Articles | Volume 21, issue 5
https://doi.org/10.5194/nhess-21-1639-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1639-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thematic vent opening probability maps and hazard assessment of small-scale pyroclastic density currents in the San Salvador volcanic complex (El Salvador) and Nejapa-Chiltepe volcanic complex (Nicaragua)
Andrea Bevilacqua
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Dipartimento di Scienze della Terra, Università di Firenze,
Firenze, Italy
Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, Clermont-Ferrand, France
Augusto Neri
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy
Eduardo Gutiérrez
Dirección del Observatorio Ambiental, MARN, San Salvador, El Salvador
deceased
Demetrio Escobar
Dirección del Observatorio Ambiental, MARN, San Salvador, El Salvador
Melida Schliz
Instituto de Geología y Geofísica, UNAN, Managua, Nicaragua
Alessandro Aiuppa
Dipartimento di Scienze della Terra e del Mare, Università di
Palermo, Palermo, Italy
Raffaello Cioni
Dipartimento di Scienze della Terra, Università di Firenze,
Firenze, Italy
Related authors
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Cited articles
Ai, M., Kong, X., and Li, K.: A general theory for orthogonal array based
latin hypercube sampling, Statist. Sin., 26, 761–777, https://doi.org/10.5705/ss.202015.0029, 2016.
Alberico, I., Lirer, L., Petrosino, P., and Scandone, R.: A methodology for
the evaluation of long-term volcanic risk from pyroclastic flows in Campi
Flegrei (Italy), J. Volcanol. Geoth. Res., 116, 63–78, 2002.
Andronico, D., Branca, S., Calvari, S., Burton, M., Caltabiano, T., Corsaro,
R., Del Carlo, P., Garfì, G., Lodato, L., and Miraglia, L.: A multi-disciplinary study of the 2002–03 Etna eruption: insights into a
complex plumbing system, Bull. Volcanol., 67, 314–330, 2005.
Ang, P., Bebbington, M., Lindsay, J., and Jenkins, S.: From eruption
scenarios to probabilistic volcanic hazard analysis: An example of the
Auckland Volcanic Field, New Zealand, J. Volcanol. Geoth. Res., 397, 106871, https://doi.org/10.1016/j.jvolgeores.2020.106871, 2020.
Aravena, A.: Branching Kinetic Models (ECMapProb and BoxMapProb) (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.3755086, 2020.
Aravena, A., Cioni, R., Bevilacqua, A., de' Michieli Vitturi, M., Esposti Ongaro, T., and Neri, A.: Tree-branching based enhancement of kinetic energy models for reproducing channelization processes of pyroclastic density
currents, J. Geophys. Res.-Solid, 125, e2019JB019271, https://doi.org/10.1029/2019JB019271, 2020a.
Aravena, A., Cioni, R., Coppola, D., de' Michieli Vitturi, M., Neri, A.,
Pistolesi, M., and Ripepe, M.: Effusion rate evolution during small-volume
basaltic eruptions: Insights from numerical modeling, J. Geophys. Res.-Solid, 125, e2019JB019301, https://doi.org/10.1029/2019JB019301, 2020b.
Avellán, D., Macías, J., Pardo, N., Scolamacchia, T., and Rodriguez,
D.: Stratigraphy, geomorphology, geochemistry and hazard implications of the
Nejapa Volcanic Field, western Managua, Nicaragua, J. Volcanol. Geoth. Res., 213, 51–71, 2012.
Avellán, D., Macías, J., Sosa-Ceballos, G., and Velásquez, G.:
Stratigraphy, chemistry, and eruptive dynamics of the 12.4 ka plinian
eruption of Apoyeque volcano, Managua, Nicaragua, Bull. Volcanol., 76, 792, https://doi.org/10.1007/s00445-013-0792-4, 2014.
Barckhausen, U., Ranero, C., von Huene, R., Cande, S., and Roeser, H.: Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications
for the segmentation of the convergent margin and for plate tectonic models, J. Geophys. Res.-Solid, 106, 19207–19220, 2001.
Bayarri, M., Berger, J., Calder, E., Patra, A., Pitman, E., Spiller, E., and
Wolpert, R.: Probabilistic quantification of hazards: a methodology using
small ensembles of physics-based simulations and statistical surrogates,
Int. J. Uncertain. Quantificat., 5, 297–325, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015011451, 2015.
