Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
now at: GNS Sciences, 1 Fairway Drive, Lower Hutt 5010, New Zealand
Bernard Pelletier
GEOAZUR, Institut de Recherche pour le Développement, 101,
Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Maxime Duphil
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Jérôme Lefèvre
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Jérôme Aucan
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Pierre Lebellegard
GEOAZUR, Institut de Recherche pour le Développement, 101,
Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Bruce Thomas
ENTROPIE, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier,
France
Céline Bachelier
IMAGO, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
David Varillon
IMAGO, Institut de Recherche pour le Développement, 101, Promenade Roger Laroque, BP A5 98848 Nouméa CEDEX, New Caledonia
Related authors
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Jean Roger, Bernard Pelletier, and Jérôme Aucan
Nat. Hazards Earth Syst. Sci., 19, 1471–1483, https://doi.org/10.5194/nhess-19-1471-2019, https://doi.org/10.5194/nhess-19-1471-2019, 2019
Short summary
Short summary
This paper presents an update of the tsunami catalogue of New Caledonia within the framework of the tsunami hazard assessment project TSUCAL. It provides 25 events for the last decade, leading to 37 tsunamis triggered by earthquakes reported in New Caledonia since 1875. It is a topic of great concern for modelers looking for real case data to set up potential scenarios and for decision makers to constrain hazard management including evacuation processes in the case of a tsunami.
Yann Krien, Bernard Dudon, Jean Roger, Gael Arnaud, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, https://doi.org/10.5194/nhess-17-1559-2017, 2017
Short summary
Short summary
We used state-of-the-art numerical models and statistical approaches to investigate coastal flooding due to hurricanes and sea level rise for Martinique. The nonlinear interactions of surges with sea level rise are found to reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. The results presented is this paper are of primary interest to coastal planners and decision makers in Martinique and the Lesser Antilles.
Valérie Clouard, Jean Roger, and Emmanuel Moizan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-238, https://doi.org/10.5194/nhess-2017-238, 2017
Revised manuscript not accepted
Short summary
Short summary
In order to assess tsunami hazard in oceanic islands, one needs to
enlarge the observational time window by finding more evidence of past
events. Here, we present a thick two-layer tsunami deposit evidenced in an archaeological excavation in Martinique and we relate it to the 1755 Lisbon tsunami. Our results indicate a way to improve our tsunami databases and further constrain the use of numerical modelling to predict paleo-tsunami deposit thickness.
Y. Krien, B. Dudon, J. Roger, and N. Zahibo
Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, https://doi.org/10.5194/nhess-15-1711-2015, 2015
Short summary
Short summary
New maps of hurricane-induced surge levels that can occur on average once every 100- and 1000 years are drawn for Guadeloupe Island in the French West Indies, using a high-resolution wave-current coupled model and a large set of synthetic events that are in statistical agreement with historical storms. Results are found to differ significantly from past studies in wave-exposed areas, and should be of major interest for coastal planners and decision makers in terms of risk management.
J. Roger, A. Frère, and H. Hébert
Adv. Geosci., 38, 43–53, https://doi.org/10.5194/adgeo-38-43-2014, https://doi.org/10.5194/adgeo-38-43-2014, 2014
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Clémence Chupin, Valérie Ballu, Laurent Testut, Yann-Treden Tranchant, and Jérôme Aucan
EGUsphere, https://doi.org/10.5194/egusphere-2022-514, https://doi.org/10.5194/egusphere-2022-514, 2022
Short summary
Short summary
Altimetry satellite are essential to monitor and understand sea level evolution around the world with rates accuracy of mm/year. But these systems must also be qualified and controlled, especially approaching the coast. Using long-term sea level time series from Noumea tide gauge (New-Caledonia) and in situ data collected during the GEOCEAN-NC campaign, we propose a method to re-analyse about twenty years of altimetry observations and re-address the question of sea level evolution in the lagoon.
