Research article
23 Aug 2021
Research article
| 23 Aug 2021
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Christian Zangerl et al.
Related authors
No articles found.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-143, https://doi.org/10.5194/nhess-2022-143, 2022
Preprint under review for NHESS
Short summary
Short summary
Floods from glacial lakes (GLOFs) attracted increased research attention recently. In this contribution, we review GLOF research papers published between 2017 and 2021 and compliment the analysis with research community insights gained from the 2021 Global GLOF conference we organized. Transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Johnnatan Palacio Cordoba, Martin Mergili, and Edier Aristizábal
Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, https://doi.org/10.5194/nhess-20-815-2020, 2020
Short summary
Short summary
Landslides triggered by rainfall are very common phenomena in complex tropical environments such as the Colombian Andes. In this work, we perform probabilistic analyses with r.slope.stability for landslide susceptibility analysis. We test the model in the La Arenosa catchment, northern Colombian Andes. The results are compared to those yielded with the corresponding deterministic analyses and with other physically based models applied in the same catchment.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015, https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We propose a procedure to compute an integrated spatial landslide probability, combining release and propagation. The zonal release probability is introduced to correct the pixel-based release probability for the size of the release zone relevant for a pixel. For a test area in Taiwan we observe that the model performs moderately well in predicting the observed landslides and that the size of the release zone influences the result to a much higher degree than the pixel-based release probability.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, https://doi.org/10.5194/nhess-13-2779-2013, 2013
Related subject area
Landslides and Debris Flows Hazards
Quantification of meteorological conditions for rockfall triggers in Germany
Debris flow velocity and volume estimations based on seismic data
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Landslides caught on seismic networks and satellite radars
Variable hydrograph inputs for a numerical debris-flow runout model
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine
Multiscale effects caused by the fracturing and fragmentation of rock blocks during rock mass movement: implications for rock avalanche propagation
What drives landslide risk: Disaggregating risk analyses, an example from the Franz Josef and Fox Glacier Valleys, New Zealand
Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery
Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping
Evaluation of filtering methods for use on high-frequency measurements of landslide displacements
A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event
Physically-Based Modelling of co-seismic Landslide, Debris Flow and Flood Cascade
Brief communication: The role of geophysical imaging in local landslide early warning systems
Spatial assessment of probable recharge areas – Investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania
Augmentation and Use of WRF-Hydro to Simulate Overland Flow- and Streamflow-Generated Debris Flow Hazards in Burn Scars
Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Rainfall-Induced Landslide Early Warning System based on corrected mesoscale numerical models: an application for the Southern Andes
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Integrating empirical models and satellite radar can improve landslide detection for emergency response
GIS-models with fuzzy logic for Susceptibility Maps of debris flow using multiple types of parameters: A Case Study in Pinggu District of Beijing, China
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Landslide risk management analysis on expansive residential areas – case study of La Marina (Alicante, Spain)
Uncertainty analysis of a rainfall threshold estimate for stony debris flow based on the backward dynamical approach
Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps
Introducing SlideforMap; a probabilistic finite slope approach for modelling shallow landslide probability in forested situations
The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines
Invited perspectives: Landslide populations – can they be predicted?
Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019)
Exploring the potential relationship between the occurrence of debris flow and landslides
Cascade effect of rock bridge failure in planar rock slides: numerical test with a distinct element code
DebrisFlow Predictor: an agent-based runout program for shallow landslides
Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California
A model for interpreting the deformation mechanism of reservoir landslides in the Three Gorges Reservoir area, China
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
The potential of Smartstone probes in landslide experiments: how to read motion data
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
New global characterisation of landslide exposure
Semi-empirical prediction of dam height and stability of dams formed by rock slope failures in Norway
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022, https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Qiwen Lin, Yufeng Wang, Yu Xie, Qiangong Cheng, and Kaifeng Deng
Nat. Hazards Earth Syst. Sci., 22, 639–657, https://doi.org/10.5194/nhess-22-639-2022, https://doi.org/10.5194/nhess-22-639-2022, 2022
Short summary
Short summary
Fracturing and fragmentation of rock blocks are important and universal phenomena during the movement of rock avalanches (large and long-run-out rockslide-debris avalanches). The movement of a fragmenting rock block is simulated by the discrete element method, aiming to quantify the fracturing and fragmentation effect of the block in propagation. The fracturing and fragmentation processes and their influences on energy transformation in the system are described in detail.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-57, https://doi.org/10.5194/nhess-2022-57, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef and Fox Glacier valleys, New Zealand for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslides characteristics.
