Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2461-2021
https://doi.org/10.5194/nhess-21-2461-2021
Research article
 | 
23 Aug 2021
Research article |  | 23 Aug 2021

Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide

Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili

Related authors

r.avaflow v4, a multi-purpose landslide simulation framework
Martin Mergili, Hanna Pfeffer, Andreas Kellerer-Pirklbauer, Christian Zangerl, and Shiva Prasad Pudasaini
EGUsphere, https://doi.org/10.5194/egusphere-2025-213,https://doi.org/10.5194/egusphere-2025-213, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025,https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary

Related subject area

Landslides and Debris Flows Hazards
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary

Cited articles

Abele, G.: Large rockslides: their causes and movements on internal sliding planes, Mt. Res. Dev., 14, 315–320, https://doi.org/10.2307/3673727, 1994. 
Allmendinger, R.: Stereonet, version 10, available at: http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html (last access: 11 January 2019), 2018 
Amann, F.: Großhangbewegung Cuolm da Vi (Graubünden, Schweiz). Geologisch-geotechnische Befunde und numerische Untersuchungen zur Klärung des Phänomens, Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, p. 206, 2006. 
Ampferer, O.: Über die geologischen Deutungen und Bausondierungen des Maurach Riegels im Ötztal, Geologie und Bauwesen, 11, 25–43, 1939. 
Ascher, H.: Neuer Sachbestand und Erkenntnisse über das Bergsturzgebiet von Köfels, Geologie und Bauwesen, 19, 128–134, 1952. 
Download
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Share
Altmetrics
Final-revised paper
Preprint