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Abstract. Destructive marine storms bring large waves and
unusually high surges of water to coastal areas, resulting in
significant damages and economic loss. This study analy-
ses the characteristics of a destructive marine storm on the
strongly inhabited coastal area of Gulf of Naples, along the
Italian coasts of the Tyrrhenian Sea. This is highly vulnera-
ble to marine storms due to the accelerated relative sea level
rise trend and the increased anthropogenic impact on the
coastal area. The marine storm, which occurred on 28 De-
cember 2020, was analyzed through an unstructured wind–
wave coupled model that takes into account the main marine
weather components of the coastal setup. The model, vali-
dated with in situ data, allowed the establishment of thresh-
old values for the most significant marine and atmospheric
parameters (i.e., wind intensity and duration) beyond which
an event can produce destructive effects. Finally, a first as-
sessment of the return period of this event was evaluated us-
ing local press reports on damage to urban furniture and port
infrastructures.

1 Introduction

Impacts of storm-driven erosion and flooding are the most
serious hazards being faced by coastal systems worldwide
due to the strong urbanization of these areas, especially be-
cause ca. 50 % of the world’s coastline is currently under
pressure from excessive human development. Furthermore,
according to the recent Intergovernmental Panel on Climate
Change (IPCC) report (IPCC, 2021), global mean sea level

rise is expected to rise 1.1 m by 2100, enhancing the effects
of extreme marine events that, in the future, will probably
hit increasingly wide coastal areas (Antonioli et al., 2020;
Bamber et al., 2019; Aucelli et al., 2017b). Other relevant
physical drivers are changes in storm and hurricane charac-
teristics such as wave height and tracks (Buccino et al., 2020;
Di Luccio et al., 2019). In the last years, additionally, global
climate change has increased the intensity and frequency of
coastal flooding observed in the Mediterranean due to severe
storms and relative surges and often in response to the occur-
rence of extra tropical-like cyclones, better known as med-
icanes (MEDIterranean hurriCANES) (Scicchitano et al.,
2021; Bakkensen, 2017; Portmann et al., 2019). Climate-
change-related impacts, such as shoreline changes, under
these conditions and their prediction are essential for inte-
grated coastal zone management (Di Paola et al., 2020).

Impacts of storms on coastal areas induce relevant eco-
nomic and human losses that demand better knowledge of
coastal exposure and require us to reflect on the adoption
of measures to reduce the impacts of these events (Costas
et al., 2015). Erosive effects on the coasts are controlled
by the interplay between storm characteristics and coastal
geomorphology (Lionello and Scarascia, 2020). Moreover,
coastal damage, strongly related to storm-induced processes
(i.e., flooding or erosion), can be exacerbated by the pres-
ence of intensive human activities or other developments in
residential localities such as ports or touristic infrastructures
(Godschalk et al., 2000; Esnard et al., 2001; Jiménez et al.,
2012).
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Storm impact assessment in urbanized coastal areas in the
Mediterranean Sea (Sanuy et al., 2018; Lira-Loarca et al.,
2020; Amores et al., 2020; Cavaleri et al., 2019; Jiménez
et al., 2018; Amarouche et al., 2020; Anfuso et al., 2021) has
become an issue of high scientific and social interest due to
the alarming effects related to the climate changes observed
over the last decades (Young and Ribal, 2019; Lionello and
Scarascia, 2020; Gulev and Grigorieva, 2004), not only in the
form of an increasing trend in significant wave heights (Hs)
and wind speed (Ws) (Dobrynin et al., 2012; Reguero et al.,
2019; Vieira et al., 2020; Meucci et al., 2020) but also due to
the accelerated relative sea level rise.

The examination of the behavior, evolution, and conse-
quences of the coastal storm disasters is necessary to assess
their danger and the population’s ability to adapt and mitigate
their effects (Tsai and Chen, 2011). In this respect, many au-
thors (Van Westen, 2013) have recognized the relevance of a
risk analysis based on its estimation, identification, and un-
derstanding.