Napoleon Gudino-Elizondo, Matthew W. Brand, Trent W. Biggs, Alejandro Hinojosa-Corona, Álvaro Gómez-Gutiérrez, Eddy Langendoen, Ronald Bingner, Yongping Yuan, and Brett F. Sanders
Nat. Hazards Earth Syst. Sci., 22, 523–538, https://doi.org/10.5194/nhess-22-523-2022, https://doi.org/10.5194/nhess-22-523-2022, 2022
Short summary
Short summary
Mass movement hazards in the form of gullies and landslides pose significant risks in urbanizing areas yet are poorly documented. This paper presents observations and modeling of mass movement events over a 5-year period in Tijuana, Mexico. Three major events were observed, and all were linked to water resources infrastructure failures (WRIFs), namely leaks and breaks in water supply pipes. Modeling shows that WRIF-based erosion was also a non-negligible contributor to the total sediment budget.
David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, https://doi.org/10.5194/nhess-22-481-2022, 2022
Short summary
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Sohrab Sharifi, Michael T. Hendry, Renato Macciotta, and Trevor Evans
Nat. Hazards Earth Syst. Sci., 22, 411–430, https://doi.org/10.5194/nhess-22-411-2022, https://doi.org/10.5194/nhess-22-411-2022, 2022
Short summary
Short summary
This study is devoted to comparing the effectiveness of three different filters for noise reduction of instruments. It was observed that the Savitzky–Golay and Gaussian-weighted moving average filters outperform the simple moving average. Application of these two filters in real-time landslide monitoring leads to timely detection of acceleration moment and better preservation of information regarding displacement and velocity.
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-292, https://doi.org/10.5194/nhess-2021-292, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Natural hazards such as earthquakes, landslides and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min river, resulting in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-388, https://doi.org/10.5194/nhess-2021-388, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Vipin Kumar, Léna Cauchie, Anne-Sophie Mreyen, Mihai Micu, and Hans-Balder Havenith
Nat. Hazards Earth Syst. Sci., 21, 3767–3788, https://doi.org/10.5194/nhess-21-3767-2021, https://doi.org/10.5194/nhess-21-3767-2021, 2021
Short summary
Short summary
The SE Carpathians belong to one of the most active seismic regions of Europe. In recent decades, extreme rainfall events have also been common. These natural processes result in frequent landslides, particularly of a debris flow type. Despite such regimes, the region has been little explored to understand the response of the landslides in seismic and rainfall conditions. This study attempts to fill this gap by evaluating landslide responses under seismic and extreme-rainfall regimes.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-345, https://doi.org/10.5194/nhess-2021-345, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow hazards in pre-fire and postfire scenarios. Compared to pre-fire conditions, the postfire simulation yields dramatic increases in total and peak discharge, substantially increasing debris flow hazards. Our work demonstrates the utility of 3-D hydrologic models for investigating and potentially forecasting postfire debris flow hazards at regional scales.
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, https://doi.org/10.5194/nhess-21-3465-2021, 2021
Short summary
Short summary
This study combines field geological and geohazard mapping with remote sensing data. Geostatistical analysis evaluated precipitation, land use, vegetation density, rock mass strength, and tectonics. Contrasting tectonic and climatic setting of the Main Ethiopian Rift and uplifted Ethiopian Plateau have major impacts on the distribution of landslides.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Ivo Fustos, Nataly Manque, Daniel Vásquez, Mauricio Hermosilla, and Viviana Letelier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-317, https://doi.org/10.5194/nhess-2021-317, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
We develop for the first time a Rainfall-Induced Landslide Early Warning System for the South of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-254, https://doi.org/10.5194/nhess-2021-254, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Beijing is the capital, it is important to do research on disaster prevention and reduction. In this paper, the author found that the accuracy of susceptibility assessment model is improved by efficiently using the field survey data rather than data fitting. The study found that effective use of field survey data, reasonable classification and simplification of factors can improve the accuracy of susceptibility assessment method. A new factor-watershed volume is proposed in this paper.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021, https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Short summary
This study exploits 66 years of flash flood disasters across China.
The conclusions are as follows. The clustering procedure highlights distinct spatial and temporal patterns of flash flood disasters at different scales. There are distinguished seasonal, yearly and even long-term persistent flash flood behaviors of flash flood disasters. Finally, the decreased duration of clusters in the recent period indicates a possible activation induced by short-duration extreme rainfall events.
