Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2665-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2665-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A statistical analysis of rogue waves in the southern North Sea
Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Ralf Weisse
Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Jens Moeller
Federal Maritime and Hydrographic Agency, Bernhard-Nocht-Str. 78, 20359 Hamburg, Germany
Oliver Krueger
Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Related authors
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Nikolaus Groll and Ralf Weisse
Earth Syst. Sci. Data, 9, 955–968, https://doi.org/10.5194/essd-9-955-2017, https://doi.org/10.5194/essd-9-955-2017, 2017
Short summary
Short summary
A wave hindcast for the North Sea covering the period 1949–2014 using the third-generation spectral wave model WAM was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that, despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis.
Related subject area
Sea, Ocean and Coastal Hazards
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Improvements to the detection and analysis of external surges in the North Sea
Optimal probabilistic placement of facilities using a surrogate model for 3D tsunami simulations
Enabling dynamic modelling of coastal flooding by defining storm tide hydrographs
The role of preconditioning for extreme storm surges in the western Baltic Sea
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Probabilistic projections and past trends of sea level rise in Finland
The effect of deep ocean currents on ocean- bottom seismometers records
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Observations of extreme wave runup events on the US Pacific Northwest coast
Warning water level determination and its spatial distribution in coastal areas of China
Assessing the coastal hazard of medicane Ianos through ensemble modelling
A global open-source database of flood-protection levees on river deltas (openDELvE)
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Simulation of tsunami induced by a submarine landslide in a glaciomarine margin: the case of Storfjorden LS-1 (southwestern Svalbard Islands)
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
A predictive equation for wave setup using genetic programming
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Nearshore Tsunami amplitudes across the Maldives archipelago due to worst case seismic scenarios in the Indian Ocean
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
A coupled modelling system to assess the effect of Mediterranean storms under climate change
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Multilayer modelling of waves generated by explosive subaqueous volcanism
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Kenta Tozato, Shuji Moriguchi, Shinsuke Takase, Yu Otake, Michael R. Motley, Anawat Suppasri, and Kenjiro Terada
Nat. Hazards Earth Syst. Sci., 23, 1891–1909, https://doi.org/10.5194/nhess-23-1891-2023, https://doi.org/10.5194/nhess-23-1891-2023, 2023
Short summary
Short summary
This study presents a framework that efficiently investigates the optimal placement of facilities probabilistically based on advanced numerical simulation. Surrogate models for the numerical simulation are constructed using a mode decomposition technique. Monte Carlo simulations using the surrogate models are performed to evaluate failure probabilities. Using the results of the Monte Carlo simulations and the genetic algorithm, optimal placements can be investigated probabilistically.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023, https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
Havu Pellikka, Milla M. Johansson, Maaria Nordman, and Kimmo Ruosteenoja
Nat. Hazards Earth Syst. Sci., 23, 1613–1630, https://doi.org/10.5194/nhess-23-1613-2023, https://doi.org/10.5194/nhess-23-1613-2023, 2023
Short summary
Short summary
We explore the rate of past and future sea level rise at the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level by 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci., 23, 1433–1451, https://doi.org/10.5194/nhess-23-1433-2023, https://doi.org/10.5194/nhess-23-1433-2023, 2023
Short summary
Short summary
We show that ocean-bottom seismometers are controlled by bottom currents, but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions: the permanent low-frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023, https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Shan Liu, Xianwu Shi, Qiang Liu, Jun Tan, Yuxi Sun, Qingrong Liu, and Haoshuang Guo
Nat. Hazards Earth Syst. Sci., 23, 127–138, https://doi.org/10.5194/nhess-23-127-2023, https://doi.org/10.5194/nhess-23-127-2023, 2023
Short summary
Short summary
This study proposes a quantitative method for the determination of warning water levels. The proposed method is a multidimensional scale, centered on the consideration of various factors that characterize various coastlines. The implications of our study are not only scientific, as we provide a method for water level determination that is rooted in the scientific method (and reproducible across various contexts beyond China), but they are also deeply practical.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
EGUsphere, https://doi.org/10.5194/egusphere-2022-990, https://doi.org/10.5194/egusphere-2022-990, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022, https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Short summary
Humans build levees to protect themselves against floods. We need to know where they are to correctly predict flooding, for example from sea level rise. Here we have looked through documents to find levees, and checked that they exist using satellite imagery. We developed a global levee map, available at www.opendelve.eu, and we found that 24 % of people in deltas are protected by levees.
