Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Christian Zangerl
CORRESPONDING AUTHOR
Department of Civil Engineering and Natural Hazards, Institute of Applied Geology, University of Natural Resources and Life
Sciences (BOKU), Vienna, 1190, Austria
Annemarie Schneeberger
Department of Civil Engineering and Natural Hazards, Institute of Applied Geology, University of Natural Resources and Life
Sciences (BOKU), Vienna, 1190, Austria
Institute of Geography, University of Innsbruck, Innsbruck, 6020,
Austria
Georg Steiner
Department of Civil Engineering and Natural Hazards, Institute of Applied Geology, University of Natural Resources and Life
Sciences (BOKU), Vienna, 1190, Austria
Amt der Kärntner Landesregierung, Klagenfurt, 9021, Austria
Martin Mergili
Department of Civil Engineering and Natural Hazards, Institute of Applied Geology, University of Natural Resources and Life
Sciences (BOKU), Vienna, 1190, Austria
Department of Geography and Regional Science, University of Graz,
Graz, 8010, Austria
Related authors
Martin Mergili, Hanna Pfeffer, Andreas Kellerer-Pirklbauer, Christian Zangerl, and Shiva Prasad Pudasaini
EGUsphere, https://doi.org/10.5194/egusphere-2025-213, https://doi.org/10.5194/egusphere-2025-213, 2025
Short summary
Short summary
We present a new version of the landslide model r.avaflow. It includes a model where different materials move on top of each other instead of mixing; a model supporting the entire range from block sliding to flowing; a model for slow-moving processes; and an interface for virtual reality visualization. Based on the results for four case studies we conclude that, at the moment, our enhancements are very useful for visualization of landslides for awareness building and environmental education.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025, https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
Short summary
We modelled multiple glacial lake outburst flood (GLOF) scenarios (84 simulations) and tested the effect of nine key input parameters on the modelling results using r.avaflow. Our results highlight that GLOF modelling results are subject to uncertainty from the multiple input parameters. The variation in the volume of mass movement entering the lake causes the highest uncertainty in the modelled GLOF, followed by the DEM dataset and the origin of mass movement.
Martin Mergili, Hanna Pfeffer, Andreas Kellerer-Pirklbauer, Christian Zangerl, and Shiva Prasad Pudasaini
EGUsphere, https://doi.org/10.5194/egusphere-2025-213, https://doi.org/10.5194/egusphere-2025-213, 2025
Short summary
Short summary
We present a new version of the landslide model r.avaflow. It includes a model where different materials move on top of each other instead of mixing; a model supporting the entire range from block sliding to flowing; a model for slow-moving processes; and an interface for virtual reality visualization. Based on the results for four case studies we conclude that, at the moment, our enhancements are very useful for visualization of landslides for awareness building and environmental education.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103, https://doi.org/10.5194/egusphere-2024-3103, 2025
Short summary
Short summary
The 1987 Parraguirre ice-rock avalanche developed into a devastating debris-flow causing loss of many lives and inflicting severe damage near Santiago, Chile. Here, we revise this event combining various observational records with modelling techniques. In this year, important snow cover coincided with warm days in spring. We further quantify the total solid volume, and forward important upward corrections for the trigger and flood volumes. Finally, river damming was key for high flow mobility.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Cited articles
Abele, G.: Large rockslides: their causes and movements on internal sliding
planes, Mt. Res. Dev., 14, 315–320, https://doi.org/10.2307/3673727, 1994.
Allmendinger, R.: Stereonet, version 10, available at: http://www.geo.cornell.edu/geology/faculty/RWA/programs/stereonet.html (last access: 11 January 2019),
2018
Amann, F.: Großhangbewegung Cuolm da Vi (Graubünden, Schweiz).
Geologisch-geotechnische Befunde und numerische Untersuchungen zur
Klärung des Phänomens, Dissertation, Friedrich-Alexander
Universität Erlangen-Nürnberg, p. 206, 2006.
Ampferer, O.: Über die geologischen Deutungen und Bausondierungen des
Maurach Riegels im Ötztal, Geologie und Bauwesen, 11, 25–43, 1939.
Ascher, H.: Neuer Sachbestand und Erkenntnisse über das Bergsturzgebiet
von Köfels, Geologie und Bauwesen, 19, 128–134, 1952.
Atkinson, B. K.: Subcritical crack growth in geological materials, J. Geophys. Res., 89, 4077–4114, https://doi.org/10.1029/JB089iB06p04077, 1984.