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021, https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021, https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Short summary
In this paper the relation between the intensity of meteorological events and the magnitude of triggered geo-hydrological issues was examined. A back analysis was developed across a region of the central Alps. The meteorological triggers were interpreted using two approaches: the first using local rain gauge data and a new one considering meteorological reanalysis maps. The results obtained were compared and elaborated for defining a magnitude of each geo-hydrological event.
Isidro Cantarino, Miguel Angel Carrion, Jose Sergio Palencia-Jimenez, and Víctor Martínez-Ibáñez
Nat. Hazards Earth Syst. Sci., 21, 1847–1866, https://doi.org/10.5194/nhess-21-1847-2021, https://doi.org/10.5194/nhess-21-1847-2021, 2021
Short summary
Short summary
Risk ratio (RR), developed in this paper, stands out as a robust indicator for finding the relationship between residential construction and its associated landslide risk. It proved especially useful for municipalities on the Mediterranean coast, since it differentiates between those that take on a higher risk and those that do not. Our research establishes valuable criteria to find how suitable a specific local entity's risk management is and explore what causes the incidence of landslide risk.
Marta Martinengo, Daniel Zugliani, and Giorgio Rosatti
Nat. Hazards Earth Syst. Sci., 21, 1769–1784, https://doi.org/10.5194/nhess-21-1769-2021, https://doi.org/10.5194/nhess-21-1769-2021, 2021
Short summary
Short summary
Rainfall thresholds are relations between rainfall intensity and duration on which the forecast of the possible occurrence of a debris flow can be based. To check the robustness of a physically based stony debris flow rainfall threshold, in this work we developed a procedure to estimate the effects of various sources of error on the determination of the threshold parameters. Results show that these effects are limited and therefore show the good robustness of the threshold estimate.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Lucas Karel Agnes Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-140, https://doi.org/10.5194/nhess-2021-140, 2021
Preprint under review for NHESS
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assesment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMap) that can assess the shallow landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 21, 1467–1471, https://doi.org/10.5194/nhess-21-1467-2021, https://doi.org/10.5194/nhess-21-1467-2021, 2021
Short summary
Short summary
This is a perspective based on personal experience on whether a large number of landslides caused by a single trigger (e.g. an earthquake, an intense rainfall, a rapid snowmelt event) or by multiple triggers in a period can be predicted, in space and time, considering the consequences of slope failures.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Zhu Liang, Changming Wang, Donghe Ma, and Kaleem Ullah Jan Khan
Nat. Hazards Earth Syst. Sci., 21, 1247–1262, https://doi.org/10.5194/nhess-21-1247-2021, https://doi.org/10.5194/nhess-21-1247-2021, 2021
Short summary
Short summary
In previous studies of landslide susceptibility mapping, one inventory is for one kind of landslide. However, this causes some problems for prevention and management. This study aims to map two kinds of landslides and use the results on the same map to explore the potential relationship. Through superimposition of two zoning maps, this provides a new way to evaluate the disaster chain and provides a valuable reference for land use planners.
Adeline Delonca, Yann Gunzburger, and Thierry Verdel
Nat. Hazards Earth Syst. Sci., 21, 1263–1278, https://doi.org/10.5194/nhess-21-1263-2021, https://doi.org/10.5194/nhess-21-1263-2021, 2021
Short summary
Short summary
Rockfalls are a major sources of danger, particularly along transportation routes. Thus, the assessment of their occurrence is a major challenge for risk management. One interesting factor involved in the occurrence of an event is the failure mechanism of rock bridges along the potential failure plane. This work proposes to study the phenomenology of this failure considering numerical modelling. The influence of rock bridge position in regard to the rockfall failure mode is highlighted.
Richard Guthrie and Andrew Befus
Nat. Hazards Earth Syst. Sci., 21, 1029–1049, https://doi.org/10.5194/nhess-21-1029-2021, https://doi.org/10.5194/nhess-21-1029-2021, 2021
Short summary
Short summary
In order to address a need for a debris flow or debris avalanche model that can be applied regionally with relatively few inputs, we developed and present herein an agent-based landslide-simulation model called DebrisFlow Predictor. DebrisFlow Predictor is a fully predictive, probabilistic debris flow runout model. It produces realistic results and can be applied easily to entire regions. We hope that the model will provide useful insight into hazard and risk assessments where it is applicable.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
Zongxing Zou, Huiming Tang, Robert E. Criss, Xinli Hu, Chengren Xiong, Qiong Wu, and Yi Yuan
Nat. Hazards Earth Syst. Sci., 21, 517–532, https://doi.org/10.5194/nhess-21-517-2021, https://doi.org/10.5194/nhess-21-517-2021, 2021
Short summary
Short summary
The evolutionary trend of deforming landslides and feasible treatments for huge reservoir landslides needs further study. A geomechanical model is presented to elucidate the deformation mechanism of reservoir landslides. The deformation process of Shuping landslide is well interpreted by the geomechanical model. A successful engineering treatment is applied in treating the Shuping landslide, providing references for treating other huge landslides in the Three Gorges Reservoir area.