To this aim, this paper deals with the characterization of a
significant storm that occurred in the Gulf of Naples (Italy)
that was reconstructed by analyzing weather and marine data
obtained from in situ instruments and numerical simulations.
These simulations, based on Weather Research and Fore-
casting (WRF) and Wavewatch III (WW3) wind and wave
models, have been configured by the University of Naples
“Parthenope” in the Gulf of Naples since 2006 (Benassai and
Ascione, 2006) and have been successfully validated with in
situ and satellite data (Benassai et al., 2015, 2013, 2012).

The study area exhibits a seasonal wave climate as ob-
served along the whole coastal area of the Tyrrhenian Sea
(Morucci et al., 2016; Saviano et al., 2020). Low Hs (on the
order of a few tens of centimeters) is measured during the
summer (from June to August), and significant waves up to
3 m are observed during winter and autumn (from Novem-
ber to February). However, coastal effects of the most in-
tense winter events on a specific coastal sector depend not
only on wave height and period but also storm groups and
interaction of the storm waves with the bathymetry and the
shoreline. Consequently, a precise assessment of the param-
eters that characterize a storm event is a significant challenge
to better understand final effects on the coast associated with
potential damages (Biolchi et al., 2019; Ferrando et al., 2021;
Anfuso et al., 2016).

Therefore this paper focuses on defining and interpreting
the dangerousness of the extreme storm waves that occurred
in the Gulf of Naples on 28 December 2020. The numerical
assessment of the storm surge on the most impacted coastal
sector was carried out through a procedure, validated with in
situ data, which took into account the main marine weather
components of the coastal setup. The aim of this paper is
twofold: on one hand to characterize the event by applying a
large-scale evaluation of the marine weather variability dur-
ing the maximum peak and, on the other, to define a fast pro-
cedure able to establish threshold values for the most signifi-

cant marine and atmospheric parameters (i.e., wind intensity
and duration) beyond which an event can produce destructive
effects on human activities and coastal infrastructures. This
procedure, coupled with the high-precision marine weather
forecasting, provided by the network in the Gulf of Naples
belonging to the University of Naples “Parthenope”, might
be intended as a tool for civil protection and coastal damage
prevention purposes. The approach proposed in this study
can be efficiently used to define the level of sensitivity of ur-
banized coasts to storms (Williams et al., 2018; Molina et al.,
2019, 2020).

The paper is organized as follows: Sect. 1 introduces the
themes, Sect. 2 details the study area characteristics, Sect. 3
describes the methodologies, Sect. 4 presents the reconstruc-
tion of the storm event within the framework of historical
wind events, Sect. 5 discusses the coastal effect of the storm
surge, and Sect. 6 concludes.

2 Study area

The Gulf of Naples (Fig. 1), Tyrrhenian Sea, is one of the
most populated Italian areas, with 3 016 762 inhabitants and a
medium density of 2672 inhabitants/km2. The urban territory
includes 92 municipalities on a surface of 1171 km2, with
60 % consisting of small municipalities (surface < 10 km2)
and an 11 % of big ones (surface > 25 km2). The latter in-
clude the coastal cities of Naples, Torre Annunziata, and Poz-
zuoli. The urbanized area in the gulf occupies only 32.54 %
of the total surface, and consequently, the population density
in this area is more than 8000 inhabitants/km2. Its coasts,
with an extension of 153 km, have a high cultural and nat-
ural value as demonstrated by the presence of several pro-
tected areas under different legal coverages, such as marine
protected areas (marine protected areas of Punta Campanella
and Regno di Nettuno) and archeological parks (underwa-
ter archeological parks of Baia and Gaiola). However, the
numerous submerged archeological sites scattered along the
coasts are significantly vulnerable to coastal processes (Mat-
tei et al., 2019). Under these circumstances, the urbanized
coasts of the gulf can be certainly considered highly sensi-
tive from both a socio-cultural and economic point of view to
severe marine storms. On the other hand, main cities are lo-
cated in narrow coastal plains, with commercial activities and
infrastructures located only a few meters above sea level (As-
cione et al., 2020). In fact, the present coastal morphology
in the gulf (Fig. 1) is characterized by an alternation of ar-
ticulated sea cliffs with sheltered pocket beaches and narrow
coastal plains, often strongly urbanized (Ascione et al., 2020;
Aucelli et al., 2017a). In particular, the high-coastal sectors
in the gulf can be divided into sea cliffs made of volcanic
deposits typically bordered by wide shore platforms (often
of polycyclic origin) and plunging cliffs in hard limestones
located along the eastern side of the gulf (Aucelli et al.,
2016a, b; Pappone et al., 2019; Aucelli et al., 2019; Mattei
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et al., 2020). The main coastal plains in the gulf, which are
Fuorigrotta, Chiaia, Sebeto, and Sarno plains (filled by suc-
cessions of volcanoclastic deposits), host the most populated
cities in the gulf, i.e., Naples and Torre Annunziata (Romano
et al., 2013; Vacchi et al., 2016; Cinque, 1991).