Jean Roger, Bernard Pelletier, and Jérôme Aucan
Nat. Hazards Earth Syst. Sci., 19, 1471–1483, https://doi.org/10.5194/nhess-19-1471-2019, https://doi.org/10.5194/nhess-19-1471-2019, 2019
Short summary
Short summary
This paper presents an update of the tsunami catalogue of New Caledonia within the framework of the tsunami hazard assessment project TSUCAL. It provides 25 events for the last decade, leading to 37 tsunamis triggered by earthquakes reported in New Caledonia since 1875. It is a topic of great concern for modelers looking for real case data to set up potential scenarios and for decision makers to constrain hazard management including evacuation processes in the case of a tsunami.
Guillaume Rousset, Florian De Boissieu, Christophe E. Menkes, Jérôme Lefèvre, Robert Frouin, Martine Rodier, Vincent Ridoux, Sophie Laran, Sophie Bonnet, and Cécile Dupouy
Biogeosciences, 15, 5203–5219, https://doi.org/10.5194/bg-15-5203-2018, https://doi.org/10.5194/bg-15-5203-2018, 2018
Yann Krien, Bernard Dudon, Jean Roger, Gael Arnaud, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 17, 1559–1571, https://doi.org/10.5194/nhess-17-1559-2017, https://doi.org/10.5194/nhess-17-1559-2017, 2017
Short summary
Short summary
We used state-of-the-art numerical models and statistical approaches to investigate coastal flooding due to hurricanes and sea level rise for Martinique. The nonlinear interactions of surges with sea level rise are found to reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. The results presented is this paper are of primary interest to coastal planners and decision makers in Martinique and the Lesser Antilles.
Valérie Clouard, Jean Roger, and Emmanuel Moizan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-238, https://doi.org/10.5194/nhess-2017-238, 2017
Revised manuscript not accepted
Short summary
Short summary
In order to assess tsunami hazard in oceanic islands, one needs to
enlarge the observational time window by finding more evidence of past
events. Here, we present a thick two-layer tsunami deposit evidenced in an archaeological excavation in Martinique and we relate it to the 1755 Lisbon tsunami. Our results indicate a way to improve our tsunami databases and further constrain the use of numerical modelling to predict paleo-tsunami deposit thickness.
Rosemary Morrow, Alice Carret, Florence Birol, Fernando Nino, Guillaume Valladeau, Francois Boy, Celine Bachelier, and Bruno Zakardjian
Ocean Sci., 13, 13–29, https://doi.org/10.5194/os-13-13-2017, https://doi.org/10.5194/os-13-13-2017, 2017
Short summary
Short summary
Spectral analyses of along-track altimetric data are used to estimate noise levels and observable ocean scales in the NW Mediterranean Sea. In winter, all altimetric missions can observe wavelengths down to 40–50 km (individual feature diameters of 20–25 km). In summer, SARAL can detect scales down to 35 km, whereas Jason-2 and CryoSat-2 with higher noise can only observe scales less than 50–55 km. Along-track altimeter data are also compared with collocated glider and coastal HF radar data.
Y. Krien, B. Dudon, J. Roger, and N. Zahibo
Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, https://doi.org/10.5194/nhess-15-1711-2015, 2015
Short summary
Short summary
New maps of hurricane-induced surge levels that can occur on average once every 100- and 1000 years are drawn for Guadeloupe Island in the French West Indies, using a high-resolution wave-current coupled model and a large set of synthetic events that are in statistical agreement with historical storms. Results are found to differ significantly from past studies in wave-exposed areas, and should be of major interest for coastal planners and decision makers in terms of risk management.