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021, https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Short summary
Comprehensive and sustainable landslide management, including identification of landslide-susceptible areas, requires a lot of organisations and people to collaborate efficiently. In this study, we propose a concept for a system that provides users with a platform to share the location of landslide events for further collaboration in Nepal. The system can be beneficial for specifying potentially risky regions and consequently, the development of risk mitigation strategies at the local level.
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021, https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Short summary
The present study evaluates the impacts of land use and climate change, based on scenarios, on landslide hazards in a Pyrenean valley from the present to 2100.
The results demonstrate the influence of land cover on slope stability through the presence and type of forest. Climate change may have a significant impact because of the increase of the soil water content. The results indicate that the occurrence of landslide hazards in the future is expected to increase.
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021, https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
Short summary
Debris-flow research requires experimental data that are difficult to collect because of the intrinsic characteristics of these hazardous processes. This paper presents debris-flow data recorded in the Moscardo Torrent (Italian Alps) between 1990 and 2019. In this time interval, 30 debris flows were observed. The paper presents data on triggering rainfall, flow velocity, peak discharge, and volume for the monitored hydrographs.
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020, https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
Short summary
We show the potential to observe the unconfined internal-motion behaviour of single clasts in landslides using a wireless sensor measuring acceleration and rotation. The probe's dimensions are 10 mm × 55 mm. It measures up to 16 g and 2000° s−1 with a 100 Hz sampling rate. From the data, we derive transport mode, velocity, displacement and 3D trajectories of several probes. Results are verified by high-speed image analysis and laser distance measurements.
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020, https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary
Short summary
We show how INSPIRE, the European initiative to standardize data across borders, can be used to produce explainable AI-based applications. We do so by producing landslide susceptibility maps for the Veneto region in Italy. EU countries are mandated by law to implement the INSPIRE data framework by 2021, but they are aligning and serving INSPIRE data at a slow pace. Our paper can provide a boost to INSPIRE implementation as it shows the value of standardized data.
Robert Emberson, Dalia Kirschbaum, and Thomas Stanley
Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, https://doi.org/10.5194/nhess-20-3413-2020, 2020
Short summary
Short summary
Landslides cause thousands of fatalities and cost billions of dollars of damage worldwide every year, but different inventories of landslide events can have widely diverging completeness. This can lead to spatial biases in our understanding of the impacts. Here we use a globally homogeneous model of landslide hazard and exposure to provide consistent estimates of where landslides are most likely to cause damage to people, roads and other critical infrastructure at 1 km resolution.
Thierry Oppikofer, Reginald L. Hermanns, Vegard U. Jakobsen, Martina Böhme, Pierrick Nicolet, and Ivanna Penna
Nat. Hazards Earth Syst. Sci., 20, 3179–3196, https://doi.org/10.5194/nhess-20-3179-2020, https://doi.org/10.5194/nhess-20-3179-2020, 2020
Short summary
Short summary
Damming of rivers is an important secondary effect of landslides due to upstream flooding and possible outburst floods in case of dam failure. For preliminary regional hazard and risk assessment of dams formed by rock slope failures in Norway, we developed semi-empirical relationships to assess the height and stability of dams based on an inventory of 69 dams formed by rock slope failures in southwestern Norway and published landslide dam inventories from other parts of the world.
Cited articles
Abele, G.: Large rockslides: their causes and movements on internal sliding
planes, Mt. Res. Dev., 14, 315–320, https://doi.org/10.2307/3673727, 1994.
Allmendinger, R.: Stereonet, version 10, available at: http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html (last access: 11 January 2019),
2018
Amann, F.: Großhangbewegung Cuolm da Vi (Graubünden, Schweiz).
Geologisch-geotechnische Befunde und numerische Untersuchungen zur
Klärung des Phänomens, Dissertation, Friedrich-Alexander
Universität Erlangen-Nürnberg, p. 206, 2006.
Ampferer, O.: Über die geologischen Deutungen und Bausondierungen des
Maurach Riegels im Ötztal, Geologie und Bauwesen, 11, 25–43, 1939.
Ascher, H.: Neuer Sachbestand und Erkenntnisse über das Bergsturzgebiet
von Köfels, Geologie und Bauwesen, 19, 128–134, 1952.