From a geological point of view, the Gulf of Naples is an
active peri-Tyrrhenian basin extending for about 1000 km2.
It is characterized by physiographic features typical of a
passive continental margin sector, with a continental shelf
between −140 and −180 m of depth (Milia and Torrente,
1999, 2003). The structure of the Gulf of Naples is controlled
by numerous Quaternary fault systems, NE–SW trending and
SE-dipping, and NW–SE trending and SW dipping, linked to
the last stages of the opening of the Tyrrhenian Sea (Fedele
et al., 2015; Milia, 2010). Between the Middle and Upper
Pleistocene, the fault systems were responsible for the devel-
opment of the half-graben of the Gulf of Naples and Sorrento
Peninsula fault block ridge (Milia and Torrente, 2003). The
landscape of this area is strongly influenced by the presence
of two active volcanos: the Campi Flegrei poly-caldera in
the west and the Vesuvius stratovolcano in the east (Fig. 1),
which interfered with its Late Pleistocene–Holocene evolu-
tion (Iannace et al., 2015; Isaia et al., 2018; Santacroce et al.,
2003).

During the Holocene, the morpho-evolutive trends of the
coasts of the Gulf of Naples have been characterized by sud-
den coastal changes strongly related to the interplay between
glacio-isostatic sea level rise and volcanic forcing (Cinque
et al., 2011; Aucelli et al., 2020, 2019, 2018a, b; Mattei
et al., 2020). The latter was driven by the combined effects
of volcanic eruptions with consequent landscape mantling
by pyroclastic products and vertical ground movements of
a metric entity related to sudden uplift for inflating and sub-
sidence for deflating of the magmatic chamber. Since histor-
ical times, the anthropic impact started interfering with these
natural forcings, often producing permanent modifications of
the original coastal landforms (Aucelli et al., 2021; Pappone
et al., 2019; Mattei et al., 2018), through mining activities
and construction of port structures and infilling. However,
the major forcing factor to be taken into account as the main
cause of the recent coastal changes in the gulf certainly is
the local wave climate. In detail, main stormy events (Menna
et al., 2007) with wave height values up to 4.8 m, are associ-
ated with atmospheric low-pressure systems and occur dur-
ing winter (December–February). According to Saviano et al.
(2019), high-frequency radar (HFR) data show that the high-
est waves mainly approach from 180 to 210◦ N, thus confirm-
ing a marked southwest directionality, as expected from the
local morphology of the gulf.

In contrast, in late spring and summer periods, the main
wind regime is represented by breezes, with a SSW direction
and maximum speed values of 8 m/s (Menna et al., 2007),
that produce low wave height values ranging from 0.4 to
0.6 m (Benassai et al., 1994; Buonocore et al., 2003; Saviano
et al., 2019).

Considering the seasonal surface circulation, during win-
ter, cyclonic and anticyclonic circulation systems alternate in
the gulf due to the interaction between the local wind forc-
ing and the large-scale circulation of the Tyrrhenian Sea. In
spring, when a shallow and sharp seasonal thermocline is
present, coastal upwelling is recorded and generates inter-
nal waves that propagate along the coast, causing relevant
mixing processes (de Ruggiero et al., 2018). In summer, the
breeze forcing induces a relatively regular diurnal current os-
cillation (de Ruggiero et al., 2016). In this last season, surface
currents typically rotated clockwise under the effect of land
and sea breeze over an entire day (Uttieri et al., 2011). In au-
tumn, the circulation is similar to the one recorded in winter.