J. Roger, A. Frère, and H. Hébert
Adv. Geosci., 38, 43–53, https://doi.org/10.5194/adgeo-38-43-2014, https://doi.org/10.5194/adgeo-38-43-2014, 2014
Related subject area
Sea, Ocean and Coastal Hazards
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Observations of extreme wave runup events on the US Pacific Northwest coast
Warning water level determination and its spatial distribution in coastal areas of China
A global open-source database of flood-protection levees on river deltas (openDELvE)
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Simulation of tsunami induced by a submarine landslide in a glaciomarine margin: the case of Storfjorden LS-1 (southwestern Svalbard Islands)
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Probabilistic projections and past trends of sea level rise in Finland
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Improvements to the detection and analysis of external surges in the North Sea
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai
The OBS noise due to deep ocean currents
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
A coupled modelling system to assess the effect of Mediterranean storms under climate change
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Multilayer modelling of waves generated by explosive subaqueous volcanism
Time-dependent Probabilistic Tsunami Hazard Analysis for Western Sumatra, Indonesia, Using Space-Time Earthquake Rupture Modelling and Stochastic Source Scenarios
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations
Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa
Still normal? Near-real-time evaluation of storm surge events in the context of climate change
The influence of infragravity waves on the safety of coastal defences: a case study of the Dutch Wadden Sea
Assessment of potential beach erosion risk and impact of coastal zone development: a case study on Bongpo–Cheonjin Beach
Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy)
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023, https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Shan Liu, Xianwu Shi, Qiang Liu, Jun Tan, Yuxi Sun, Qingrong Liu, and Haoshuang Guo
Nat. Hazards Earth Syst. Sci., 23, 127–138, https://doi.org/10.5194/nhess-23-127-2023, https://doi.org/10.5194/nhess-23-127-2023, 2023
Short summary
Short summary
This study proposes a quantitative method for the determination of warning water levels. The proposed method is a multidimensional scale, centered on the consideration of various factors that characterize various coastlines. The implications of our study are not only scientific, as we provide a method for water level determination that is rooted in the scientific method (and reproducible across various contexts beyond China), but they are also deeply practical.
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022, https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Short summary
Humans build levees to protect themselves against floods. We need to know where they are to correctly predict flooding, for example from sea level rise. Here we have looked through documents to find levees, and checked that they exist using satellite imagery. We developed a global levee map, available at www.opendelve.eu, and we found that 24 % of people in deltas are protected by levees.
Alec Torres-Freyermuth, Gabriela Medellín, Jorge A. Kurczyn, Roger Pacheco-Castro, Jaime Arriaga, Christian M. Appendini, María Eugenia Allende-Arandía, Juan A. Gómez, Gemma L. Franklin, and Jorge Zavala-Hidalgo
Nat. Hazards Earth Syst. Sci., 22, 4063–4085, https://doi.org/10.5194/nhess-22-4063-2022, https://doi.org/10.5194/nhess-22-4063-2022, 2022
Short summary
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
María Teresa Pedrosa-González, José Manuel González-Vida, Jesús Galindo-Záldivar, Sergio Ortega, Manuel Jesús Castro, David Casas, and Gemma Ercilla
Nat. Hazards Earth Syst. Sci., 22, 3839–3858, https://doi.org/10.5194/nhess-22-3839-2022, https://doi.org/10.5194/nhess-22-3839-2022, 2022
Short summary
Short summary
The L-ML-HySEA (Landslide Multilayer Hyperbolic Systems and Efficient Algorithms) model of the tsunami triggered by the Storfjorden LS-1 landslide provides new insights into the sliding mechanism and bathymetry controlling the propagation, amplitude values and shoaling effects as well as coastal impact times. This case study provides new perspectives on tsunami hazard assessment in polar margins, where global climatic change and its related ocean warming may contribute to landslide trigger.
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022, https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
Short summary
Even if the coincidence of flood and tsunami hazards may be experienced once in a blue moon, it should also be investigated due to the uncertainty of the time of occurrence of these natural hazards. The objective of this study is to reveal a statistical methodology to evaluate the aggregate potential hazard levels due to flood hazards with the presence of earthquake-triggered tsunamis. The proposed methodology is applied to Fethiye city, located on the Western Mediterranean coast of Turkey.
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022, https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Short summary
Extreme-event analysis is widely used to provide information for the design of coastal protection structures. Non-stationarity due to sea level rise can affect such estimates. Using different methods on a long time series of sea level data, we show that estimates of the magnitude of extreme events in the future can be inexact due to relative sea level rise. Thus, considering non-stationarity is important when analyzing extreme-sea-level events.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Havu Pellikka, Milla M. Johansson, Maaria Nordman, and Kimmo Ruosteenoja
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-230, https://doi.org/10.5194/nhess-2022-230, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
We explore the rate of past and future sea level rise on the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level in 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-215, https://doi.org/10.5194/nhess-2022-215, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the World Ocean in 2005–2021 and were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal/offshore structure damage and/or human losses. In correspondence to each freak wave event we put background wave and wind parameters extracted from the climate reanalysis ERA5. We analyze their statistics and discuss the favorable conditions of freak wave occurrence.
