Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
now at: GNS Sciences, 1 Fairway Drive, Lower Hutt 5010, New Zealand
Bernard Pelletier
GEOAZUR, Institut de Recherche pour le Développement, 101,
Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Maxime Duphil
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Jérôme Lefèvre
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Jérôme Aucan
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Pierre Lebellegard
GEOAZUR, Institut de Recherche pour le Développement, 101,
Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Bruce Thomas
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier,
France
Céline Bachelier
IMAGO, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
David Varillon
IMAGO, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Related authors
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Oriane Bruyère, Romain Le Gendre, Mathilde Chauveau, Bertrand Bourgeois, David Varillon, John Butscher, Thomas Trophime, Yann Follin, Jérôme Aucan, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 15, 5553–5573, https://doi.org/10.5194/essd-15-5553-2023, https://doi.org/10.5194/essd-15-5553-2023, 2023
Short summary
Short summary
During 2018–2022, four pearl farming Tuamotu atolls (French Polynesia) were studied with oceanographic instruments to measure lagoon hydrodynamics and ocean-lagoon water exchanges. The goal was to gain knowledge on the processes influencing the spat collection of the pearl oyster Pinctada margaritifera, the species used to produce black pearls. A worldwide unique oceanographic atoll data set is provided to address local pearl farming questions and other fundamental and applied investigations.
Clémence Chupin, Valérie Ballu, Laurent Testut, Yann-Treden Tranchant, and Jérôme Aucan
Ocean Sci., 19, 1277–1314, https://doi.org/10.5194/os-19-1277-2023, https://doi.org/10.5194/os-19-1277-2023, 2023
Short summary
Short summary
Reducing uncertainties in coastal sea level trend estimates requires a better understanding of altimeter measurements and local sea level dynamics. Using long-term sea level time series from the Nouméa tide gauge (New Caledonia) and in situ data collected as part of the GEOCEAN-NC campaign, this study presents a method inspired from Cal/Val studies to re-analyse about 20 years of altimetry observations and re-address the question of sea level evolution in the lagoon.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Cited articles
Aranguiz, R.: Tsunami resonance in the Bay of Conception (Chile) and the
effect of future events, in: Handbook of Coastal Disaster Mitigation for Engineers and Planners, edited by: Esteban, M., Takagi, H., and Shibayama, T., Butterworth-Heinemann, Boston, 93–113, https://doi.org/10.1016/B978-0-12-801060-0.00006-X, 2015.
Aranguiz, R., Catalan, P. A., Cecioni, C., Bellotti, G., Henriquez, P., and
Gonzalez, J.: Tsunami resonance and spatial pattern of natural oscillation
modes with multiple resonators, J. Geophys. Res.-Oceans, 124, 7797–7816, https://doi.org/10.1029/2019JC015206, 2019.
Barua, D. K., Allyn, N. F., and Quick, M. C.: Modelling tsunami and resonance
response of Alberni Inlet, British Columbia, Coast. Eng., 5, 1590–1602, https://doi.org/10.1142/9789812709554_0135, 2006.
Bellotti, G., Briganti, R., and Beltrami, G. M.: The combined role of bay and
shelf modes in tsunami amplification along the coast, J. Geophys. Res.-Oceans, 117, C08027, https://doi.org/10.1029/2012JC008061, 2012.
Blaser, L., Krüger, F., Ohrnberger, M., and Scherbaum, F.: Scaling relations of earthquake source parameter estimates with special focus on subduction environment, Bull. Seismol. Soc. Am., 100, 2914–2926, https://doi.org/10.1785/0120100111, 2010.
Burbidge, D., Mueller, C., and Power, W.: The effect of uncertainty in
earthquake fault parameters on the maximum wave height from a tsunami
propagation model, Nat. Hazards Earth Syst. Sci., 15, 2299–2312, https://doi.org/10.5194/nhess-15-2299-2015, 2015.
