_illustrative/466_485_Sorrento_Termini.pdf (last access: 7 October 2021), p. 204,
2015. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021.
Isaia, R., Iannuzzi, E., Sbrana, A., and Marianelli, P.: Note Illustrative
della Carta Geologica d’Italia alla scala 1:50.000, Foglio 446-447 Napoli
(aree emerse), available at: https://www.isprambiente.gov.it/Media/carg/note_illustrative/446_447_Napoli.pdf (last access: 7 October 2021), 2018. a
Jiménez, J., Sanuy, M., Ballesteros, C., and Valdemoro, H.: The Tordera
Delta, a hotspot to storm impacts in the coast northwards of Barcelona (NW
Mediterranean), Coastal Eng., 134, 148–158, 2018. a
Jiménez, J. A., Sancho-García, A., Bosom, E., Valdemoro, H. I., and
Guillén, J.: Storm-induced damages along the Catalan coast (NW
Mediterranean) during the period 1958–2008, Geomorphology, 143, 24–33,
2012. a
Kamphuis, J.: Wave transformation, Coastal Eng., 15, 173–184, 1991. a
Lira-Loarca, A., Cobos, M., Losada, M. Á., and Baquerizo, A.: Storm
characterization and simulation for damage evolution models of maritime
structures, Coastal Eng., 156, 103620, https://doi.org/10.1016/j.coastaleng.2019.103620, 2020. a
Mattei, G., Troisi, S., Aucelli, P. P., Pappone, G., Peluso, F., and Stefanile,
M.: Sensing the submerged landscape of Nisida Roman Harbour in the Gulf of
Naples from integrated measurements on a USV, Water, 10, 1686, https://doi.org/10.3390/w10111686, 2018. a
Mattei, G., Rizzo, A., Anfuso, G., Aucelli, P., and Gracia, F.: A tool for
evaluating the archaeological heritage vulnerability to coastal processes:
The case study of Naples Gulf (southern Italy), Ocean Coast. Manage.,
179, 104876, https://doi.org/10.1016/j.ocecoaman.2019.104876, 2019. a
Mattei, G., Aucelli, P. P., Caporizzo, C., Rizzo, A., and Pappone, G.: New
geomorphological and historical elements on morpho-evolutive trends and
relative sea-level changes of naples coast in the last 6000 years, Water, 12,
2651, https://doi.org/10.3390/w12092651, 2020. a, b
Meucci, A., Young, I. R., Aarnes, O. J., and Breivik, Ø.: Comparison of wind
speed and wave height trends from twentieth-century models and satellite
altimeters, J. Climate, 33, 611–624, 2020. a
Milia, A.: The stratigraphic signature of volcanism off Campi Flegrei (Bay of
Naples, Italy), Geological Society of America Special Papers, 464, 155–170,
2010. a
Milia, A. and Torrente, M.: Tectonics and stratigraphic architecture of a
peri-Tyrrhenian half-graben (Bay of Naples, Italy), Tectonophysics, 315,
301–318, 1999. a
Molina, R., Manno, G., Lo Re, C., Anfuso, G., and Ciraolo, G.: Storm energy
flux characterization along the Mediterranean coast of Andalusia (Spain),
Water, 11, 509, https://doi.org/10.3390/w11030509, 2019. a
Molina, R., Manno, G., Re, C. L., Anfuso, G., and Ciraolo, G.: A Methodological
Approach to Determine Sound Response Modalities to Coastal Erosion Processes
in Mediterranean Andalusia (Spain), J. Marine Sci.
Eng., 8, 154, https://doi.org/10.3390/jmse8030154, 2020. a
Montella, R., Di Luccio, D., and Kosta, S.: DagOn*: Executing direct acyclic
graphs as parallel jobs on anything, in: 2018 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS), IEEE, Dallas, TX, USA, 64–73, 2018. a
Montella, R., Di Luccio, D., Ciaramella, A., and Foster, I.: StormSeeker: A
Machine-Learning-Based Mediterranean Storm Tracer, in: International
Conference on Internet and Distributed Computing Systems, 444–456,
Springer, Naples, Italy, 2019. a
Morucci, S., Picone, M., Nardone, G., and Arena, G.: Tides and waves in the
Central Mediterranean Sea, J. Operational Oceanogr., 9, s10–s17,
2016. a
OPeNDAP: OPeNDAP Hyrax (1.13.5), available at: https://data.meteo.uniparthenope.it/opendap/opendap/ (last access: 7 October 2021.