Atkinson, B. K.: Subcritical crack growth in geological materials, J. Geophys. Res., 89, 4077–4114, https://doi.org/10.1029/JB089iB06p04077, 1984.
Atkinson, B. K.: Introduction to fracture mechanics and its geophysical
applications, in: Fracture mechanics of rock, edited by: Atkinson, B. K., Academic Press Inc., London (LTD), 1–26, 1987.
Barton, N. and Choubey, V.: The shear strength of rock joints in theory and practice, Rock Mech., 10, 1–54, 1977.
Borgatti, L. and Soldati, M.: Landslides as a geomorphological proxy for
climate change: a record from the Dolomites (northern Italy), Geomorphology, 120, 56–64, https://doi.org/10.1016/j.geomorph.2009.09.015,
2010.
Brückl, E. and Parotidis, M.: Estimation of large-scale mechanical
properties of a large landslide on the basis of seismic results, Rock Mech.
Min. Sci., 38, 877–883, https://doi.org/10.1016/S1365-1609(01)00053-3, 2001.
Brückl, E. and Parotidis, M.: Prediction of slope instabilities due to deep-seated gravitational creep, Nat. Hazards Earth Syst. Sci., 5, 155–172, https://doi.org/10.5194/nhess-5-155-2005, 2005.
Brückl, E. and Heuberger, H.: Reflexionsseismische Messungen am
Bergsturz von Köfels. Geologie des Oberinntaler Raumes – Schwerpunkt
Blatt 144, Landeck, 156–158, Geologische Bundesanstalt, Vienna, 1993.
Brückl, E., Brückl J., Castillo, E., and Heuberger, H.: Present structure and pre-failure topography of the giant landslide of Köfels. Proceedings of the 4rd EEGS-ES Meeting, 14–17 September 1998, Barcelona, 567–570, 1998.
Brückl, E., Brückl, J., and Heuberger, H.: Present structure and
prefailure topography of the giant rockslide of Köfels, Zeitschrift
für Gletscherkunde und Glazialgeologie 37, 49–79, https://doi.org/10.3997/2214-4609.201407174, 2001.
Brückl, E., Brückl, J., Chwatal, W., and Ullrich, C.: Deep alpine
valleys: examples of geophysical explorations in Austria, Swiss J. Geosci., 103, 329–344, https://doi.org/10.1007/s00015-010-0045-x, 2010.
Bonzanigo, L., Eberhardt, E., and Loew, S.: Long-term investigation of a
deep-seated creeping landslide in crystalline rock. Part I. Geological and
hydromechanical factors controlling the Campo Vallemaggia landslide, Can.
Geotech. J., 44, 1157–1180, https://doi.org/10.1139/T07-043,
2007.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, https://doi.org/10.1007/978-3-0348-7182-2_4, 1978.
Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., and Minami, M.: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, Int. J. Rock Mech. Min., 41, 3–19, https://doi.org/10.1016/S1365-1609(03)00025-X, 2004.
Casson, B., Delacourt, C., Baratoux, D., and Allemand, P.: Seventeen years of
the “La Clapière” landslide evolution analysed from ortho-rectified
aeri-al photographs, Eng. Geol., 68, 123–139, https://doi.org/10.1016/S0013-7952(02)00201-6, 2003.
Cardozo, N. and Allmendinger, R. W: Spherical projections with OSXStereonet, Computat. Geosci., 51, 193–205, https://doi.org/10.1016/j.cageo.2012.07.021, 2013.
Dai, F. C., Lee, C. F., and Yip Ngai, Y.: Landslide risk assessment and
management: an overview, Eng. Geol., 64, 65–87, https://doi.org/10.1016/S0013-7952(01)00093-X, 2002.
Damjanac, B. and Fairhurst, C.: Evidence for a Long-Term Strength Threshold in Crystalline Rock, Rock Mech. Rock Eng., 43, 513–531, https://doi.org/10.1007/s00603-010-0090-9, 2010.
Dramis, F., Govi, M., Guglielmin, M., and Mortara, G.: Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide, Permafrost Periglac., 6, 73–81, https://doi.org/10.1002/ppp.3430060108, 1995.
Eberhardt, E., Stead, D., and Coggan, J. S.: Numerical analysis of initiation and
progressive failure in natural rock slopes-the 1991 Randa rockslide, Int. J.
Rock Mech. Min. Sci., 41, 69–87, https://doi.org/10.1016/S1365-1609(03)00076-5, 2004.