Calmant, S., Pelletier, B., Bevis, M., Taylor, F., Lebellegard, P., and Phillips, D.: New insights on the tectonics of the New Hebrides subduction zone based on GPS results, J. Geophys. Res., 108, 2319–2340, 2003.
Candy, A. S. and Pietrzak, J. D.: Shingle 2.0: generalising self-consistent
and automated domain discretisation for multi-scale geophysical models,
Geosci. Model Dev., 11, 213–234, https://doi.org/10.5194/gmd-11-213-2018, 2018.
CCRM: SCHISM, available at: http://ccrm.vims.edu/schismweb/, last access: 11 November 2021.
Daniel, J., Collot, J. Y., Monzier, M., Pelletier, B., Butscher, J., Deplus, C., Dubois, J., Gerard, M., Maillet, P., Monjaret, M. C., Recy, J., Renard, V., Rigolot, P., and Temakon, S. J.: Subduction et collision le long de l'arc des Nouvelles-Hébrides (Vanuatu): résultats préliminaires de la
campagne SEAPSO (leg I), C. R. Acad. Sci. Paris, 303, 805–810, 1986.
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determination of
earthquake source parameters from waveform data for studies of global and
regional seismicity, J. Geophys. Res., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Flather, R. A.: A tidal model of Northeast Pacific, Atmos.-Ocean, 25, 22–45, 1987.
Ford, M., Becker, J. M., Merrifield, M. A., and Song, T.: Marshall Islands
fringing reef and atoll lagoon observations of the Tohoku tsunami, Pure Appl. Geophys., 171, 3351–3363, https://doi.org/10.1007/s00024-013-0757-8, 2014.
Global CMT: Introduction and Explanation, available at: https://www.globalcmt.org, last access: 11 November 2021.
Harig, S., Chaeroni, C., Pranowo, W. S., and Behrens, J.: Tsunami simulations on several scales, Ocean Dynam., 58, 429–440, 2008.
Hentry, C., Chandrasekar, N., Saravanan, S., and DajkumarSahayam, J.: Influence of geomorphology and bathymetry on the effects of the 2004 tsunami at Colachel, South India, Bull. Eng. Geol. Environ., 69, 431–442,
https://doi.org/10.1007/s10064-010-0303-1, 2010.
Horrillo, J., Knight, W., and Kowalik, Z.: 2008 Kuril Islands tsunami of
November 2006: 2. Impact at Crescent City by local enhancement, J. Geophys. Res.-Oceans, 113, C01021, https://doi.org/10.1029/2007JC004404, 2008.
Horrillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., and Zhang, J.:
Performance benchmarking tsunami models for NTHMP's inundation mapping activities, Pure Appl. Geophys., 172, 869–884, https://doi.org/10.1007/s00024-014-0891-y, 2015.
Hsiao, S.-C., Chen, H., Wu, H.-L., Chen, W.-B., Chang, C.-H., Gui, W.-D.,
Chen, H.-M., and Lin, L.-H.: Numerical simulation of large wave heights from
super typhoon Nepartak (2016) in the eastern waters of Taiwan, J. Mar. Sci. Eng., 8, 217, https://doi.org/10.3390/jmse8030217, 2020.
IOC: Sea Level Station Monitoring Facility, available at: http://www.ioc-sealevelmonitoring.org, last acces: 11 November 2021.
Ioualalen, M., Pelletier, B., and Solis Gordillo, G.: Investigating the
March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the
Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia, Tectonophysics, 709, 20–38, https://doi.org/10.1016/j.tecto.2017.05.006, 2017.
Ji, C., Wald, D. J., and Helmberger, D. V.: Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92, 1192–1207, 2002.
Lardy, M.: Quelques remarques à propos du séisme et du tsunami du 17 mai 1995 à Port Vila, Note ORSTOM (ex IRD), ORSTOM, Nouméa, Nouvelle-Calédonie, 29 May 1995.
Lopez, J. E. and Baptista, M. A.: Benchmarking an unstructured grid sediment
model in an energetic estuary, Ocean Model., 110, 32–48, https://doi.org/10.1016/j.ocemod.2016.12.006, 2017.