Atkinson, B. K.: Introduction to fracture mechanics and its geophysical
applications, in: Fracture mechanics of rock, edited by: Atkinson, B. K., Academic Press Inc., London (LTD), 1–26, 1987.
Barton, N. and Choubey, V.: The shear strength of rock joints in theory and practice, Rock Mech., 10, 1–54, 1977.
Borgatti, L. and Soldati, M.: Landslides as a geomorphological proxy for
climate change: a record from the Dolomites (northern Italy), Geomorphology, 120, 56–64, https://doi.org/10.1016/j.geomorph.2009.09.015,
2010.
Brückl, E. and Parotidis, M.: Estimation of large-scale mechanical
properties of a large landslide on the basis of seismic results, Rock Mech.
Min. Sci., 38, 877–883, https://doi.org/10.1016/S1365-1609(01)00053-3, 2001.
Brückl, E. and Parotidis, M.: Prediction of slope instabilities due to deep-seated gravitational creep, Nat. Hazards Earth Syst. Sci., 5, 155–172, https://doi.org/10.5194/nhess-5-155-2005, 2005.
Brückl, E. and Heuberger, H.: Reflexionsseismische Messungen am
Bergsturz von Köfels. Geologie des Oberinntaler Raumes – Schwerpunkt
Blatt 144, Landeck, 156–158, Geologische Bundesanstalt, Vienna, 1993.
Brückl, E., Brückl J., Castillo, E., and Heuberger, H.: Present structure and pre-failure topography of the giant landslide of Köfels. Proceedings of the 4rd EEGS-ES Meeting, 14–17 September 1998, Barcelona, 567–570, 1998.
Brückl, E., Brückl, J., and Heuberger, H.: Present structure and
prefailure topography of the giant rockslide of Köfels, Zeitschrift
für Gletscherkunde und Glazialgeologie 37, 49–79, https://doi.org/10.3997/2214-4609.201407174, 2001.
Brückl, E., Brückl, J., Chwatal, W., and Ullrich, C.: Deep alpine
valleys: examples of geophysical explorations in Austria, Swiss J. Geosci., 103, 329–344, https://doi.org/10.1007/s00015-010-0045-x, 2010.
Bonzanigo, L., Eberhardt, E., and Loew, S.: Long-term investigation of a
deep-seated creeping landslide in crystalline rock. Part I. Geological and
hydromechanical factors controlling the Campo Vallemaggia landslide, Can.
Geotech. J., 44, 1157–1180, https://doi.org/10.1139/T07-043,
2007.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, https://doi.org/10.1007/978-3-0348-7182-2_4, 1978.
Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., and Minami, M.: Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, Int. J. Rock Mech. Min., 41, 3–19, https://doi.org/10.1016/S1365-1609(03)00025-X, 2004.
Casson, B., Delacourt, C., Baratoux, D., and Allemand, P.: Seventeen years of
the “La Clapière” landslide evolution analysed from ortho-rectified
aeri-al photographs, Eng. Geol., 68, 123–139, https://doi.org/10.1016/S0013-7952(02)00201-6, 2003.
Cardozo, N. and Allmendinger, R. W: Spherical projections with OSXStereonet, Computat. Geosci., 51, 193–205, https://doi.org/10.1016/j.cageo.2012.07.021, 2013.
Dai, F. C., Lee, C. F., and Yip Ngai, Y.: Landslide risk assessment and
management: an overview, Eng. Geol., 64, 65–87, https://doi.org/10.1016/S0013-7952(01)00093-X, 2002.
Damjanac, B. and Fairhurst, C.: Evidence for a Long-Term Strength Threshold in Crystalline Rock, Rock Mech. Rock Eng., 43, 513–531, https://doi.org/10.1007/s00603-010-0090-9, 2010.
Dramis, F., Govi, M., Guglielmin, M., and Mortara, G.: Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide, Permafrost Periglac., 6, 73–81, https://doi.org/10.1002/ppp.3430060108, 1995.
Eberhardt, E., Stead, D., and Coggan, J. S.: Numerical analysis of initiation and
progressive failure in natural rock slopes-the 1991 Randa rockslide, Int. J.
Rock Mech. Min. Sci., 41, 69–87, https://doi.org/10.1016/S1365-1609(03)00076-5, 2004.
Einstein, H. H., Veneziano, D., Baecher, G. B., and O'Reilly, K. J.: The Effect
of Discontinuity Persistence on Rock Slope Stability, Int. J. Rock Mech. Min., 20, 227–236, https://doi.org/10.1016/0148-9062(83)90003-7, 1983.