Einstein, H. H., Veneziano, D., Baecher, G. B., and O'Reilly, K. J.: The Effect
of Discontinuity Persistence on Rock Slope Stability, Int. J. Rock Mech. Min., 20, 227–236, https://doi.org/10.1016/0148-9062(83)90003-7, 1983.
Engl, D. A., Fellin, W., and Zangerl, C.: Scherfestigkeiten von
Scherzonen-Gesteinen – Ein Beitrag zur geotechnischen Bewertung von
tektonischen Störungen und Gleitzonen von Massenbewegungen, Bulletin
für Angewandte Geologie, 13, 63–81, 2008.
Erismann, T. H. and Abele, G.: Dynamics of Rockslides and Rockfalls,
Springer, Berlin, 2001.
Erismann, T. H., Heuberger, H., and Preuss, E.: Der Bimsstein von Köfels
(Tirol), ein Bergsturz-“Friktionit”, Tscher. Miner. Petrog., 24, 67–119, https://doi.org/10.1007/BF01081746, 1977.
Esri: ArcGIS Software, Version 10.2, available at: https://www.esri.com (last access: 13 July 2020), 2014.
Evans, S. G. and DeGraff, J. V.: Catastrophic landslides: Effects, occurrence,
and mechanism, Geol. Soc. Am. Rev. Eng. Geol., 15, 412 pp., 2002.
Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney,
K. P., and Oliver-Smith, A.: A re-examination of the mechanism and human
impact of catastrophic mass flows originating on Ne-vado Huascarán,
Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96–118,
https://doi.org/10.1016/j.enggeo.2009.06.020, 2009a.
Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., and
Tutubalina, O.: Landslides triggered by the 1949 Khait earthquake,
Tajikistan, and associated loss of life, Eng. Geol., 109, 195–212,
https://doi.org/10.1016/j.enggeo.2009.08.007, 2009b.
Fetter, C. W.: Applied Hydrogeology, Vol. 4., Prentice Hall Inc., New Jersey,
2001.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fishman, Yu. A.: Shear resistance along rock mass discontinuities: results of large-scale field tests, Int. J. Rock Mech. Min., 41, 1029–1034, https://doi.org/10.1016/j.ijrmms.2004.03.006, 2004.
Genevois, R. and Ghirotti, M.: The 1963 Vaiont Landslide, Giornale di
Geologia Applicata, 1, 41–52, , 2005.
Glueer, F., Loew, S., Manconi, A., and Aaron, J.: From toppling to sliding:
progressive evolution of the Moosfluh Landslide, Switzerland, JGR Earth
Surf., 124, 2899–2919, https://doi.org/10.1029/2019JF005019, 2019.
Govi, M., Gullà, G., and Nicoletti, P. G.: Val Pola rock avalanche of July
28, 1987, in Valtellina (Central Italian Alps), in: Catastrophic landslides: Effects, occurrence, and mechanism, edited by: Evans S. G. and DeGraff, J. V., Geol. Soc.
Am. Rev. Eng. Geol., 15, 71–89, 2002.
Grasselli, G.: Shear strength of rock joints based on quantified surface description, PhD thesis, EPFL, Lausanne, 126 pp., available at: https://infoscience.epfl.ch/record/32880 (last access: 9 August 2021), 2001.
Grøneng, G., Nilsen, B., and Sandven, R.: Shear strength estimation for Åknes sliding area in western Norway,
Int. J. Rock Mech. Min., 46, 479–488, https://doi.org/10.1016/j.ijrmms.2008.10.006, 2009.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Hammer, W.: Geologische Spezialkarte der Republik Österreich 1:75.000, 5146 Ötzthal, Verlag Geologische Bundesanstalt, Wien, 1929.
Hencher, S. R., Lee, S. G., Carter, T. G., and Richards, L. R.: Sheeting Joints:
Characterisation, Shear Strength and Engineering, Rock Mech. Rock Eng., 44, 1–22, https://doi.org/10.1007/s00603-010-0100-y, 2011.
Heuberger, H.: The giant landslide of Köfels, Ötztal, Tyrol., Mount
Res. Dev., 13, 290–294, 1994.
Hoek, E. and Brown, E. T.: Practical estimates of rock mass strength, Int. J. Rock Mech. Min., 34, 1165–1186, https://doi.org/10.1016/S1365-1609(97)80069-X, 1997.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Proc.
Land., 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Itasca: UDEC – Universal distinct element code, Version 7.0. Minneapolis,
Itasca Consulting Group,
Minneapolis, United States, available at: https://www.itascacg.com/software/udec (last access: 15 May 2021), 2020.