Louat, R. and Pelletier, B.: Seismotectonics and present-day relative plate
motions in the New Hebrides – North Fiji basin region, Tectonophysics, 167,
41–55, 1989.
Maillet, P., Monzier, M., Eissen, J. P., and Louat, R.: Geodynamics of an arc
ridge junction: the case of the New Hebrides arc-North Fiji Basin,
Tectonophysics, 165, 251–268, 1989.
Matsuyama, M.: The effect of bathymetry on tsunami characteristics at Sisano
Lagoon, Papua New Guinea, Geophys. Res. Lett., 26, 3513–3516,
https://doi.org/10.1029/1999GL005412, 1999.
Monzier, M.: Un modèle de collision arc insulaire-ride océanique.
Evolution sismo-tectonique et petrologie des volcanites de la zone d'affrontement arc des Nouvelles-Hébrides – ride des Loyauté,
2 volumes, Thèse de doctorat, Univ. Française du Pacifique, Nouméa, p. 322, 1993.
Monzier, M., Maillet, P., Foyo Herrera, J., Louat, R., Missegue, F., and
Pontoise, B.: The termination of the southern New Hebrides subduction zone
(southwestern Pacific), Tectonophysics, 101, 177–184, 1984.
Monzier, M., Boulin, J., Collot, J. Y., Daniel, J., Lallemand, S., and
Pelletier, B.: Premiers résultats des plongées NAUTILE de la campagne SUPSO 1 sur la zone de collision “ride des Loyauté/arc des Nouvelles-Hébrides” (sud-ouest Pacifique), C. R. Acad. Sci. Paris, 309, 2069–2076, 1989.
Monzier, M., Daniel, J., and Maillet, P.: La collision “ride des
Loyauté/arc des Nouvelles Hébrides” (Pacifique Sud-Ouest), Oceanol.
Acta, 10, 43–56, 1990.
Munger, S. and Cheung, K. F.: Resonance in Hawaii waters from the 2006 Kuril
Islands tsunami, Geophys. Res. Lett., 35, L07605, https://doi.org/10.1029/2007GL032843, 2008.
Nakada, S., Hayashi, M., Koshimura, S., Yoneda, S., and Kobayashi, E.:
Tsunami-tide simulation in a large bay based on the greatest earthquake
scenario along the Nankai Trough, Int. J. Offsh. Polar Eng., 26, 392–400, https://doi.org/10.17736/ijope.2016.jc652, 2016.
Necmioglŭ, Ö. and Özel, N. M.: An earthquake source sensitivity
analysis for tsunami propagation in the Eastern Mediterranean, Oceanography,
27, 76–85, https://doi.org/10.5670/oceanog.2014.42, 2014.
Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154, 1985.
Okal, E. A.: Seismic parameters controlling far-field tsunami amplitudes: a
review, Nat. Hazards, 1, 67–96, https://doi.org/10.1007/BF00168222, 1988.
Pallares, E., Lopez, J., Espino, M., and Sánchez-Arcilla, A.: Comparison
between nested grids and unstructured grids for a high-resolution wave
forecastingsystem in the western Mediterranean sea, J. Operat. Oceanogr., 10, 45–58, https://doi.org/10.1080/1755876X.2016.1260389, 2017.
Patriat, M., Collot, J., Danyushevsky, L., Fabre, M., Meffre, S., Falloon, T., Rouillard, P., Pelletier, B., Roach, M., and Fournier, M.: Propagation of
back-arc extension into the arc lithosphere in the southern New Hebrides
volcanic arc, Geochem. Geophy. Geosy., 16, 3142–3159, 2015.
Pelletier, B., Calmant, S., and Pillet, R.: Current tectonics of the Tonga-New Hebrides region, Earth Planet. Sc. Lett., 164, 263–276, 1998.