3 Materials and methods

The fast procedure proposed in this paper aims to analyze
marine and atmospheric parameters (i.e., wind intensity and
duration) during a marine storm to establish a threshold be-
yond which an event can produce destructive coastal effects
(Fig. 2), according to the following steps:

1. detecting the most exposed coastal sectors during the
peak of a meteo-marine event by calculating the total
effect of the meteo-marine agents;

2. calculation of the wind setup in the coastal sketches
where the total effect was highest;

3. calculation of the coastal setup only along with the ur-
banized coastal sketches with maximum values of wind
setup.

The storm intensity was analyzed based on historical marine
weather data coupled with the spatial modeling of barometric
pressure, wind speed, and wave height and direction. This se-
vere event strongly impacted the coast of the city of Naples,
flooded wide areas, and greatly damaged the promenade and
restaurants, although the significant wave height measured
by the wave buoy in the gulf did not exceed 3.5 m. The ex-
amination of the duration, degree of severity, assessment of
damages, and losses, reported in the local press, were com-
pared with those of local historical chronicles to demonstrate
the high return period of the event analyzed in this study.

3.1 Wind observations

Data from different facilities, devoted to meteorological in
situ observations, were consulted to provide a historical anal-
ysis of the wind event that affected the study area in the last
10 years and to evaluate the accuracy of the simulation re-
sults. The following weather stations located in the city of
Naples were considered (see Fig. 1):

– p01 (40◦49′55.16′′ N–14◦14′41.78′′ E) is managed by
the University of Naples “Parthenope” (Fig. 1a). Since
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Figure 1. (a) Geological and geomorphological sketch of the study area. U1: limestones, dolomites, and marls of carbonate platform units
(Meso-Cenozoic); U2: volcanoclastic deposits (Quaternary); U3: alluvial, coastal, palustrine-lacustrine, and slope deposits (Quaternary).
The digital terrain model (DTM) of the emerged area was downloaded from ISPRA webGIS (http://www.sinanet.isprambiente.it, last access:
1 February 2021); the DTM of the emerged area was downloaded from the GEBCO website (http://www.gebco.net, last access: 1 Febru-
ary 2021). Photos of the (b) weather station and (c) ondameter belong to the Parthenope University network.

Figure 2. Workflow of the procedure applied in this study to evaluate the most impacted coastal sectors in the Gulf of Naples during the
December 2020 storm.
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Table 1. Classification in five classes of the three marine weather parameters – WSs, Hss, and SLPs – and classification of their cumulative
coastal effects.

Class Wind speed [m/s] Wave height [m] Sea level pressure [hPa] Cumulative effect

1 < 10.8 < 1.25 > 1013 Very low
2 10.9–13.1 1.25–2.5 999–1013 Low
3 13.2–15.5 2.5–3.5 998–999 Medium
4 15.6–17.8 3.5–4.5 997–998 High
5 > 17.9 > 4.5 < 997 Very high

2015, this Vaisala weather transmitter (WXT520) has
measured barometric pressure, humidity, precipitation,
temperature, and wind speed and direction. The Vaisala
WINDCAP sensor uses ultrasound to determine hori-
zontal wind speed and direction with an accuracy of
±0.3 m/s and ±3◦, respectively.

– p02 (40◦50′24.46′′ N–14◦16′30.63′′ E) is part of the Na-
tional Tide Gauge Network (https://www.mareografico.
it/ last access: 1 February 2021), and it is managed by
the Italian Institute for Environmental Protection and
Research (ISPRA). The weather station is located in the
Port of Naples at the Diaz pier.

Considering such databases, an analysis of wind events was
applied to 2010–2020 wind records to evaluate and clas-
sify the storms that approached the southwest in the last
10 years. Therefore, the dataset was filtered for events com-
ing from 202–242◦ directions, highlighting those with a ve-
locity higher than 13.9 m/s (the lower limit of the “near-gale”
class in the Beaufort scale) and duration > 6 h (according to
Allen, 1981). Subsequently, for each of the selected events,
the magnitude (M) was evaluated according to the following
equation:

M = h · v2, (1)

where h is the event duration in hours, and v is the wind
speed in meters per second (modified from Allen, 1981).

3.2 Wave observations

The in situ sea wave observation was carried out with the
wave recorder b01 (40◦37′07.82′′ N–14◦19′24.60′′ E), man-
aged by the University of Naples “Parthenope” (Fig. 1a and
c). The buoy is located in the Gulf of Naples near the Vervece
islet, and it has been operative since July 2020. It is equipped
with a BRIZO-X directional GNSS wave height sensor to
record wave statistics such as significant wave height (Hs),
maximum wave height (Hm), peak wave period (Tp), mean
zero upcrossing period (Tm), mean wave direction (Dm),
wave spread (Ds), and wave spectra.