Engl, D. A., Fellin, W., and Zangerl, C.: Scherfestigkeiten von
Scherzonen-Gesteinen – Ein Beitrag zur geotechnischen Bewertung von
tektonischen Störungen und Gleitzonen von Massenbewegungen, Bulletin
für Angewandte Geologie, 13, 63–81, 2008.
Erismann, T. H. and Abele, G.: Dynamics of Rockslides and Rockfalls,
Springer, Berlin, 2001.
Erismann, T. H., Heuberger, H., and Preuss, E.: Der Bimsstein von Köfels
(Tirol), ein Bergsturz-“Friktionit”, Tscher. Miner. Petrog., 24, 67–119, https://doi.org/10.1007/BF01081746, 1977.
Esri: ArcGIS Software, Version 10.2, available at: https://www.esri.com (last access: 13 July 2020), 2014.
Evans, S. G. and DeGraff, J. V.: Catastrophic landslides: Effects, occurrence,
and mechanism, Geol. Soc. Am. Rev. Eng. Geol., 15, 412 pp., 2002.
Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney,
K. P., and Oliver-Smith, A.: A re-examination of the mechanism and human
impact of catastrophic mass flows originating on Ne-vado Huascarán,
Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96–118,
https://doi.org/10.1016/j.enggeo.2009.06.020, 2009a.
Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., and
Tutubalina, O.: Landslides triggered by the 1949 Khait earthquake,
Tajikistan, and associated loss of life, Eng. Geol., 109, 195–212,
https://doi.org/10.1016/j.enggeo.2009.08.007, 2009b.
Fetter, C. W.: Applied Hydrogeology, Vol. 4., Prentice Hall Inc., New Jersey,
2001.
Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face, Nat. Hazards Earth Syst. Sci., 6, 761–772, https://doi.org/10.5194/nhess-6-761-2006, 2006.
Fishman, Yu. A.: Shear resistance along rock mass discontinuities: results of large-scale field tests, Int. J. Rock Mech. Min., 41, 1029–1034, https://doi.org/10.1016/j.ijrmms.2004.03.006, 2004.
Genevois, R. and Ghirotti, M.: The 1963 Vaiont Landslide, Giornale di
Geologia Applicata, 1, 41–52, , 2005.
Glueer, F., Loew, S., Manconi, A., and Aaron, J.: From toppling to sliding:
progressive evolution of the Moosfluh Landslide, Switzerland, JGR Earth
Surf., 124, 2899–2919, https://doi.org/10.1029/2019JF005019, 2019.
Govi, M., Gullà, G., and Nicoletti, P. G.: Val Pola rock avalanche of July
28, 1987, in Valtellina (Central Italian Alps), in: Catastrophic landslides: Effects, occurrence, and mechanism, edited by: Evans S. G. and DeGraff, J. V., Geol. Soc.
Am. Rev. Eng. Geol., 15, 71–89, 2002.
Grasselli, G.: Shear strength of rock joints based on quantified surface description, PhD thesis, EPFL, Lausanne, 126 pp., available at: https://infoscience.epfl.ch/record/32880 (last access: 9 August 2021), 2001.
Grøneng, G., Nilsen, B., and Sandven, R.: Shear strength estimation for Åknes sliding area in western Norway,
Int. J. Rock Mech. Min., 46, 479–488, https://doi.org/10.1016/j.ijrmms.2008.10.006, 2009.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Hammer, W.: Geologische Spezialkarte der Republik Österreich 1:75.000, 5146 Ötzthal, Verlag Geologische Bundesanstalt, Wien, 1929.
Hencher, S. R., Lee, S. G., Carter, T. G., and Richards, L. R.: Sheeting Joints:
Characterisation, Shear Strength and Engineering, Rock Mech. Rock Eng., 44, 1–22, https://doi.org/10.1007/s00603-010-0100-y, 2011.
Heuberger, H.: The giant landslide of Köfels, Ötztal, Tyrol., Mount
Res. Dev., 13, 290–294, 1994.
Hoek, E. and Brown, E. T.: Practical estimates of rock mass strength, Int. J. Rock Mech. Min., 34, 1165–1186, https://doi.org/10.1016/S1365-1609(97)80069-X, 1997.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Proc.
Land., 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Itasca: UDEC – Universal distinct element code, Version 7.0. Minneapolis,
Itasca Consulting Group,
Minneapolis, United States, available at: https://www.itascacg.com/software/udec (last access: 15 May 2021), 2020.