Alexander Müller, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-223, https://doi.org/10.5194/nhess-2022-223, 2022
Preprint under review for NHESS
Short summary
Short summary
External surges in the North Sea are caused by low pressure cells travelling over the Northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviour and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022, https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary
Short summary
Our research focuses on how the geophysical characteristics of coastal cities can determine evacuees' vulnerability during a tsunami evacuation. We identify, analyse, and rank some of those essential characteristics by examining seven case studies in Chile through computer-based inundation, evacuation, and statistical regressive modelling. These results could lead to urban planning guidelines to enhance future evacuations and increase resilience to global tsunamis.
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022, https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022, https://doi.org/10.5194/nhess-22-2347-2022, 2022
Short summary
Short summary
A hydrodynamic model and copula methodology were used to set up a joint distribution of the peak water level and the inland rainfall during tropical cyclone periods, and to calculate the marginal contributions of the individual drivers. The results indicate that the relative sea level rise has significantly amplified the peak water level. The astronomical tide is the leading driver, followed by the contribution from the storm surge.
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-196, https://doi.org/10.5194/nhess-2022-196, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
We show that ocean bottom seismometers are controlled by bottom currents but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions, the permanent low frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Riccardo Alvise Mel, Teresa Lo Feudo, Massimo Miceli, Salvatore Sinopoli, and Mario Maiolo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-67, https://doi.org/10.5194/nhess-2022-67, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this work we present a coupled modelling system to compute the wind climate and the hydrodynamic two-dimensional field in coastal areas, with particular reference to the Marine Experimental Station of Capo Tirone (Italy). We combined sea level rise and extreme storm projections with the most recent georeferenced territorial data.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Ario Muhammad, Katsuichiro Goda, and Maximilian J. Werner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-59, https://doi.org/10.5194/nhess-2022-59, 2022
Revised manuscript has not been submitted
Short summary
Short summary
This study develops a novel framework of time-dependent (TD) probabilistic tsunami hazard analysis (PTHA) combining a total of ≥ 100,000 spatiotemporal earthquakes (EQ) rupture models and 6,300 probabilistic tsunami simulations to evaluate the tsunami hazards and compare them with the time-independent (TI) PTHA results. The proposed model can capture the uncertainty of future TD tsunami hazards and produces slightly higher hazard estimates than the TI model for short-term periods (< 30 years).
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, https://doi.org/10.5194/nhess-22-187-2022, 2022
Short summary
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Changbin Lim, Tae Kon Kim, Sahong Lee, Yoon Jeong Yeon, and Jung Lyul Lee
Nat. Hazards Earth Syst. Sci., 21, 3827–3842, https://doi.org/10.5194/nhess-21-3827-2021, https://doi.org/10.5194/nhess-21-3827-2021, 2021
Short summary
Short summary
This study aimed to quantitatively assess erosion risk. Methods for assessing each potential were proposed, and the corresponding erosion risk was calculated by introducing a combined potential erosion risk curve presenting the erosion consequence. In addition the method for verifying the risk was examined for the east coast of South Korea. We believe that our study makes a significant contribution to the literature and plays a key role in identifying methods that prevent erosion.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Cited articles
Aranguiz, R.: Tsunami resonance in the Bay of Conception (Chile) and the
effect of future events, in: Handbook of Coastal Disaster Mitigation for Engineers and Planners, edited by: Esteban, M., Takagi, H., and Shibayama, T., Butterworth-Heinemann, Boston, 93–113, https://doi.org/10.1016/B978-0-12-801060-0.00006-X, 2015.
Aranguiz, R., Catalan, P. A., Cecioni, C., Bellotti, G., Henriquez, P., and
Gonzalez, J.: Tsunami resonance and spatial pattern of natural oscillation
modes with multiple resonators, J. Geophys. Res.-Oceans, 124, 7797–7816, https://doi.org/10.1029/2019JC015206, 2019.
Barua, D. K., Allyn, N. F., and Quick, M. C.: Modelling tsunami and resonance
response of Alberni Inlet, British Columbia, Coast. Eng., 5, 1590–1602, https://doi.org/10.1142/9789812709554_0135, 2006.