Pinto, L., Fortunato, A. B., Zhang, Y., Oliveira, A., and Sancho, F. E. P.:
Development and validation of a three-dimensional morphodynamic modelling
system for non-cohesive sediments, Ocean Model., 57–58, 1–14, https://doi.org/10.1016/j.ocemod.2012.08.005, 2012.
Priest, G. R. and Allan, J. C.: Comparison of Oregon tsunami hazard scenarios
to a probabilistic tsunami hazard analysis (PTHA), Open-file Report 0-19-04, Oregon Department of Geology and Mineral Industries, Oregon, USA, 94 pp., 2019.
Rabinovich, A. B.: Seiches and harbor oscillations, in: Handbook of Coastal and Ocean Engineering, edited by: Kim, Y. C., World Scientific Publishing Co Pte Ltd, Singapore, 193–236, https://doi.org/10.1142/9789812819307_0009, 2009.
REFMAR: http://refmar.shom.fr, last access: 11 November 2021.
Régnier, M., Deschamps, A., Monfret, T., Pelletier, B., Pillet, R.,
Lebellegard, P., Courboulex, F., Delouis, B., and Gaffet, S.: Stress interaction during a seismic swarm at the southern termination of the New Hebrides trench, in: EGU 2004 Session TS19, 29 April 2004, Nice, 2004.
Roeber, V., Yamazaki, Y., and Cheung, K. F.: Resonance and impact of the 2009 Samoa tsunami around Tutuila, American Samoa, Geophys. Res. Lett., 37, L21604, https://doi.org/10.1029/2010GL044419, 2010.
Roger, J., Allgeyer, S., Hébert, H., Baptista, M. A., Loevenbruck, A., and Schindelé, F.: The 1755 Lisbon tsunami in Guadeloupe Archipelago: source sensitivity and investigation of resonance effects, Open Oceanogr. J., 4, 58–70, https://doi.org/10.2174/1874252101004010058, 2010.
Roger, J., Aucan, J., Pelletier, B., Lebellegard, P., and Lefèvre, J.:
The December 5, 2018 Mw 7.5 earthquake on the south Vanuatu subduction zone: numerical modelling and development of a scenario database for New Caledonia tsunami hazard assessment, Geophysical Research Abstracts, 21, EGU2019-3210, available at:
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-3210.pdf (last access: 11 November 2021), 2019a.
Roger, J., Pelletier, B., and Aucan, J.: Update of the tsunami catalogue of
New Caledonia using a decision table based on seismic data and marigraphic
records, Nat. Hazards Earth Syst. Sci., 19, 1471–1483,
https://doi.org/10.5194/nhess-19-1471-2019, 2019b.
Roger, J., Pelletier, B., Aucan, J., and Thomas, B.: Tsunamis in New Caledonia: from the update of the catalogue to the December 5, 2018 event, in: STAR 2019 Abstracts Booklet, STAR Conference, 19–22 November 2019, Fiji,
available at: http://star.gem.spc.int/docs/Abstract-booklet.pdf (last access: 11 November 2021), 2019c.
Roland, A., Zhang, Y. L., Wang, H. V., Meng, Y., Teng, Y.-C., Maderich, V.,
Brovchenko, I., Dutour-Sikiric, M., and Zanke, U.: A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33, https://doi.org/10.1029/2012JC007952, 2012.
Rouland, D., Régnier, M., Pillet, R., and Lafoy, Y.: An unexpected large
magnitude earthquake south of New Hebrides trench: broad band investigations
and tectonic implications, in: AGU Fall Meeting abstract, 11–15 December 1995, San Francisco, 1995.
Sahal, A., Pelletier, B., Chatelier, J., Lavigne, F., and Schindelé, F.: A catalog of tsunamis in New Caledonia from 28 March 1875 to 30 September 2009, Comptes Rendus Geoscience, 342, 437–444, 2010.
Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Schindelé, F., and Lavigne, F.: The tsunami triggered by the 21 May 2003
Boumerdès-Zemmouri (Algeria) earthquake: field investigations on the
French Mediterranean coast and tsunami modelling, Nat. Hazards Earth Syst. Sci., 9, 1823–1834, https://doi.org/10.5194/nhess-9-1823-2009, 2009.