Ivy-Ochs, S., Heuberger, H., Kubik, P. W., Kerschner, H., Bonani, G., Frank,
M., and Schlüchter, C.: The age of the Köfels event. Relative, 14C and
cosmogenic isotope dating of an early holocene landslide in the central alps
(Tyrol, Austria), Zeitschrift für Gletscherkunde und Glazialgeologie, 34, 57–68, 1998.
Jaeger, J. C., Cook, N. G. W., and Zimmermann, R. W.: Fundamentals of Rock
Mechanics, Vol. 4, Blackwell Publishing, Malden, Massachusetts, 2007.
Jennings, J. E.: A Mathematical Theory for the Calculation ofthe Stability of
Open Case Mines, Proc. Symp. on the Theoretical Background to the Planning
of Open Pit Mines, 87–102, Johannesburg, 1970.
Kilburn, C. R. J. and Pasuto, A.: Major risks from rapid, large-volume
landslides in Europe (EU Project RUNOUT), Geomorphology, 54, 3–9, https://doi.org/10.1016/S0169-555X(03)00050-3, 2003.
Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks
become unstable: A rock-ice-mechanical model in time and space, Earth Surf.
Proc. Land., 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
Kremer, K., Gassner-Stamm, G., Grolimund, R., Wirth, S. B., Strasser, M., and Fäh, D.: A database of potential paleoseismic evidence in Switzerland, J. Seismol., 24, 247–262, https://doi.org/10.1007/s10950-020-09908-5, 2020.
Kubik, P. W., Ivy-Ochs, S., Masari, J., Frank, M., and Schlüchter, C.:
10Be and 26Al production rates deduced from an instantaneous event within
the dendro-calibration curve, the landslide of Köfels, Ötz Valley,
Austria, Earth Planet. Sc. Lett., 161, 231–241, https://doi.org/10.1016/S0012-821X(98)00153-8, 1998.
Margottini, C., Canuti, P., and Sassa, K.: Landslide Science and Practice, Vol. 7, Springer, Berlin, Heidelberg, 2013.
Masch, L., Wenk, H. R., and Preuss, E.: Electron microscopy study of hyalomylonites – evidence for frictional melting in landslides, Tectonophysics, 115, 131–160, 1985.
Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., and Fellin, W.:
Spatially distributed three-dimensional slope stability modelling in a
raster GIS, Geomorphology, 206, 178–195, https://doi.org/10.1016/j.geomorph.2013.10.008, 2014a.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014b.
Milton, D. J.: Fused rock from Köfels, Tyrol, Tscher. Miner. Petrog., 9, 86–94,
https://doi.org/10.1007/BF01127777, 1964.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke C.: Global
landslide and avalanche hotspots, Landslides, 3, 159–173, https://doi.org/10.1007/s10346-006-0036-1, 2006.
Nicolussi, K., Spötl, C., Thurner, A., and Reimer, P. J.: Precise radiocarbon
dating of the giant Köfels landslide (Eastern Alps, Austria),
Geomorphology, 243, 87–91, https://doi.org/10.1016/j.geomorph.2015.05.001, 2015.
Pichler, A.: Zur Geognosie Tirols II. Die vulkanischen Reste von Köfels, Jahrbuch der Geologischen Reichsanstalt in Wien, 13, 591–594, 1863.
Oswald, P., Strasser, M., Hammerl, C., and Moernaut, J.: Seismic control of large prehistoric rockslides in the Eastern Alps, Nat. Commun., 12, 1059, https://doi.org/10.1038/s41467-021-21327-9, 2021.
Poschinger, A. and Kippel, T.: Alluvial deposits liquefied by the Flims rock
slide, Geomorphology, 103, 50–56, https://doi.org/10.1016/j.geomorph.2007.09.016, 2009.
Prager, C., Zangerl, C., Patzelt, G., and Brandner, R.: Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas, Nat. Hazards Earth Syst. Sci., 8, 377–407, https://doi.org/10.5194/nhess-8-377-2008, 2008.
Prager, C., Zangerl, C., and Nagler, T.: Geological controls on slope
deformations in the Köfels rockslide area (Tyrol, Austria), Austrian J.
Earth. Sci., 102, 4–19, 2009.
Preuss, E.: Der Bimsstein von Köfels im Ötztal/Tirol – Die
Reibungsschmelze eines Bergsturzes, Vol. 39, Verein zum Schutze der
Alpenpflanzen und -Tiere, Munich, 1974.