Bellotti, G., Briganti, R., and Beltrami, G. M.: The combined role of bay and
shelf modes in tsunami amplification along the coast, J. Geophys. Res.-Oceans, 117, C08027, https://doi.org/10.1029/2012JC008061, 2012.
Blaser, L., Krüger, F., Ohrnberger, M., and Scherbaum, F.: Scaling relations of earthquake source parameter estimates with special focus on subduction environment, Bull. Seismol. Soc. Am., 100, 2914–2926, https://doi.org/10.1785/0120100111, 2010.
Burbidge, D., Mueller, C., and Power, W.: The effect of uncertainty in
earthquake fault parameters on the maximum wave height from a tsunami
propagation model, Nat. Hazards Earth Syst. Sci., 15, 2299–2312, https://doi.org/10.5194/nhess-15-2299-2015, 2015.
Calmant, S., Pelletier, B., Bevis, M., Taylor, F., Lebellegard, P., and Phillips, D.: New insights on the tectonics of the New Hebrides subduction zone based on GPS results, J. Geophys. Res., 108, 2319–2340, 2003.
Candy, A. S. and Pietrzak, J. D.: Shingle 2.0: generalising self-consistent
and automated domain discretisation for multi-scale geophysical models,
Geosci. Model Dev., 11, 213–234, https://doi.org/10.5194/gmd-11-213-2018, 2018.
CCRM: SCHISM, available at: http://ccrm.vims.edu/schismweb/, last access: 11 November 2021.
Daniel, J., Collot, J. Y., Monzier, M., Pelletier, B., Butscher, J., Deplus, C., Dubois, J., Gerard, M., Maillet, P., Monjaret, M. C., Recy, J., Renard, V., Rigolot, P., and Temakon, S. J.: Subduction et collision le long de l'arc des Nouvelles-Hébrides (Vanuatu): résultats préliminaires de la
campagne SEAPSO (leg I), C. R. Acad. Sci. Paris, 303, 805–810, 1986.
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determination of
earthquake source parameters from waveform data for studies of global and
regional seismicity, J. Geophys. Res., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Flather, R. A.: A tidal model of Northeast Pacific, Atmos.-Ocean, 25, 22–45, 1987.
Ford, M., Becker, J. M., Merrifield, M. A., and Song, T.: Marshall Islands
fringing reef and atoll lagoon observations of the Tohoku tsunami, Pure Appl. Geophys., 171, 3351–3363, https://doi.org/10.1007/s00024-013-0757-8, 2014.
Global CMT: Introduction and Explanation, available at: https://www.globalcmt.org, last access: 11 November 2021.
Harig, S., Chaeroni, C., Pranowo, W. S., and Behrens, J.: Tsunami simulations on several scales, Ocean Dynam., 58, 429–440, 2008.
Hentry, C., Chandrasekar, N., Saravanan, S., and DajkumarSahayam, J.: Influence of geomorphology and bathymetry on the effects of the 2004 tsunami at Colachel, South India, Bull. Eng. Geol. Environ., 69, 431–442,
https://doi.org/10.1007/s10064-010-0303-1, 2010.
Horrillo, J., Knight, W., and Kowalik, Z.: 2008 Kuril Islands tsunami of
November 2006: 2. Impact at Crescent City by local enhancement, J. Geophys. Res.-Oceans, 113, C01021, https://doi.org/10.1029/2007JC004404, 2008.
Horrillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., and Zhang, J.:
Performance benchmarking tsunami models for NTHMP's inundation mapping activities, Pure Appl. Geophys., 172, 869–884, https://doi.org/10.1007/s00024-014-0891-y, 2015.
Hsiao, S.-C., Chen, H., Wu, H.-L., Chen, W.-B., Chang, C.-H., Gui, W.-D.,
Chen, H.-M., and Lin, L.-H.: Numerical simulation of large wave heights from
super typhoon Nepartak (2016) in the eastern waters of Taiwan, J. Mar. Sci. Eng., 8, 217, https://doi.org/10.3390/jmse8030217, 2020.
IOC: Sea Level Station Monitoring Facility, available at: http://www.ioc-sealevelmonitoring.org, last acces: 11 November 2021.