A subset of the dataset was used to evaluate the accuracy
of the offshore wave simulations during the considered De-
cember 2020 storm event.

3.3 Atmospheric–marine numerical workflow

To characterize the meteo-marine scenario during the De-
cember 2020 storm event, an high-spatial-resolution model
chain (Sánchez-Gallegos et al., 2021; Di Luccio et al., 2020b;
Sánchez-Gallegos et al., 2019b, a) was configured using the
workflow orchestrator DagOnStar (Montella et al., 2018) to
manage and run the community numerical models Weather
Research and Forecasting (WRF) (Skamarock et al., 2001;
Powers et al., 2017) and Wavewatch III (WW3) (Tolman,
2009).

The first workflow component is the atmospheric model
WRF, which computes the 10 m wind fields and other atmo-
spheric parameters needed to drive the WW3 offshore wave
model.

The weather pattern (e.g., 10 m wind field and sea level
pressure) during the December 2020 storm was reconstructed
with the WRF model with the following two-way nested
computational domains: a coarser domain (25 km) covering
the whole of Europe, an intermediate domain (5 km) on the
Italian peninsula, and a finer domain (1 km) in the southern
Tyrrhenian Sea. The WRF model initial conditions were pro-
vided by the Global Forecast System (GFS), owned by the
National Centers for Environmental Prediction (NCEP).

A similar telescopic configuration was used in the case
of the WW3 wave model, with a ground resolution of 0.09◦

in the whole Mediterranean Sea, an intermediate resolution
of 0.03◦ for seas surrounding Italy, and a finer resolution
of 0.01◦ for the southern Tyrrhenian Sea. In this case, the
weather conditions provided by WRF were used to drive the
marine dynamic in the Mediterranean Sea closed geograph-
ical domain, so no wave boundary condition was necessary.
Moreover, an offline coupling approach between the atmo-
spheric model WRF and the wave model WW3 was applied.
The simulation results were provided with a 1 h time step in
NetCDF format.

This configuration of WRF and WW3 numerical mod-
els had been already tested in other applications involving,
among others, the beach run-up calculation (Di Luccio et al.,
2018a, 2020b), the rip-current identification (Di Luccio et al.,
2018b), and the reconstruction of weather (Di Luccio et al.,
2020a, 2021; Montella et al., 2019) and marine (Castagno
et al., 2020) patterns.
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Figure 3. Graph of wind speed (m/s) between 2015 and 2020 measured by the P01 weather station; red points highlight storms from 202–
242◦ with velocity > 13.9 m/s.

Figure 4. Graph of wind speed (m/s) between 2010 and 2015 measured by the P02 weather station; red points highlight storms from 202–
242◦ with a velocity higher than 13.9 m/s.
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Figure 5. The magnitude of storms lasting more than 6 h during the
observation period (2010–2020) from 202–242◦ directions with a
velocity higher than 13.9 m/s.

In the present application, the simulated wind speed (WSs)
and direction (WDs), the sea level pressure (SLPs), the sig-
nificant wave height (Hss), and the mean wave period (Tms)
and direction (Dms) were analyzed to characterize the De-
cember 2020 storm along the whole Gulf of Naples using
the maximum-resolution dataset available for the WRF and
WW3 models.

3.4 Setup evaluation

The reconstruction of the main erosive effects of the maxi-
mum water level time interval (tmax) that occurred during the
December 2020 storm in the study area was performed with
the following methodological steps.

1. The first step is aimed at detecting the most impacted
coastal sectors in the Gulf of Naples during tmax. To
do this, each marine weather parameter – WSs, Hss,
and SLPs – was classified, taking into account the five
classes of intensity and/or impact on the coasts summa-
rized in Table 1. Wind intensity was classified according
to the Beaufort scale, also considering the range of wind
variability in the gulf in the last 10 years. In particular,
class 1 corresponds to a fresh breeze, class 2 is a strong
breeze, classes 3 and 4 are near-gale, and class 5 is gale
or higher than a gale. The wave height was classified
according to the Douglas scale, where class 1 is from
calm to slight wave, class 2 is a moderate wave, class 3
is a rough wave, and classes 4 and 5 are from rough
to very rough. Atmospheric pressure was classified in
equal intervals, starting from class 1, corresponding to
high-pressure conditions, up to class 5, corresponding
to low-pressure ones.