Alec Torres-Freyermuth, Gabriela Medellín, Jorge A. Kurczyn, Roger Pacheco-Castro, Jaime Arriaga, Christian M. Appendini, María Eugenia Allende-Arandía, Juan A. Gómez, Gemma L. Franklin, and Jorge Zavala-Hidalgo
Nat. Hazards Earth Syst. Sci., 22, 4063–4085, https://doi.org/10.5194/nhess-22-4063-2022, https://doi.org/10.5194/nhess-22-4063-2022, 2022
Short summary
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
María Teresa Pedrosa-González, José Manuel González-Vida, Jesús Galindo-Záldivar, Sergio Ortega, Manuel Jesús Castro, David Casas, and Gemma Ercilla
Nat. Hazards Earth Syst. Sci., 22, 3839–3858, https://doi.org/10.5194/nhess-22-3839-2022, https://doi.org/10.5194/nhess-22-3839-2022, 2022
Short summary
Short summary
The L-ML-HySEA (Landslide Multilayer Hyperbolic Systems and Efficient Algorithms) model of the tsunami triggered by the Storfjorden LS-1 landslide provides new insights into the sliding mechanism and bathymetry controlling the propagation, amplitude values and shoaling effects as well as coastal impact times. This case study provides new perspectives on tsunami hazard assessment in polar margins, where global climatic change and its related ocean warming may contribute to landslide trigger.
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022, https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
Short summary
Even if the coincidence of flood and tsunami hazards may be experienced once in a blue moon, it should also be investigated due to the uncertainty of the time of occurrence of these natural hazards. The objective of this study is to reveal a statistical methodology to evaluate the aggregate potential hazard levels due to flood hazards with the presence of earthquake-triggered tsunamis. The proposed methodology is applied to Fethiye city, located on the Western Mediterranean coast of Turkey.
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022, https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Short summary
Extreme-event analysis is widely used to provide information for the design of coastal protection structures. Non-stationarity due to sea level rise can affect such estimates. Using different methods on a long time series of sea level data, we show that estimates of the magnitude of extreme events in the future can be inexact due to relative sea level rise. Thus, considering non-stationarity is important when analyzing extreme-sea-level events.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-221, https://doi.org/10.5194/nhess-2022-221, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and people living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide physically sound descriptions of the processes modelled.
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022, https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary
Short summary
Our research focuses on how the geophysical characteristics of coastal cities can determine evacuees' vulnerability during a tsunami evacuation. We identify, analyse, and rank some of those essential characteristics by examining seven case studies in Chile through computer-based inundation, evacuation, and statistical regressive modelling. These results could lead to urban planning guidelines to enhance future evacuations and increase resilience to global tsunamis.
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022, https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022, https://doi.org/10.5194/nhess-22-2347-2022, 2022
Short summary
Short summary
A hydrodynamic model and copula methodology were used to set up a joint distribution of the peak water level and the inland rainfall during tropical cyclone periods, and to calculate the marginal contributions of the individual drivers. The results indicate that the relative sea level rise has significantly amplified the peak water level. The astronomical tide is the leading driver, followed by the contribution from the storm surge.