Ivy-Ochs, S., Heuberger, H., Kubik, P. W., Kerschner, H., Bonani, G., Frank,
M., and Schlüchter, C.: The age of the Köfels event. Relative, 14C and
cosmogenic isotope dating of an early holocene landslide in the central alps
(Tyrol, Austria), Zeitschrift für Gletscherkunde und Glazialgeologie, 34, 57–68, 1998.
Jaeger, J. C., Cook, N. G. W., and Zimmermann, R. W.: Fundamentals of Rock
Mechanics, Vol. 4, Blackwell Publishing, Malden, Massachusetts, 2007.
Jennings, J. E.: A Mathematical Theory for the Calculation ofthe Stability of
Open Case Mines, Proc. Symp. on the Theoretical Background to the Planning
of Open Pit Mines, 87–102, Johannesburg, 1970.
Kilburn, C. R. J. and Pasuto, A.: Major risks from rapid, large-volume
landslides in Europe (EU Project RUNOUT), Geomorphology, 54, 3–9, https://doi.org/10.1016/S0169-555X(03)00050-3, 2003.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks
become unstable: A rock-ice-mechanical model in time and space, Earth Surf.
Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Kremer, K., Gassner-Stamm, G., Grolimund, R., Wirth, S. B., Strasser, M., and Fäh, D.: A database of potential paleoseismic evidence in Switzerland, J. Seismol., 24, 247–262, https://doi.org/10.1007/s10950-020-09908-5, 2020.
Kubik, P. W., Ivy-Ochs, S., Masari, J., Frank, M., and Schlüchter, C.:
10Be and 26Al production rates deduced from an instantaneous event within
the dendro-calibration curve, the landslide of Köfels, Ötz Valley,
Austria, Earth Planet. Sc. Lett., 161, 231–241, https://doi.org/10.1016/S0012-821X(98)00153-8, 1998.
Margottini, C., Canuti, P., and Sassa, K.: Landslide Science and Practice, Vol. 7, Springer, Berlin, Heidelberg, 2013.
Masch, L., Wenk, H. R., and Preuss, E.: Electron microscopy study of hyalomylonites – evidence for frictional melting in landslides, Tectonophysics, 115, 131–160, 1985.
Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., and Fellin, W.:
Spatially distributed three-dimensional slope stability modelling in a
raster GIS, Geomorphology, 206, 178–195, https://doi.org/10.1016/j.geomorph.2013.10.008, 2014a.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014b.
Milton, D. J.: Fused rock from Köfels, Tyrol, Tscher. Miner. Petrog., 9, 86–94,
https://doi.org/10.1007/BF01127777, 1964.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke C.: Global
landslide and avalanche hotspots, Landslides, 3, 159–173, https://doi.org/10.1007/s10346-006-0036-1, 2006.
Nicolussi, K., Spötl, C., Thurner, A., and Reimer, P. J.: Precise radiocarbon
dating of the giant Köfels landslide (Eastern Alps, Austria),
Geomorphology, 243, 87–91, https://doi.org/10.1016/j.geomorph.2015.05.001, 2015.
Pichler, A.: Zur Geognosie Tirols II. Die vulkanischen Reste von Köfels, Jahrbuch der Geologischen Reichsanstalt in Wien, 13, 591–594, 1863.
Oswald, P., Strasser, M., Hammerl, C., and Moernaut, J.: Seismic control of large prehistoric rockslides in the Eastern Alps, Nat. Commun., 12, 1059, https://doi.org/10.1038/s41467-021-21327-9, 2021.
Poschinger, A. and Kippel, T.: Alluvial deposits liquefied by the Flims rock
slide, Geomorphology, 103, 50–56, https://doi.org/10.1016/j.geomorph.2007.09.016, 2009.
Prager, C., Zangerl, C., Patzelt, G., and Brandner, R.: Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas, Nat. Hazards Earth Syst. Sci., 8, 377–407, https://doi.org/10.5194/nhess-8-377-2008, 2008.
Prager, C., Zangerl, C., and Nagler, T.: Geological controls on slope
deformations in the Köfels rockslide area (Tyrol, Austria), Austrian J.
Earth. Sci., 102, 4–19, 2009.
Preuss, E.: Der Bimsstein von Köfels im Ötztal/Tirol – Die
Reibungsschmelze eines Bergsturzes, Vol. 39, Verein zum Schutze der
Alpenpflanzen und -Tiere, Munich, 1974.