Bebbington, M.: Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field, J. Volcanol. Geoth. Res., 252, 14–28, 2013.
Bebbington, M.: Spatio-volumetric hazard estimation in the Auckland volcanic
field, Bull. Volcanol., 77, 39, https://doi.org/10.1007/s00445-015-0921-3, 2015.
Bebbington, M. and Cronin, S.: Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model, Bull.
Volcanol., 73, 55–72, 2011.
Bebbington, M., Stirling, M., Cronin, S., Wang, T., and Jolly, G.:
National-level long-term eruption forecasts by expert elicitation, Bull.
Volcanol., 80, 56, https://doi.org/10.1007/s00445-018-1230-4, 2018.
Becerril, L., Cappello, A., Galindo, I., Neri, M., and Del Negro, C.: Spatial
probability distribution of future volcanic eruptions at El Hierro Island
(Canary Islands, Spain), J. Volcanol. Geoth. Res., 257, 21–30, 2013.
Bevilacqua, A.: Doubly stochastic models for volcanic hazard assessment at
Campi Flegrei caldera, in: Thesis, 21, Edizioni della Normale, Birkhäuser/Springer, Pisa, 2016.
Bevilacqua, A., Isaia, R., Neri, A., Vitale, S., Aspinall, W., Bisson, M.,
Flandoli, F., Baxter, P., Bertagnini, A., and Esposti Ongaro, T.: Quantifying
volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps, J. Geophys. Res.-Solid, 120, 2309–2329, 2015.
Bevilacqua, A., Bursik, M., Patra, A., Pitman, E., and Till, R.: Bayesian
construction of a long-term vent opening probability map in the Long Valley
volcanic region (CA, USA), Statist. Volcanol., 3, 1, https://doi.org/10.5038/2163-338X.3.1, 2017a.
Bevilacqua, A., Neri, A., Bisson, M., Esposti Ongaro, T., Flandoli, F., Isaia, R., Rosi, M., and Vitale, S.: The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at
Campi Flegrei caldera (Italy), Front. Earth Sci., 5, 72, https://doi.org/10.3389/feart.2017.00072, 2017b.
Bevilacqua, A., Bursik, M., Patra, A., Pitman, E., Yang, Q., Sangani, R., and
Kobs-Nawotniak, S.: Late Quaternary eruption record and probability of
future volcanic eruptions in the Long Valley volcanic region (CA, USA), J. Geophys. Res.-Solid, 123, 5466–5494, 2018.
Bevilacqua, A., de' Michieli Vitturi, M., Esposti Ongaro, T., and Neri, A.:
Enhancing the uncertainty quantification of pyroclastic density current
dynamics in the Campi Flegrei caldera, Frontiers of Uncertainty
Quantification 19 (ERCOFTAC-GAMM-AC), Pisa, Italy, 2019a.
Bevilacqua, A., Patra, A. K., Bursik, M. I., Pitman, E. B., Macías, J. L., Saucedo, R., and Hyman, D.: Probabilistic forecasting of plausible debris flows from Nevado de Colima (Mexico) using data from the Atenquique debris flow, 1955, Nat. Hazards Earth Syst. Sci., 19, 791–820, https://doi.org/10.5194/nhess-19-791-2019, 2019b.
Bevilacqua, A., Pitman, E., Patra, A., Neri, A., Bursik, M., and Voight, B.:
Probabilistic enhancement of the Failure Forecast Method using a stochastic
differential equation and application to volcanic eruption forecasts,
Front. Earth Sci., 7, 135, https://doi.org/10.3389/feart.2019.00135, 2019c.
Bevilacqua, A., Neri, A., De Martino, P., Isaia, R., Novellino, A., Tramparulo, F., and Vitale, S.: Radial interpolation of GPS and leveling data
of ground deformation in a resurgent caldera: application to Campi Flegrei
(Italy), J. Geod., 94, 24, https://doi.org/10.1007/s00190-020-01355-x, 2020a.
Bevilacqua, A., Patra, A., Pitman, E., Bursik, M., De Martino, P.,
Giudicepietro, F., Macedonio, G., Vitale, S., Flandoli, F., Voight, B., and
Neri, A.: First application of the failure forecast method to the GPS
horizontal displacement data collected in the Campi Flegrei caldera (Italy)
in 2011–2020, ArXiv: preprint, ArXiv 2007.02756, 2020b.
Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing,
A., and Hincks, T. K.: Probabilistic modeling of tephra dispersal: Hazard
assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res.-Solid, 110, B03203, https://doi.org/10.1029/2003JB002896, 2005.
Cappello, A., Neri, M., Acocella, V., Gallo, G., Vicari, A., and Del Negro,
C.: Spatial vent opening probability map of Etna volcano (Sicily, Italy), Bull. Volcanol., 74, 2083–2094, 2012.
Cappello, A., Geshi, N., Neri, M., and Del Negro, C.: Lava flow hazards – An
impending threat at Miyakejima volcano, Japan, J. Volcanol. Geoth. Res., 308, 1–9, 2015.
Chapman, N., Apted, M., Aspinall, W., Berryman, K., Cloos, M., Connor, C., Connor, L., Jaquet, O., and Kiyosugi, K.: TOPAZ Project: Long-term tectonic hazard to geological repositories, Nuclear Waste Management Organization of Japan (NUMO) Report, 87 pp., 2012.
Chaussard, E. and Amelung, F.: Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR, Geophys. Res. Lett., 39, L21311, https://doi.org/10.1029/2012GL053817, 2012.
Cioni, R., Bertagnini, A., Santacroce, R., and Andronico, D.: Explosive
activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new
classification scheme, J. Volcanol. Geoth. Res., 178, 331–346, 2008.
Cioni, R., Tadini, A., Gurioli, L., Bertagnini, A., Mulas, M., Bevilacqua, A., and Neri, A.: Estimating eruptive parameters and related uncertainties
for pyroclastic density currents deposits: worked examples from Somma-Vesuvius (Italy), Bull. Volcanol., 82, 1–20, 2020.
Clarke, B., Tierz, P., Calder, E., and Yirgu, G.: Probabilistic volcanic
hazard assessment for pyroclastic density currents from pumice cone eruptions at Aluto Volcano, Ethiopia, Front. Earth Sci., 8, 348,
https://doi.org/10.3389/feart.2020.00348, 2020.
Connor, C. and Hill, B.: Three nonhomogeneous Poisson models for the
probability of basaltic volcanism: application to the Yucca Mountain region,
Nevada, J. Geophys. Res.-Solid, 100, 10107–10125, 1995.
Connor, C., Stamatakos, J., Ferrill, D., Hill, B., Ofoegbu, G., Conway, F.,
Sagar, B., and Trapp, J.: Geologic factors controlling patterns of small-volume basaltic volcanism: Application to a volcanic hazards
assessment at Yucca Mountain, Nevada, J. Geophys. Res.-Solid, 105, 417–432, 2000.
Connor, C., Bebbington, M., and Marzocchi, W.: Probabilistic volcanic hazard assessment, in: Encyclopedia of Volcanoes, 2nd Edn., edited by: Sigurdsson, H., Academic Press, Amsterdam, 897–910, https://doi.org/10.1016/B978-0-12-385938-9.00051-1, 2015.
Connor, C., Connor, L., Germa, A., Richardson, J., Bebbington, M., Gallant,
E., and Saballos, A.: How to use kernel density estimation as a diagnostic
and forecasting tool for distributed volcanic vents, Statist. Volcanol., 4, 1–25, https://doi.org/10.5038/2163-338X.4.3, 2019.
Connor, L., Connor, C., Meliksetian, K., and Savov, I.: Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for
a nuclear facility in Armenia, J. Appl. Volcanol., 1, 3, https://doi.org/10.1186/2191-5040-1-3, 2012.
Coppola, D., Piscopo, D., Staudacher, T., and Cigolini, C.: Lava discharge
rate and effusive pattern at Piton de la Fournaise from MODIS data, J. Volcanol. Geoth. Res., 184, 174–192, 2009.
Cox, D. R. and Isham, V.: Point processes, Chapman and Hall, London, New York, 1980.
Daley, D. and Vere-Jones, D.: An Introduction to the Theory of Point
Processes, in: Volume I: Elementary Theory and Methods, Springer, Heidelberg,
2003.
Daley, D. and Vere-Jones, D.: An Introduction to the Theory of Point Processes, in: Volume II: General Theory and Structure, Springer, New York, 2008.
Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., and
Ganci, G.: Lava flow hazards at Mount Etna: constraints imposed by eruptive
history and numerical simulations, Scient. Rep., 3, 1–8, 2013.
Del Negro, C., Cappello, A., Bilotta, G., Ganci, G., Hérault, A., and
Zago, V.: Living at the edge of an active volcano: Risk from lava flows on
Mt. Etna, GSA Bull., 132, 1615–1625, 2020.
DeMets, C.: A new estimate for present-day Cocos-Caribbean plate motion:
Implications for slip along the Central American volcanic arc, Geophys. Res. Lett., 28, 4043–4046, 2001.
Deng, F., Connor, C. B., Malservisi, R., Connor, L. J., White, J. T., Germa,
A., and Wetmore, P. H.: A geophysical model for the origin of volcano vent
clusters in a Colorado Plateau volcanic field, J. Geophys. Res.-Solid, 122, 8910–8924, 2017.
Espinoza, F.: Neotectónica de la falla Nejapa, porción oeste del
graben de Managua, Nicaragua, tesis de Maestría, UNAM, México, 2007.
Fairbrothers, G., Carr, M., and Mayfield, D.: Temporal magmatic variation at
Boqueron volcano, El Salvador, Contrib. Mineral. Petrol., 67, 1–9, 1978.
Felpeto, A., Martí, J., and Ortiz, R.: Automatic GIS-based system for
volcanic hazard assessment, J. Volcanol. Geoth. Res., 166, 106–116, 2007.
Ferrés, D., Delgado-Granados, H., Hernández, W., Pullinger, C.,
Chávez, H., Taracena, C. C., and Cañas-Dinarte, C.: Three thousand
years of flank and central vent eruptions of the San Salvador volcanic
complex (El Salvador) and their effects on El Cambio archeological site: a
review based on tephrostratigraphy, Bull. Volcanol., 73, 833,
https://doi.org/10.1007/s00445-011-0465-0, 2011.
Ferrés, D., Delgado-Granados, H., Gutiérrez, R., Farraz, I., Hernández, E., Pullinger, C., and Escobar, C.: Explosive volcanic history
and hazard zonation maps of Boquerón Volcano (San Salvador volcanic
complex, El Salvador), Geological Society of America Special Papers 498,
Geological Society of America, 201–230, https://doi.org/10.1130/2013.2498(12), 2013.
Ferrés, D.: Estratigrafía, geología y evaluación de peligros volcánicos del Complejo Volcánico de San Salvador (El Salvador), PhD. thesis, Universidad Nacional Autónoma de México, México, 316 pp., 2014.
Freundt, A. and Kutterolf, S.: The long-lived Chiltepe volcanic complex,
Nicaragua: magmatic evolution at an arc offset, Bull. Volcanol., 81, 1–22, 2019.
Freundt, A., Hartmann, A., Kutterolf, S., and Strauch, W.: Volcaniclastic
stratigraphy of the Tiscapa maar crater walls (Managua, Nicaragua): implications for volcanic and seismic hazards and Holocene climate changes,
Int. J. Earth Sci., 99, 1453–1470, 2010.
Gaffney, E. and Damjanac, B.: Localization of volcanic activity: topographic
effects on dike propagation, eruption and conduit formation, Geophys. Res. Lett., 33, L14313, https://doi.org/10.1029/2006GL026852, 2006.
Gallant, E., Richardson, J., Connor, C., Wetmore, P., and Connor, L.: A new
approach to probabilistic lava flow hazard assessments, applied to the Idaho
National Laboratory, eastern Snake River Plain, Idaho, USA, Geology, 46,
895–898, 2018.
Hayashi, J. N. and Self, S.: A comparison of pyroclastic flow and debris
avalanche mobility, J. Geophys. Res.-Solid, 97, 9063–9071, 1992.
Huppert, H. E. and Simpson, J. E.: The slumping of gravity currents, J. Fluid Mech., 99, 785–799, 1980.
Hyman, D. M., Bevilacqua, A., and Bursik, M. I.: Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location, Nat. Hazards Earth Syst. Sci., 19, 1347–1363, https://doi.org/10.5194/nhess-19-1347-2019, 2019.
Jaquet, O., Connor, C., and Connor, L.: Probabilistic methodology for long-term assessment of volcanic hazards, Nucl. Technol., 163, 180–189, 2008.