Ioualalen, M., Pelletier, B., and Solis Gordillo, G.: Investigating the
March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the
Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia, Tectonophysics, 709, 20–38, https://doi.org/10.1016/j.tecto.2017.05.006, 2017.
Ji, C., Wald, D. J., and Helmberger, D. V.: Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92, 1192–1207, 2002.
Lardy, M.: Quelques remarques à propos du séisme et du tsunami du 17 mai 1995 à Port Vila, Note ORSTOM (ex IRD), ORSTOM, Nouméa, Nouvelle-Calédonie, 29 May 1995.
Lopez, J. E. and Baptista, M. A.: Benchmarking an unstructured grid sediment
model in an energetic estuary, Ocean Model., 110, 32–48, https://doi.org/10.1016/j.ocemod.2016.12.006, 2017.
Louat, R. and Pelletier, B.: Seismotectonics and present-day relative plate
motions in the New Hebrides – North Fiji basin region, Tectonophysics, 167,
41–55, 1989.
Maillet, P., Monzier, M., Eissen, J. P., and Louat, R.: Geodynamics of an arc
ridge junction: the case of the New Hebrides arc-North Fiji Basin,
Tectonophysics, 165, 251–268, 1989.
Matsuyama, M.: The effect of bathymetry on tsunami characteristics at Sisano
Lagoon, Papua New Guinea, Geophys. Res. Lett., 26, 3513–3516,
https://doi.org/10.1029/1999GL005412, 1999.
Monzier, M.: Un modèle de collision arc insulaire-ride océanique.
Evolution sismo-tectonique et petrologie des volcanites de la zone d'affrontement arc des Nouvelles-Hébrides – ride des Loyauté,
2 volumes, Thèse de doctorat, Univ. Française du Pacifique, Nouméa, p. 322, 1993.
Monzier, M., Maillet, P., Foyo Herrera, J., Louat, R., Missegue, F., and
Pontoise, B.: The termination of the southern New Hebrides subduction zone
(southwestern Pacific), Tectonophysics, 101, 177–184, 1984.
Monzier, M., Boulin, J., Collot, J. Y., Daniel, J., Lallemand, S., and
Pelletier, B.: Premiers résultats des plongées NAUTILE de la campagne SUPSO 1 sur la zone de collision “ride des Loyauté/arc des Nouvelles-Hébrides” (sud-ouest Pacifique), C. R. Acad. Sci. Paris, 309, 2069–2076, 1989.
Monzier, M., Daniel, J., and Maillet, P.: La collision “ride des
Loyauté/arc des Nouvelles Hébrides” (Pacifique Sud-Ouest), Oceanol.
Acta, 10, 43–56, 1990.
Munger, S. and Cheung, K. F.: Resonance in Hawaii waters from the 2006 Kuril
Islands tsunami, Geophys. Res. Lett., 35, L07605, https://doi.org/10.1029/2007GL032843, 2008.
Nakada, S., Hayashi, M., Koshimura, S., Yoneda, S., and Kobayashi, E.:
Tsunami-tide simulation in a large bay based on the greatest earthquake
scenario along the Nankai Trough, Int. J. Offsh. Polar Eng., 26, 392–400, https://doi.org/10.17736/ijope.2016.jc652, 2016.
Necmioglŭ, Ö. and Özel, N. M.: An earthquake source sensitivity
analysis for tsunami propagation in the Eastern Mediterranean, Oceanography,
27, 76–85, https://doi.org/10.5670/oceanog.2014.42, 2014.
Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154, 1985.
Okal, E. A.: Seismic parameters controlling far-field tsunami amplitudes: a
review, Nat. Hazards, 1, 67–96, https://doi.org/10.1007/BF00168222, 1988.
Pallares, E., Lopez, J., Espino, M., and Sánchez-Arcilla, A.: Comparison
between nested grids and unstructured grids for a high-resolution wave
forecastingsystem in the western Mediterranean sea, J. Operat. Oceanogr., 10, 45–58, https://doi.org/10.1080/1755876X.2016.1260389, 2017.
Patriat, M., Collot, J., Danyushevsky, L., Fabre, M., Meffre, S., Falloon, T., Rouillard, P., Pelletier, B., Roach, M., and Fournier, M.: Propagation of
back-arc extension into the arc lithosphere in the southern New Hebrides
volcanic arc, Geochem. Geophy. Geosy., 16, 3142–3159, 2015.