Preuss, E.: Gleitflächen und neue Friktionitfunde im Bergsturz von
Köfels im Ötztal, Tirol, Material und Technik – Schweizerische
Zeitschrift für Werkstoffe, Betriebsstoffe, Materialprüfung und
Messtechnik 3, Schweizerischer Verband für die Materialprüfung der
Technik (SVMT), Dübendorf, Schweiz, 1986.
Preuss, E., Masch, L., and Erismann, T. H.: Friktionite – Natürliches Glas
aus der Reibungsschmelze sehr großer Bergstürze (Köfels, Tirol –
Langtang, Nepal), Proceedings of the 2nd International Conference on Natural
Glasses, September 1987, Prague, 1–4, Charles University, Prague, 1987.
Purtscheller, F.: Ötztaler und Stubaier Alpen, Sammlung Geologischer Führer, 53, Bornträger, 1–128, 1978.
Purtscheller. F., Pirchl, T., Sieder, G., Stingl, V., Tessadri, T., Brunner,
P., Ennemoser, O., and Schneider, P.: Radon emanations from giant landslides
of Koefels (Tyrol, Austria) and Langtang Himal (Nepal), Environ Geol, 26, 32–38, https://doi.org/10.1007/BF00776029, 1995.
Rechberger, C., Fey, C., and Zangerl, C.: Structural characterisation, internal
deformation, and kinematics of an active deep-seated rock slide in a valley
glacier retreat area, Eng. Geol., 286, 106048, https://doi.org/10.1016/j.enggeo.2021.106048, 2021.
Sassa, K., Canuti, P., and Yin, Y.: Landslide Science for a Safer
Geoenvironment, Vol. 3, Springer, Cham, Heidelberg, New York, Dordrecht,
London, 2014.
Sørensen, S. A. and Bauer B.: On the dynamics of the Köfels
sturzstrom, Geomorpholgy, 54, 11–19, https://doi.org/10.1016/S0169-555X(03)00051-5, 2003.
Strauhal, T., Zangerl, C., Fellin, W., Holzmann, M., Engl, D. A., Brandner,
R., Tropper, P., and Tessadri, R.: Structure, mineralogy and geomechanical
properties of shear zones of deep-seated rockslides in metamorphic rocks
(Tyrol, Austria), Rock Mech. Rock. Eng., 50, 419–438, https://doi.org/10.1007/s00603-016-1113-y, 2017.
von Klebelsberg, R.: Das Becken von Längenfeld im Ötztal. Ein
Beispiel für Geologie und Kraftwerksplanung, Schlern Sch., 77, 399–422, 1951.
von Poschinger, A.: Large rockslides in the Alps: A commentary on the
contribution of G. Abele (1937–1994) and a review of some recent
developments, in: Catastrophic Landslides:
Effects, Occurence, and Mechanisms, edited by: Evans, S. G. and DeGraff, J. V., Geol. Soc. Am. Rev. Eng. Geol., 15, 237–257,
2002.
Watkins, J. S., Walters, L. A., and Godso, L. A.: Dependence of in-situ compressional wave velocity on porosity in unsaturated rocks, Geophysics, 37, 29–35, 1972.
Weidinger, J. T.: Predesign, failure and displacement mechanisms of large
rockslides in the Annapurna Himalayas, Nepal, Eng. Geol., 83, 201–216, https://doi.org/10.1016/j.enggeo.2005.06.032, 2006.
Weidinger, J. T., Korup, O., Munack, H., Altenberger, U., Dunning, S. A.,
Tippelt, G., and Lottermoser, W.: Giant rockslides from the inside, Earth
Planet, Sc. Lett, 389, 62–73, https://doi.org/10.1016/j.epsl.2013.12.017, 2014.
Zangerl, C., Eberhardt, E., Evans, K. F., and Loew, S.: Analysis of Subsurface
Subsidence in Crystalline Rock above the Gotthard Highway Tunnel,
Switzerland, Swiss Federal Institute of Technology (ETH), Zurich, 2003.
Zangerl, C., Chwatal, W., and Kirschner, H.: Formation processes,
geomechanical characterisation and buttressing effects at the toe of
deep-seated rock slides in foliated metamorphic rock, Geomorphology, 243,
51–64, https://doi.org/10.1016/j.geomorph.2015.03.030, 2015.
Zangerl, C., Fey, C., and Prager, C.: Deformation characteristics and multi-slab
formation of a deep-seated rock slide in a high alpine environment
(Bliggspitze, Austria), Bull. Eng. Geol. Environ., 78, 6111–6130, https://doi.org/10.1007/s10064-019-01516-z, 2019.
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely...
Altmetrics
Final-revised paper
Preprint