Jaquet, O., Lantuéjoul, C., and Goto, J.: Probabilistic estimation of
long-term volcanic hazard with assimilation of geophysics and tectonic data,
J. Volcanol. Geoth. Res., 235, 29–36, 2012.
Jaquet, O., Lantuéjoul, C., and Goto, J.: Probabilistic estimation of
long-term volcanic hazard under evolving tectonic conditions in a 1 Ma
timeframe, J. Volcanol. Geoth. Res., 345, 58–66, 2017.
Kósik, S., Bebbington, M., and Németh, K.: Spatio-temporal hazard
estimation in the central silicic part of Taupo Volcanic Zone, New Zealand,
based on small to medium volume eruptions, Bull. Volcanol., 82, 50, https://doi.org/10.1007/s00445-020-01392-6, 2020.
Kutterolf, S., Freundt, A., Perez, W., Wehrmann, H., and Schmincke, H. U.:
Late Pleistocene to Holocene temporal succession and magnitudes of
highly-explosive volcanic eruptions in west-central Nicaragua, J. Volcanol. Geoth. Res., 163, 55–82, 2007.
Kutterolf, S., Freundt, A., and Perez, W.: Pacific offshore record of plinian
arc volcanism in Central America: 2. Tephra volumes and erupted masses,
Geochem. Geophy. Geosy., 9, Q02S02, https://doi.org/10.1029/2007GC001791, 2008.
Kutterolf, S., Freundt, A., and Burkert, C.: Eruptive history and magmatic
evolution of the 1.9 kyr Plinian dacitic Chiltepe Tephra from Apoyeque volcano in west-central Nicaragua, Bull. Volcanol., 73, 811–831, 2011.
Le Corvec, N., Menand, T., and Lindsay, J.: Interaction of ascending magma
with pre-existing crustal fractures in monogenetic basaltic volcanism: an
experimental approach, J. Geophys. Res.-Solid, 118, 968–984, 2013.
Major, J., Schilling, S., Pullinger, C., Escobar, C., and Howell, M.: Volcano-hazard zonation for San Vicente Volcano, El Salvador, US Geological Survey Open File Report 01-367, US Geological Survey, Vancouver, Washington, p. 22, 2001.
Martí, J., Sobradelo, R., Felpeto, A., and García, O.: Eruptive
scenarios of phonolitic volcanism at Teide–Pico Viejo volcanic complex
(Tenerife, Canary Islands), Bull. Volcanol., 74, 767–782, https://doi.org/10.1007/s00445-011-0569-6, 2012.
Martin, A., Umeda, K., Connor, C., Weller, J., Zhao, D., and Takahashi, M.:
Modeling long-term volcanic hazards through Bayesian inference: An example
from the Tohoku volcanic arc, Japan, J. Geophys. Res.-Solid, 109, B10208, https://doi.org/10.1029/2004JB003201, 2004.
Marzocchi, W. and Bebbington, M.: Probabilistic eruption forecasting at short and long time scales, Bull. Volcanol., 74, 1777–1805, 2012.
Mazzarini, F., Rooney, T., and Isola, I.: The intimate relationship between
strain and magmatism: A numerical treatment of clustered monogenetic fields in the Main Ethiopian Rift, Tectonics, 32, 49–64, 2013.
Mazzarini, F., Le Corvec, N., Isola, I., and Favalli, M.: Volcanic field
elongation, vent distribution, and tectonic evolution of a continental rift:
The Main Ethiopian Rift example, Geosphere, 12, 706–720, 2016.
McKay, M., Beckman, R., and Conover, W.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 55–61, 2000.
Mead, S. R. and Magill, C. R.: Probabilistic hazard modelling of rain-triggered lahars, J. Appl. Volcanol., 6, 1–7, 2017.
Németh, K. and Kereszturi, G.: Monogenetic volcanism: personal views and
discussion, Int. J. Earth Sci., 104, 2131–2146, 2015.
Neri, A., Aspinall, W., Cioni, R., Bertagnini, A., Baxter, P., Zuccaro, G.,
Andronico, D., Barsotti, S., Cole, P., and Esposti Ongaro, T.: Developing an
event tree for probabilistic hazard and risk assessment at Vesuvius, J.
Volcanol. Geoth. Res., 178, 397–415, 2008.