Preuss, E.: Gleitflächen und neue Friktionitfunde im Bergsturz von
Köfels im Ötztal, Tirol, Material und Technik – Schweizerische
Zeitschrift für Werkstoffe, Betriebsstoffe, Materialprüfung und
Messtechnik 3, Schweizerischer Verband für die Materialprüfung der
Technik (SVMT), Dübendorf, Schweiz, 1986.
Preuss, E., Masch, L., and Erismann, T. H.: Friktionite – Natürliches Glas
aus der Reibungsschmelze sehr großer Bergstürze (Köfels, Tirol –
Langtang, Nepal), Proceedings of the 2nd International Conference on Natural
Glasses, September 1987, Prague, 1–4, Charles University, Prague, 1987.
Purtscheller, F.: Ötztaler und Stubaier Alpen, Sammlung Geologischer Führer, 53, Bornträger, 1–128, 1978.
Purtscheller. F., Pirchl, T., Sieder, G., Stingl, V., Tessadri, T., Brunner,
P., Ennemoser, O., and Schneider, P.: Radon emanations from giant landslides
of Koefels (Tyrol, Austria) and Langtang Himal (Nepal), Environ Geol, 26, 32–38, https://doi.org/10.1007/BF00776029, 1995.
Rechberger, C., Fey, C., and Zangerl, C.: Structural characterisation, internal
deformation, and kinematics of an active deep-seated rock slide in a valley
glacier retreat area, Eng. Geol., 286, 106048, https://doi.org/10.1016/j.enggeo.2021.106048, 2021.
Sassa, K., Canuti, P., and Yin, Y.: Landslide Science for a Safer
Geoenvironment, Vol. 3, Springer, Cham, Heidelberg, New York, Dordrecht,
London, 2014.
Sørensen, S. A. and Bauer B.: On the dynamics of the Köfels
sturzstrom, Geomorpholgy, 54, 11–19, https://doi.org/10.1016/S0169-555X(03)00051-5, 2003.
Strauhal, T., Zangerl, C., Fellin, W., Holzmann, M., Engl, D. A., Brandner,
R., Tropper, P., and Tessadri, R.: Structure, mineralogy and geomechanical
properties of shear zones of deep-seated rockslides in metamorphic rocks
(Tyrol, Austria), Rock Mech. Rock. Eng., 50, 419–438, https://doi.org/10.1007/s00603-016-1113-y, 2017.
von Klebelsberg, R.: Das Becken von Längenfeld im Ötztal. Ein
Beispiel für Geologie und Kraftwerksplanung, Schlern Sch., 77, 399–422, 1951.
von Poschinger, A.: Large rockslides in the Alps: A commentary on the
contribution of G. Abele (1937–1994) and a review of some recent
developments, in: Catastrophic Landslides:
Effects, Occurence, and Mechanisms, edited by: Evans, S. G. and DeGraff, J. V., Geol. Soc. Am. Rev. Eng. Geol., 15, 237–257,
2002.
Watkins, J. S., Walters, L. A., and Godso, L. A.: Dependence of in-situ compressional wave velocity on porosity in unsaturated rocks, Geophysics, 37, 29–35, 1972.
Weidinger, J. T.: Predesign, failure and displacement mechanisms of large
rockslides in the Annapurna Himalayas, Nepal, Eng. Geol., 83, 201–216, https://doi.org/10.1016/j.enggeo.2005.06.032, 2006.
Weidinger, J. T., Korup, O., Munack, H., Altenberger, U., Dunning, S. A.,
Tippelt, G., and Lottermoser, W.: Giant rockslides from the inside, Earth
Planet, Sc. Lett, 389, 62–73, https://doi.org/10.1016/j.epsl.2013.12.017, 2014.
Zangerl, C., Eberhardt, E., Evans, K. F., and Loew, S.: Analysis of Subsurface
Subsidence in Crystalline Rock above the Gotthard Highway Tunnel,
Switzerland, Swiss Federal Institute of Technology (ETH), Zurich, 2003.
Zangerl, C., Chwatal, W., and Kirschner, H.: Formation processes,
geomechanical characterisation and buttressing effects at the toe of
deep-seated rock slides in foliated metamorphic rock, Geomorphology, 243,
51–64, https://doi.org/10.1016/j.geomorph.2015.03.030, 2015.
Zangerl, C., Fey, C., and Prager, C.: Deformation characteristics and multi-slab
formation of a deep-seated rock slide in a high alpine environment
(Bliggspitze, Austria), Bull. Eng. Geol. Environ., 78, 6111–6130, https://doi.org/10.1007/s10064-019-01516-z, 2019.
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely...
Altmetrics
Final-revised paper
Preprint