Satake, K.: Effects of bathymetry on tsunami propagation: application of ray
tracing to tsunamis, Pure Appl. Geophys., 126, 27–36, https://doi.org/10.1007/BF00876912, 1988.
Shigihara, Y. and Fujima, K.: A nesting approach using unstructured grid
system for numerical simulation of tsunami. J. Jpn. Soc. Civ. Eng. Ser. B2, 68, I_186–I_190, https://doi.org/10.2208/kaigan.68.I_186, 2012.
Smith, H. F. W. and Sandwell, D. T.: Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997.
Strasser, F. O., Arango, M. C., and Bommer, J. J.: Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment
magnitude, Seismol. Res. Lett., 81, 941–950, https://doi.org/10.1785/gssrl.81.6.941, 2010.
Swapna, M. and Srivastava, K.: Effects of Murray ridge on the tsunami
propagation from Makran subduction zone, Geophys. J. Int., 199, 1430–1441, https://doi.org/10.1093/gji/ggu336, 2014.
Tari, D. and Siba, G.: Brief summary of the Aneityum tsunami impact
assessment report 05th December 2018, Vanuatu Meteorology and
Geohazards Department report, Vanuatu Meteorology and Geohazards Department, Port Vila, 4 pp., 2018.
Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., and Gonzalez, F. I.: The global reach of the 26 December 2004 Sumatra tsunami, Science, 309, 2045–2048, 2005.
US Geological Survey: Earthquake catalog, available at:
https://earthquake.usgs.gov/earthquakes/search/, last access: 10 January 2019.
Varillon, D., Fiat, S., Magron, F., Allenbach, M., Hoibian, T., De Ramon
N'Yeurt, A., Ganachaud, A., Aucan, J., Pelletier, B., and Hocdé, R.:
ReefTEMPS: the observation network of the coastal sea waters of the South,
West and South-West Pacific, SEANOE [code], https://doi.org/10.17882/55128, 2018.
Vela, J., Pérez, B., Gonzalez, M., Otero, L., Olabarrieta, M., Canals,
M., and Casamor, J. L.: Tsunami resonance in Palma Bay and Harbor, Majorca
Island, as induced by the 2003 Western Mediterranean earthquake, J. Geol., 122, 165–182, https://doi.org/10.1086/675256, 2014.
Vidale, J. and Kanamori, H.: The October 1980 earthquake sequence near the
New Hebrides, Geophys. Res. Let., 10, 1137–1140, 1983.
Watada, S., Kusumoto, S., and Satake, K.: Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth, J. Geophys. Res.-Solid, 119, 4287–4310, https://doi.org/10.1002/2013JB010841, 2014.
Yoon, S. B., Kim, S. C., Baek, U., and Bae, J. S.: Effects of bathymetry on the propagation of tsunamis towards the east coast of Korea, J. Coast. Res., 70, 332–337, https://doi.org/10.2112/SI70-056.1, 2014.
Zhang, Y. J. and Baptista, A. M.: SELFE: a semi-implicit Eulerian-Lagrangian
finite-element model for cross-scale ocean circulation, Ocean Model., 21, 71–96, https://doi.org/10.1016/j.ocemod.2007.11.005, 2008.
Zhang, Y.J., Ateljevich, E., Yu, H.-C., Wu, C. H., and Yu, J. C. S.: A new
vertical coordinate system for a 3D unstructured-grid model, Ocean Model., 85, 16–31, https://doi.org/10.1016/j.ocemod.2014.10.003, 2015.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modelling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016a.
Zhang, Y. J., Priest, G., Allan, J., and Stimely, L.: Benchmarking an
Unstructured-Grid Model for Tsunami Current Modelling, Pure Appl. Geophys., 173, 4075–4087, https://doi.org/10.1007/978-3-319-55480-8_20, 2016b.
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern...
Altmetrics
Final-revised paper
Preprint