Neri, A., Bevilacqua, A., Esposti Ongaro, T., Isaia, R., Aspinall, W., Bisson, M., Flandoli, F., Baxter, P., Bertagnini, A., and Iannuzzi, E.:
Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps, J. Geophys. Res., 120, 2330–2349, 2015.
Newhall, C. and Hoblitt, R.: Constructing event trees for volcanic crises,
Bull. Volcanol., 64, 3–20, 2002.
Newhall, C. G. and Pallister, J. S.: Using multiple data sets to populate probabilistic volcanic event trees, in: Volcanic Hazards, Risks and Disasters, Elsevier, Amsterdam, the Netherlands, 203–232,
https://doi.org/10.1016/B978-0-12-396453-3.00008-3, 2015.
Ogburn, S. and Calder, E.: The relative effectiveness of empirical and physical models for simulating the dense undercurrent of pyroclastic flows
under different emplacement conditions, Front. Earth Sci., 5, 83, https://doi.org/10.3389/feart.2017.00083, 2017.
Ogburn, S., Berger, J., Calder, E., Lopes, D., Patra, A., Pitman, E., Rutarindwa, R., Spiller, E., and Wolpert, R.: Pooling strength amongst
limited datasets using hierarchical Bayesian analysis, with application to
pyroclastic density current mobility metrics, Statist. Volcanol., 2, 1–26,
https://doi.org/10.5038/2163-338X.2.1, 2016.
Owen, A.: Orthogonal arrays for computer experiments, integration and
visualization, Statist. Sin., 2, 439–452, 1992.
Pardo, N., Avellán, D., Macías, J., Scolamacchia, T., and Rodríguez, D.: The ∼1245 yr BP Asososca maar: New advances on
recent volcanic stratigraphy of Managua (Nicaragua) and hazard implications,
J. Volcanol. Geoth. Res., 176, 493–512, 2008.
Paris, R., Ulvrova, M., Selva, J., Brizuela, B., Costa, A., Grezio, A.,
Lorito, S., and Tonini, R.: Probabilistic hazard analysis for tsunamis generated by subaqueous volcanic explosions in the Campi Flegrei caldera,
Italy, J. Volcanol. Geoth. Res., 379, 106–116, 2019.
Patra, A. K., Bevilacqua, A., and Akhavan-Safaei, A.: Analyzing Complex Models using Data and Statistics, in: vol. 10861 of ICCS, Lecture Notes in Computer Science, chap. 57, Springer, Cham, 724–736,
https://doi.org/10.1007/978-3-319-93701-4_57, 2018.
Patra, A., Bevilacqua, A., Pitman, E., Bursik, M., Voight, B., Neri, A.,
Macedonio, G., Flandoli, F., De Martino, P., Giudicepietro, F., and Vitale,
S.: A statistical approach for spatial mapping and temporal forecasts of
volcanic eruptions using monitoring data, in: AGU 2019 Fall Meeting, San
Francisco, CA, USA, 2019.
Patra, A., Bevilacqua, A., Akhavan-Safaei, A., Pitman, E., Bursik, M., and
Hyman, D.: Comparative Analysis of the Structures and Outcomes of Geophysical Flow Models and Modeling Assumptions Using Uncertainty Quantification, Front. Earth Sci., 8, 275, https://doi.org/10.3389/feart.2020.00275, 2020.
Poland, M. and Anderson, K.: Partly Cloudy With a Chance of Lava Flows:
Forecasting Volcanic Eruptions in the Twenty-First Century, J. Geophys. Res.-Solid, 125, e2018JB016974, https://doi.org/10.1029/2018JB016974, 2020.
Ranjan, P. and Spencer, N.: Space-filling Latin hypercube designs based on
randomization restrictions in factorial experiments, Statist. Probabil. Lett., 94, 239–247, 2014.
Rose, W., Palma, J., Wolf, R., and Gomez, R.: A 50 yr eruption of a basaltic
composite cone: Pacaya, Guatemala, The Geological Society of America Special
Paper 498, Geological Society of America, Boulder, CO, USA, 1–21,
https://doi.org/10.1130/2013.2498(01), 2013.
Runge, M., Bebbington, M., Cronin, S., Lindsay, J., Kenedi, C., and Moufti,
M.: Vents to events: determining an eruption event record from volcanic vent
structures for the Harrat Rahat, Saudi Arabia, Bull. Volcanol., 76, 804, https://doi.org/10.1007/s00445-014-0804-z, 2014.