The total effect of the three classified parameters was
evaluated by calculating the average values between the
abovementioned classes and, consequently, classified in
five classes according to Table 1.

2. The second step was the calculation of the wind setup in
the coastal sketches where the total effect was high, ac-
cording to the following equations (Reeve et al., 2018):

iw = Cw

(
ρa

ρw

)
U2

w
gh
, (2)

where Uw is the wind speed (m/s), h is the water depth,
ρ is the density of air (“a”) or water (“w”), and Cw is
the air or water friction coefficient.

The maximum setup at the downwind coast is

ηw = iw
F

2
, (3)

where F is the fetch length in meters, and ηw is the wind
setup in meters.

3. The last step provided the calculation of the coastal
setup as the sum of wind, wave, and barometric setup,
along with the urbanized coastal sketches with maxi-
mum values of wind setup. The aim was to evaluate the
flooding during tmax only where the storm had destruc-
tive effects on anthropic structures. In the surf zone, the
rise in the mean water level at mean depth dx was cal-
culated as follows (Dean and Dalrymple, 1991):

ζ̄ (x)= ζ̄b+
3γ 2

b
8

(
1+

3γ 2
b

8

)
[db− d (x)] , (4)

where ζ̄b is the wave setdown at the breaking depth,
given by

ζ̄b =−
1
16
γbHb, (5)

whereHb is breaking wave height, and γb is the breaker
index.

For spilling type breakers on dissipative beaches the as-
sumption commonly employed is that γb remains a fixed
ratio throughout the entire surf zone:

γb ≈

(
H

d

)
b
, (6)

where db is the mean depth at breaking. The break-
ing index was calculated by various authors. According
to Kamphuis (1991), the significant breaking index is
given by

γb = 0.56e3.5m, (7)

where m is the slope of the seabed.

The barometric setup was calculated as follows:

1ζ =
1Pa

ρg
, (8)

where 1Pa is the pressure variation during the event.

4 Results

The December 2020 storm came from the southwest, be-
tween 202 and 242◦ N. As described in the following sec-
tions, the event was characterized by anomalous wind condi-
tions that strongly influenced effects on the coast.
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Figure 6. Sea level pressure and 2 m air temperature simulated with the WRF model on 28 December 2020 at 06:00 UTC (a), 09:00 UTC (b),
12:00 UTC (c), 15:00 UTC (d), 18:00 UTC (e), and 21:00 UTC (f).

Figure 7. Comparison of in situ observations of wind speed and direction at p01 (a) and p02 (b) with the simulation results.

Nat. Hazards Earth Syst. Sci., 21, 3809–3825, 2021 https://doi.org/10.5194/nhess-21-3809-2021
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Figure 8. Comparison between in situ wave observation and simulation of significant wave heights and period (a, b), directional distribution
of the significant wave height occurrence (c, d).

4.1 Historical wind events analysis

A historical analysis of wind events coming from the south-
west between 2010 and 2020 was applied to data recorded
at p01 and p02 weather stations to classify the event investi-
gated in this paper. The results reported in Figs. 3 and 4 show
that the most intense events with a duration higher than 6 h
(red points in the figures) come from the NW sector during
winter months, confirming previous studies (Menna et al.,
2007; Saviano et al., 2019, 2020).

The calculation of the storm magnitude (Fig. 5) shows
that these events frequently occurred in December (7 out of
10). Moreover, the December 2020 storm is the most intense
event that occurred in the observed period, in terms of both
maximum wind speed measured by p01 station (25.1 m/s)
and maximum duration (11 h) of wind speed > 13.9 m/s
(“near-gale” in Beaufort scale).

4.2 Meteo-marine storm event reconstruction

The scientific workflow described in Sect. 3.3 supported the
reconstruction of the December 2020 storm event. As shown
in Fig. 6, the study area was characterized by a low-pressure

front with a minimum SLPs value equal to 995 hPa at tmax±

1 h during 28 December 2020.
On the same day, this intense atmospheric low-pressure

system was accompanied by widespread rainfall and strong
winds coming from the southwest (WSs > 20 m/s) with gusts
> 25 m/s, as shown in Fig. 7.