Pappone, G., Aucelli, P. P., Mattei, G., Peluso, F., Stefanile, M., and Carola,
A.: A detailed reconstruction of the Roman landscape and the submerged
archaeological structure at “Castel dell'Ovo islet” (Naples, Southern
Italy), Geosciences, 9, 170, https://doi.org/10.3390/geosciences9040170, 2019. a, b
Portmann, R., González-Alemán, J. J., Sprenger, M., and Wernli, H.: How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas), Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, 2020. a
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.: The
weather research and forecasting model: Overview, system efforts, and future
directions, B. Am. Meteorol. Soc., 98, 1717–1737,
2017. a
Reeve, D., Chadwick, A., and Fleming, C.: Coastal engineering: processes,
theory and design practice, CRC Press, Boca Raton, 2018. a
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A recent increase in
global wave power as a consequence of oceanic warming, Nat. Commun.,
10, 1–14, 2019. a
Romano, P., Di Vito, M., Giampaola, D., Cinque, A., Bartoli, C., Boenzi, G.,
Detta, F., Di Marco, M., Giglio, M., Iodice, S., et al.: Intersection of
exogenous, endogenous and anthropogenic factors in the Holocene landscape: A
study of the Naples coastline during the last 6000 years, Quaternary
Int., 303, 107–119, 2013. a
Sánchez-Gallegos, D. D., Di Luccio, D., Gonzalez-Compean, J., and Montella,
R.: A Microservice-Based Building Block Approach for Scientific Workflow
Engines: Processing Large Data Volumes with DagOnStar, in: 2019 15th
International Conference on Signal-Image Technology & Internet-Based Systems
(SITIS), pp. 368–375, IEEE, 2019a. a
Sánchez-Gallegos, D. D., Di Luccio, D., Gonzalez-Compean, J. L., and
Montella, R.: Internet of Things orchestration using DagOn* workflow engine,
in: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 95–100,
IEEE, Limerick, Ireland, 2019b. a
Sánchez-Gallegos, D. D., Di Luccio, D., Kosta, S., Gonzalez-Compean, J.,
and Montella, R.: An efficient pattern-based approach for workflow supporting
large-scale science: The DagOnStar experience, Future Generation Computer
Systems, 122, 187–203, 2021. a
Santacroce, R., Sbrana, A., Sulpizio, R., Zanchetta, G., Perrone, V., and Bravi, S.: Carta
geologica del Vesuvio, 1:15 000 Progetto CARG, Servizio Geologico Nazionale,
CNR, available at: https://www.isprambiente.gov.it/Media/carg/note_illustrative/448_Ercolano.pdf (last access: 7 October 2021), 2003.
a
Sanuy, M., Duo, E., Jäger, W. S., Ciavola, P., and Jiménez, J. A.: Linking source with consequences of coastal storm impacts for climate change and risk reduction scenarios for Mediterranean sandy beaches, Nat. Hazards Earth Syst. Sci., 18, 1825–1847, https://doi.org/10.5194/nhess-18-1825-2018, 2018. a
Saviano, S., Cianelli, D., Zambianchi, E., Conversano, F., and Uttieri, M.: An
integrated reconstruction of the multiannual wave pattern in the Gulf of
Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea), J.
Marine Sci. Eng., 8, 372, https://doi.org/10.3390/jmse8050372, 2020. a, b
Scicchitano, G., Scardino, G., Monaco, C., Piscitelli, A., Milella, M.,
De Giosa, F., and Mastronuzzi, G.: Comparing impact effects of common storms
and Medicanes along the coast of south-eastern Sicily, Marine Geol., 439,
106 556, 2021. a
Skamarock, W. C., Klemp, J. B., and Dudhia, J.: Prototypes for the WRF (Weather
Research and Forecasting) model, in: Preprints, Ninth Conf. Mesoscale
Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL, 2001. a
Tolman, H. L.: User manual and system documentation of WAVEWATCH III TM
version 3.14, Technical note, MMAB Contribution, 276, 220, 2009. a
Tsai, C.-H. and Chen, C.-W.: The establishment of a rapid natural disaster risk
assessment model for the tourism industry, Tourism management, 32, 158–171,
2011. a
Uttieri, M., Cianelli, D., Nardelli, B. B., Buonocore, B., Falco, P., Colella,
S., and Zambianchi, E.: Multiplatform observation of the surface circulation
in the Gulf of Naples (Southern Tyrrhenian Sea), Ocean Dynam., 61,
779–796, 2011. a
Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., and Rovere, A.:
Multiproxy assessment of Holocene relative sea-level changes in the western
Mediterranean: Sea-level variability and improvements in the definition of
the isostatic signal, Earth-Sci. Rev., 155, 172–197, 2016. a
Van Westen, C. J.: Remote sensing and GIS for natural hazards assessment and
disaster risk management, Treatise on geomorphology, 3, 259–298, 2013. a
Vieira, F., Cavalcante, G., and Campos, E.: Analysis of wave climate and trends
in a semi-enclosed basin (Persian Gulf) using a validated SWAN model, Ocean
Eng., 196, 106821, https://doi.org/10.1016/j.oceaneng.2019.106821, 2020. a
Williams, A., Rangel-Buitrago, N., Pranzini, E., and Anfuso, G.: The management
of coastal erosion, Ocean Coast. Manage., 156, 4–20, 2018. a
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind
speed and wave height, Science, 364, 548–552, 2019. a
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
This study examines the characteristics of a destructive marine storm in the strongly inhabited...
Altmetrics
Final-revised paper
Preprint