Runge, M., Bebbington, M., Cronin, S., Lindsay, J., and Moufti, M.: Integrating geological and geophysical data to improve probabilistic hazard
forecasting of Arabian Shield volcanism, J. Volcanol. Geoth. Res., 311, 41–59, 2016.
Rutarindwa, R., Spiller, E., Bevilacqua, A., Bursik, M., and Patra, A.:
Dynamic probabilistic hazard mapping in the Long Valley Volcanic Region CA:
integrating vent opening maps and statistical surrogates of physical models
of pyroclastic density currents, J. Geophys. Res.-Solid, 124, 9600–9621, 2019.
Sandri, L., Jolly, G., Lindsay, J., Howe, T., and Marzocchi, W.: Combining
long-and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from
the Auckland Volcanic Field, New Zealand, Bull. Volcanol., 74, 705–723, 2012.
Sandri, L., Tierz, P., Costa, A., and Marzocchi, W.: Probabilistic hazard
from pyroclastic density currents in the Neapolitan area (Southern Italy), J. Geophys. Res.-Solid, 123, 3474–3500, 2018.
Sandri, L., Bevilacqua, A., Selva, J., Neri, A., Costa, A., and Macedonio,
G.: Eruption forecasting and hazard assessment at INGV during the 2019 crisis exercise at Campi Flegrei, in: 4th Rittmann Conference, Catania, Italy, 2020.
Selva, J., Orsi, G., Di Vito, M., Marzocchi, W., and Sandri, L.: Probability
hazard map for future vent opening at the Campi Flegrei caldera, Italy, Bull. Volcanol., 74, 497–510, 2012.
Selva, J., Costa, A., Sandri, L., Macedonio, G., and Marzocchi, W.: Probabilistic short-term volcanic hazard in phases of unrest: A case study
for tephra fallout, J. Geophys. Res.-Solid, 119, 8805–8826, 2014.
Sheridan, M. F. and Macías, J.: Estimation of risk probability for
gravity-driven pyroclastic flows at Volcan Colima, Mexico, J. Volcanol. Geoth. Res., 66, 251–256, 1995.
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Arnadóttir, T.,
Pedersen, R., Roberts, M. J., Óskarsson, N., Auriac, A., Decriem, J.,
Einarsson, P., Geirsson, H., Hensch, M., Ófeigsson, B. G., Sturkell, E.,
Sveinbjörnsson, H., and Feigl, K. L.: Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption, Nature, 468, 426–430, 2010.
Smith, V., Costa, A., Aguirre-Díaz, G., Pedrazzi, D., Scifo, A., Plunkett, G., Poret, M., Tournigand, P., Miles, D., and Dee, M.: The magnitude and impact of the 431 CE Tierra Blanca Joven eruption of Ilopango, El Salvador, P. Natl. Acad. Sci. USA, 117, 26061–26068, 2020.
Sofield, D.: History and Hazards of Volcán San Salvador, El Salvador, MS thesis, Michigan Technological University, Houghton, Michigan, USA, 1998.
Sofield, D.: Eruptive history and volcanic hazards of Volcan San Salvador,
Natural hazards in El Salvador, Society of America (GSA), Boulder, CO, USA, 147–158, https://doi.org/10.1130/0-8137-2375-2.147, 2004.
Spiller, E., Bayarri, M., Berger, J., Calder, E., Patra, A., Pitman, E., and
Wolpert, R.: Automating emulator construction for geophysical hazard maps,
SIAM/ASA J. Uncertain. Quantificat., 2, 126–152, 2014.
Stein, M.: Large sample properties of simulations using Latin hypercube
sampling, Technometrics, 29, 143–151, 1987.
Strehlow, K., Sandri, L., Gottsmann, J. H., Kilgour, G., Rust, A. C., and
Tonini, R.: Phreatic eruptions at crater lakes: occurrence statistics and
probabilistic hazard forecast, J. Appl. Volcanol., 6, 1–21, 2017.
Tadini, A., Bevilacqua, A., Neri, A., Cioni, R., Aspinall, W., Bisson, M.,
Isaia, R., Mazzarini, F., Valentine, G., and Vitale, S.: Assessing future
vent opening locations at the Somma-Vesuvio volcanic complex: 2. Probability
maps of the caldera for a future Plinian/sub-Plinian event with uncertainty
quantification, J. Geophys. Re.-Solid, 122, 4357–4376, 2017a.