Moreover, the sea state at tmax± 1 h was characterized by
high waves (about 4 m as recorded by the wave recorder b01).

The combination of these and other (e.g., tide level)
coastal dynamic agents caused a violent storm surge in
Naples that strongly flooded the city’s waterfront overnight.

The validation of the accuracy of the WRF and WW3
models was done through the comparison between the hourly
numerical results in the time interval 27–30 December 2020
and the data recorded by the weather and wave recording sta-
tions (p01, p02, and b01). The results evidenced that the nu-
merical models were in good agreement with the observa-
tions. In particular, the root mean square error (RMSE) was
about 0.23 m for the significant wave height in b01 (Fig. 8)
and about 3.06 and 3.35 m/s in the case of wind speed at p01
and p02, respectively.
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Figure 9. Maps during tmax of (a) wind speed, (b) significant wave height, (c) sea level pressure, (d) the cumulative effect of the three
modeled parameters. The DTM of the emerged area was downloaded from ISPRA webGIS (http://www.sinanet.isprambiente.it, last access:
1 February 2021); the DTM of the emerged area was downloaded from the GEBCO website (http://www.gebco.net/data_and_products/
gridded_bathymetry_data, last access: 1 February 2021).

5 Discussion of the spatial classification of storm surge
effects

The results of the spatial classification of the cumulative
storm surge effects show that it was highest (red class) along
with three cliffed urbanized sectors (Ischia, Capri, and Sor-
rento Peninsula) and three strongly anthropized, urban, low
coastal areas (Posillipo, Port of Naples, and Torre Annunzi-
ata), as shown in Fig. 9d.

This result can be explained through the analysis of the
wind and wave spatial distribution during the 28 December
event in the Gulf of Naples. The wind speed in the western
part of the gulf (Fig. 9a) is lower than that in the central-
eastern part. In contrast, the significant wave height was max-
imum in the proximity of the islands (Capri and Ischia), with
values higher than 5 m and between 4 and 5 m along with
the other urban exposed sectors. Due to the combined effect
of the spatial distribution of the fetch and the wind speed

variation along the coastal areas, the cumulative effect of the
28 December storm surge was maximum among the urban-
ized areas most exposed to the southwest, namely the Naples
coast (Posillipo and Port sectors) and Torre Annunziata.

However, the Naples coast (sectors 5 and 6 in Fig. 10) was
the most exposed to the wind effects, as the wind setup cal-
culation demonstrated. Consequently, the mean coastal setup
was evaluated only in this sector, according to the procedure
described before. In particular, the wave setup was calculated
(Eq. 2) by using the high-precision submerged bathymetry,
obtained from a multibeam survey of the Neapolitan area,
from which the slope in shallow waters was measured.

As a result of the calculation (step 3 in Sect. 3.4), the time-
averaged water level elevation at the coastline (coastal setup)
during tmax in the most exposed area of the Naples waterfront
was 1.6 m, resulting from the sum of wind setup (0.8 m),
wave setup (0.3 m), barometric setup (0.2 m), and water level
(0.3 m).
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Figure 10. Wind setup along the coast of Gulf of Naples during tmax. The DTM of the emerged area was downloaded from ISPRA webGIS
(http://www.sinanet.isprambiente.it, last access: 1 February 2021); the DTM of the emerged area was downloaded from the GEBCO website
(http://www.gebco.net, last access: 1 February 2021).

Figure 11. (a) The surge in the coastal area with maximum setup values (Naples city center) during the storm event (the onshore DTM from
lidar data was provided by the Ministero dell’Ambiente; the offshore DTM was derived from bathymetric data provided by Regione Campa-
nia), close-up of flooded areas in the (b) W sector and (c) E sector (Esri World Imagery basemap. Scale not given. Source: Esri, DigitalGlobe,
GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community, 14 February 2021).
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Figure 12. (a–d) Photos of storm surge in the coastal area with maximum setup values (Naples city center), (e, f) damages to structures
during the event, (g) promenade destroyed with collapsed parapet, (h) shattered shop windows, (i, n) Castel dell’Ovo after the event, (l,
m) Bourbon pier after the event, (h) Bourbon pier before the event. On the map, the onshore DTM from lidar data was provided by the
Ministero dell’Ambiente; the offshore DTM was derived from bathymetric data provided by Regione Campania.
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Figure 13. Historical photo of the 1927 storm that impacted and destroyed via Caracciolo, Naples (from the Il Mattino newspaper).