Pelletier, B., Calmant, S., and Pillet, R.: Current tectonics of the Tonga-New Hebrides region, Earth Planet. Sc. Lett., 164, 263–276, 1998.
Pinto, L., Fortunato, A. B., Zhang, Y., Oliveira, A., and Sancho, F. E. P.:
Development and validation of a three-dimensional morphodynamic modelling
system for non-cohesive sediments, Ocean Model., 57–58, 1–14, https://doi.org/10.1016/j.ocemod.2012.08.005, 2012.
Priest, G. R. and Allan, J. C.: Comparison of Oregon tsunami hazard scenarios
to a probabilistic tsunami hazard analysis (PTHA), Open-file Report 0-19-04, Oregon Department of Geology and Mineral Industries, Oregon, USA, 94 pp., 2019.
Rabinovich, A. B.: Seiches and harbor oscillations, in: Handbook of Coastal and Ocean Engineering, edited by: Kim, Y. C., World Scientific Publishing Co Pte Ltd, Singapore, 193–236, https://doi.org/10.1142/9789812819307_0009, 2009.
REFMAR: http://refmar.shom.fr, last access: 11 November 2021.
Régnier, M., Deschamps, A., Monfret, T., Pelletier, B., Pillet, R.,
Lebellegard, P., Courboulex, F., Delouis, B., and Gaffet, S.: Stress interaction during a seismic swarm at the southern termination of the New Hebrides trench, in: EGU 2004 Session TS19, 29 April 2004, Nice, 2004.
Roeber, V., Yamazaki, Y., and Cheung, K. F.: Resonance and impact of the 2009 Samoa tsunami around Tutuila, American Samoa, Geophys. Res. Lett., 37, L21604, https://doi.org/10.1029/2010GL044419, 2010.
Roger, J., Allgeyer, S., Hébert, H., Baptista, M. A., Loevenbruck, A., and Schindelé, F.: The 1755 Lisbon tsunami in Guadeloupe Archipelago: source sensitivity and investigation of resonance effects, Open Oceanogr. J., 4, 58–70, https://doi.org/10.2174/1874252101004010058, 2010.
Roger, J., Aucan, J., Pelletier, B., Lebellegard, P., and Lefèvre, J.:
The December 5, 2018 Mw 7.5 earthquake on the south Vanuatu subduction zone: numerical modelling and development of a scenario database for New Caledonia tsunami hazard assessment, Geophysical Research Abstracts, 21, EGU2019-3210, available at:
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-3210.pdf (last access: 11 November 2021), 2019a.
Roger, J., Pelletier, B., and Aucan, J.: Update of the tsunami catalogue of
New Caledonia using a decision table based on seismic data and marigraphic
records, Nat. Hazards Earth Syst. Sci., 19, 1471–1483,
https://doi.org/10.5194/nhess-19-1471-2019, 2019b.
Roger, J., Pelletier, B., Aucan, J., and Thomas, B.: Tsunamis in New Caledonia: from the update of the catalogue to the December 5, 2018 event, in: STAR 2019 Abstracts Booklet, STAR Conference, 19–22 November 2019, Fiji,
available at: http://star.gem.spc.int/docs/Abstract-booklet.pdf (last access: 11 November 2021), 2019c.
Roland, A., Zhang, Y. L., Wang, H. V., Meng, Y., Teng, Y.-C., Maderich, V.,
Brovchenko, I., Dutour-Sikiric, M., and Zanke, U.: A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33, https://doi.org/10.1029/2012JC007952, 2012.
Rouland, D., Régnier, M., Pillet, R., and Lafoy, Y.: An unexpected large
magnitude earthquake south of New Hebrides trench: broad band investigations
and tectonic implications, in: AGU Fall Meeting abstract, 11–15 December 1995, San Francisco, 1995.
Sahal, A., Pelletier, B., Chatelier, J., Lavigne, F., and Schindelé, F.: A catalog of tsunamis in New Caledonia from 28 March 1875 to 30 September 2009, Comptes Rendus Geoscience, 342, 437–444, 2010.
Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Schindelé, F., and Lavigne, F.: The tsunami triggered by the 21 May 2003
Boumerdès-Zemmouri (Algeria) earthquake: field investigations on the
French Mediterranean coast and tsunami modelling, Nat. Hazards Earth Syst. Sci., 9, 1823–1834, https://doi.org/10.5194/nhess-9-1823-2009, 2009.
Satake, K.: Effects of bathymetry on tsunami propagation: application of ray
tracing to tsunamis, Pure Appl. Geophys., 126, 27–36, https://doi.org/10.1007/BF00876912, 1988.
Shigihara, Y. and Fujima, K.: A nesting approach using unstructured grid
system for numerical simulation of tsunami. J. Jpn. Soc. Civ. Eng. Ser. B2, 68, I_186–I_190, https://doi.org/10.2208/kaigan.68.I_186, 2012.
Smith, H. F. W. and Sandwell, D. T.: Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997.
Strasser, F. O., Arango, M. C., and Bommer, J. J.: Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment
magnitude, Seismol. Res. Lett., 81, 941–950, https://doi.org/10.1785/gssrl.81.6.941, 2010.
Swapna, M. and Srivastava, K.: Effects of Murray ridge on the tsunami
propagation from Makran subduction zone, Geophys. J. Int., 199, 1430–1441, https://doi.org/10.1093/gji/ggu336, 2014.
Tari, D. and Siba, G.: Brief summary of the Aneityum tsunami impact
assessment report 05th December 2018, Vanuatu Meteorology and
Geohazards Department report, Vanuatu Meteorology and Geohazards Department, Port Vila, 4 pp., 2018.
Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., and Gonzalez, F. I.: The global reach of the 26 December 2004 Sumatra tsunami, Science, 309, 2045–2048, 2005.
US Geological Survey: Earthquake catalog, available at:
https://earthquake.usgs.gov/earthquakes/search/, last access: 10 January 2019.
Varillon, D., Fiat, S., Magron, F., Allenbach, M., Hoibian, T., De Ramon
N'Yeurt, A., Ganachaud, A., Aucan, J., Pelletier, B., and Hocdé, R.:
ReefTEMPS: the observation network of the coastal sea waters of the South,
West and South-West Pacific, SEANOE [code], https://doi.org/10.17882/55128, 2018.
Vela, J., Pérez, B., Gonzalez, M., Otero, L., Olabarrieta, M., Canals,
M., and Casamor, J. L.: Tsunami resonance in Palma Bay and Harbor, Majorca
Island, as induced by the 2003 Western Mediterranean earthquake, J. Geol., 122, 165–182, https://doi.org/10.1086/675256, 2014.
Vidale, J. and Kanamori, H.: The October 1980 earthquake sequence near the
New Hebrides, Geophys. Res. Let., 10, 1137–1140, 1983.
Watada, S., Kusumoto, S., and Satake, K.: Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth, J. Geophys. Res.-Solid, 119, 4287–4310, https://doi.org/10.1002/2013JB010841, 2014.
Yoon, S. B., Kim, S. C., Baek, U., and Bae, J. S.: Effects of bathymetry on the propagation of tsunamis towards the east coast of Korea, J. Coast. Res., 70, 332–337, https://doi.org/10.2112/SI70-056.1, 2014.
Zhang, Y. J. and Baptista, A. M.: SELFE: a semi-implicit Eulerian-Lagrangian
finite-element model for cross-scale ocean circulation, Ocean Model., 21, 71–96, https://doi.org/10.1016/j.ocemod.2007.11.005, 2008.
Zhang, Y.J., Ateljevich, E., Yu, H.-C., Wu, C. H., and Yu, J. C. S.: A new
vertical coordinate system for a 3D unstructured-grid model, Ocean Model., 85, 16–31, https://doi.org/10.1016/j.ocemod.2014.10.003, 2015.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modelling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016a.
Zhang, Y. J., Priest, G., Allan, J., and Stimely, L.: Benchmarking an
Unstructured-Grid Model for Tsunami Current Modelling, Pure Appl. Geophys., 173, 4075–4087, https://doi.org/10.1007/978-3-319-55480-8_20, 2016b.
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern...
Altmetrics
Final-revised paper
Preprint