Tadini, A., Bisson, M., Neri, A., Cioni, R., Bevilacqua, A., and Aspinall, W.: Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geodatabase with uncertainty characterizations, J. Geophys. Res.-Solid, 122, 4336–4356, 2017b.
Tang, B.: Orthogonal array-based Latin hypercubes, J. Am. Statist. Assoc., 88, 1392–1397, 1993.
Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly,
G., and Marzocchi, W.: Exploring the influence of vent location and eruption
style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand,
Bull. Volcanol., 77, 1–23, 2015.
Tierz, P., Sandri, L., Costa, A., Zaccarelli, L., Di Vito, M. A., Sulpizio, R., and Marzocchi, W.: Suitability of energy cone for probabilistic volcanic
hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei
(Italy), Bull. Volcanol., 78, 1–15, 2016a.
Tierz, P., Sandri, L., Costa, A., Sulpizio, R., Zaccarelli, L., Di Vito, M. A., and Marzocchi, W.: Uncertainty assessment of pyroclastic density currents at Mount Vesuvius (Italy) simulated through the energy cone model, in: Natural hazard uncertainty assessment: Modeling and decision support, American Geophysical Union, Washington, 125–145, https://doi.org/10.1002/9781119028116.ch9, 2016b.
Tierz, P., Stefanescu, E. R., Sandri, L., Sulpizio, R., Valentine, G. A.,
Marzocchi, W., and Patra, A. K.: Towards quantitative volcanic risk of
pyroclastic density currents: Probabilistic hazard curves and maps around
Somma-Vesuvius (Italy), J. Geophys. Res.-Solid, 123, 6299–6317, 2018.
Tierz, P., Clarke, B., Calder, E. S., Dessalegn, F., Lewi, E., Yirgu, G.,
Fontijn, K., Crummy, J. M., Bekele, Y., and Loughlin, S. C.: Event trees and
epistemic uncertainty in long-term volcanic hazard assessment of rift
volcanoes: The example of Aluto (Central Ethiopia), Geochem. Geophy. Geosy., 21, e2020GC009219, https://doi.org/10.1029/2020GC009219, 2020.
Tonini, R., Sandri, L., Costa, A., and Selva, J.: Brief Communication: The effect of submerged vents on probabilistic hazard assessment for tephra fallout, Nat. Hazards Earth Syst. Sci., 15, 409–415, https://doi.org/10.5194/nhess-15-409-2015, 2015.
Valentine, G. and Krogh, K.: Emplacement of shallow dikes and sills beneath
a small basaltic volcanic center–The role of pre-existing structure (Paiute
Ridge, southern Nevada, USA), Earth Planet. Sc. Lett., 246, 217–230, 2006.
Ward, P., Gibbs, J., Harlow, D., and Aburto, A.: Aftershocks of the Managua,
Nicaragua, earthquake and the tectonic significance of the Tiscapa fault,
Bull. Seismol. Soc. Am., 64, 1017–1029, 1974.
Weller, J., Martin, A., Connor, C., Connor, L., and Karakhanian, A.:
Modelling the spatial distribution of volcanoes: an example from Armenia,
Statistics in Volcanology, Special Publications of IAVCEI, 1, 77–88, 2006.
Wright, H., Pallister, J., McCausland, W., Griswold, J., Andreastuti, S.,
Budianto, A., Primulyana, S., Gunawan, H., Battaglia, M., and Diefenbach, A.:
Construction of probabilistic event trees for eruption forecasting at
Sinabung volcano, Indonesia 2013–14, J. Volcanol. Geoth. Res., 382, 233–252, 2019.
Short summary
We present novel probability maps for the opening position of new vents in the San Salvador (El Salvador) and Nejapa-Chiltepe (Nicaragua) volcanic complexes. In particular, we present thematic maps, i.e., we consider different hazardous phenomena separately. To illustrate the significant effects of considering the expected eruption style in the construction of vent opening maps, we focus on the analysis of small-scale pyroclastic density currents using an approach based on numerical modeling.
We present novel probability maps for the opening position of new vents in the San Salvador (El...
Altmetrics
Final-revised paper
Preprint