The fast water level increase during tmax produced a
twofold effect on the coast, as evidenced by video and photo
reports (Fig. 12). On one hand, total flooding of the coastal
area took place (Fig. 11); on the other, wave breaking pro-
cesses took place on the coastal promenade (Fig. 12).

The flooding produced several destructive effects that con-
cerned the whole coastal sector, as shown in Fig. 12, includ-
ing a 14th-century castle (Castel dell’Ovo; Fig. 12i and n).
In the touristic city area between via Caracciolo and Cas-
tel dell’Ovo, the main damages concerned both commercial
activities and archeological structures. In particular, a part
of the promenade was dismantled, together with the bunga-
lows of some restaurants and some shop windows (Fig. 12h).
Regarding the cultural heritage, the destruction of the Bour-
bonic pier occurred (Fig. 12m), and the 19th-century pave-
ment on the outside of Castel dell’Ovo was dismantled. The
main damages to the port were related to the military infras-
tructures located on the San Vincenzo pier.

The return period of this event was evaluated through the
analysis of historical archives of local newspapers. Accord-
ing to the last 100-year chronicles, based on similar damage
records, the December 2020 storm surge is a marine weather
event with a very high return period. The only past event with
similar destructive effects occurred on 28 December 1927, as
described by local newspapers (Fig. 13).

6 Conclusions and future investigations

The marine storm of 28 December 2020 that affected the
Gulf of Naples represented an outstanding storm associated
with the persistence of wind speed up to 90 km/h and low-
pressure conditions (997 hPa). This caused a significant surge

with a local increase of about 1.6 m during the peak of the
event. The anomalous water level rise provoked the flooding
of wide coastal areas of the city of Naples, with catastrophic
effects on port infrastructures, urban facilities, and cultural
heritage. The very high intensity of this event was testified
also by the analysis of historical chronicles that identified
only one storm with similar destructive effects in Decem-
ber 1927. The numerical characterization of this SW storm,
based on the high-spatial-resolution model, allowed the de-
tection of the most exposed coastal sectors in the gulf, ac-
cording to the first step of the proposed procedure. On the
other hand, this expedited procedure resulted in an efficient
way to measure the effects of this event on the urbanized ar-
eas among the most exposed sectors. The main result was the
definition of threshold values for wind speed and duration,
coupled with atmospheric pressure and medium wave height,
which could be used as an alert for future similar events com-
ing from the fourth quadrant. This fast procedure applied to
data from the marine weather forecasting networks can be-
come an operative tool for local authorities asked to apply
protective actions to human activities. Consequently, the ap-
proach proposed in this study has the aim to limit the dam-
ages of extreme events through the two following actions: the
preliminary detection of the destructive storms in time and
space and the implementation of fast procedures for alerting.
In the context of global warming, this issue is highly topi-
cal due to the recent and continuous increase in sea surface
temperature (SST), which has the effect of exacerbating the
intensity and frequency of extreme marine events on both a
global and Mediterranean scale. Considering also the recent
acceleration of sea level rise, urbanized and natural coastal
areas are likely to be increasingly flooded. In the framework
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of reducing the flood risk in the coastal area, two alterna-
tive strategies can be assessed. On one hand, it is manda-
tory to enhance the currently poor information on the way
in which local stakeholders counteract flood risks, for which
local shop owners are held responsible. On the other hand,
community disaster management is currently limited to clos-
ing off the waterfront at high water levels. The creation of
high-resolution databases of the main marine weather char-
acteristics of extreme events sounds strategic for improving
information and taking precautionary measures. The second
strategy is to improve the resilience of the urban waterfront.
This can be achieved by enhancing flood resilience into exist-
ing shops, e.g., by raising the topographic level of the shop
entrances and incorporating wet-proof technologies and in-
frastructures into the open-air utilities.
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