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-95, https://doi.org/10.5194/nhess-2022-95, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
Here we use a high resolution bathymetry dataset of the Maldives archipelago, and corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that seeveral factors contribute to mitigating and amplifying tsunami waves at the island scale.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Riccardo Alvise Mel, Teresa Lo Feudo, Massimo Miceli, Salvatore Sinopoli, and Mario Maiolo
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-67, https://doi.org/10.5194/nhess-2022-67, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this work we present a coupled modelling system to compute the wind climate and the hydrodynamic two-dimensional field in coastal areas, with particular reference to the Marine Experimental Station of Capo Tirone (Italy). We combined sea level rise and extreme storm projections with the most recent georeferenced territorial data.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Cited articles
Allender, J., Audunson, T., Barstow, S., Bjerken, S., Krogstad, H., Steinbakke, P., Vartdal, L., Borgman, L., and Graham, C.: The wadic project: A comprehensive field evaluation of directional wave instrumentation, Ocean
Eng., 16, 505–536, https://doi.org/10.1016/0029-8018(89)90050-4, 1989. a, b
Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., and Benight,
C. C.: CORRIGENDUM: False alarm rate or false alarm ratio?, Weather Forecast., 24, 1452–1454, https://doi.org/10.1175/2009waf2222300.1, 2009. a, b
Baschek, B. and Imai, J.: Rogue wave observations off the US west coast,
Oceanography, 24, 158–165, https://doi.org/10.5670/oceanog.2011.35, 2011. a, b, c, d
Benjamin, T. B.: Instability of periodic wavetrains in nonlinear dispersive
systems, P. Roy. Soc. Lond. A, 299, 59–76, https://doi.org/10.1098/rspa.1967.0123, 1967. a
Bitner-Gregersen, E. M. and Gramstad, O.: Rogue waves. Impact on ship and
offshore structures, DNV GL, Strategic Research & Innovation Position Paper 05-2015, 60 pp., available at: https://www.dnvgl.com/technology-innovation/rogue-waves/ (last access: 30 September 2020), 2016. a
Cattrell, A. D., Srokosz, M., Moat, B. I., and Marsh, R.: Can rogue waves be
predicted using characteristic wave parameters?, J. Geophys. Res.-Oceans, 123, 5624–5636, https://doi.org/10.1029/2018jc013958, 2018. a, b
Chien, H., Kao, C.-C., and Chuang, Z. H.: On the characteristics of observed coastal freak waves, Coast. Eng., 44, 301–319, https://doi.org/10.1142/S0578563402000561, 2002. a, b
Donelan, M. A. and Magnusson, A.-K.: The Making of the Andrea Wave and other
rogues, Sci. Rep.-UK, 7, 44124, https://doi.org/10.1038/srep44124, 2017. a
Dysthe, K., Krogstad, H. E., and Müller, P.: Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287–310, https://doi.org/10.1146/annurev.fluid.40.111406.102203, 2008. a
Fedele, F., Brennan, J., de León, S. P., Dudley, J., and Dias, F.: Real
world ocean rogue waves explained without the modulational instability,
Sci. Rep.-UK, 6, 27715, https://doi.org/10.1038/srep27715, 2016. a
Forristall, G. Z.: On the statistical distribution of wave heights in a storm, J. Geophys. Res., 83, 2353, https://doi.org/10.1029/jc083ic05p02353, 1978. a, b, c
Forristall, G. Z.: Wave crest distributions: observations and second-order
theory, J. Phys. Oceanogr., 30, 1931–1943,
https://doi.org/10.1175/1520-0485(2000)030<1931:wcdoas>2.0.co;2, 2000. a, b, c, d
Frost, I.: Statistische Testverfahren, Signifikanz und p-Werte, Springer
Fachmedien Wiesbaden, Wiesbaden, https://doi.org/10.1007/978-3-658-16258-0, 2017. a
Goda, Y.: Effect of wave tilting on zero-crossing wave heights and periods,
Coast. Eng. Jpn., 29, 79–90, https://doi.org/10.1080/05785634.1986.11924429, 1986. a
Goda, Y.: Random seas and design of maritime structures, World Scientific, World Scientific, 708 pp., https://doi.org/10.1142/7425, 2010. a
Grønlie, O.: Wave radars: techniques and technologies, Sea Technol., 47,
39–43, 2006. a
Haver, S.: A possible freak wave event measured at the Draupner Jacket, 1 January 1995, in: Rogue Waves Workshop, Brest, France, 1–8, available at:
http://www.ifremer.fr/web-com/stw2004/rogue/fullpapers/walk_on_haver.pdf
(last access: 30 September 2020), 2004. a
Holthuijsen, L. H.: Waves in oceanic and coastal waters, Cambridge University
Press, Cambridge, United Kingdom, https://doi.org/10.1017/cbo9780511618536, 2007. a
Janssen, P. A. E. M.: Nonlinear four-wave interactions and freak waves, J. Phys. Oceanogr., 33, 863–884, 2003. a
Kharif, C., Pelinovsky, E., and Slunyaev, A.: Rogue waves in the ocean,
Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-88419-4, 2009. a
Kjeldsen, S. P. and Myrhaug, D.: Wave-wave interactions, current-wave
interactions and resulting extreme waves and breaking waves, in: Coastal
Engineering 1980, American Society of Civil Engineers, 17th International Conference on Coastal Engineering, 23–28 March 1980, Sydney, Australia, https://doi.org/10.1061/9780872622647.137, 1980. a, b
Longuet-Higgins, M. S.: Eulerian and Lagrangian aspects of surface waves, J. Fluid Mech., 173, 683–707, https://doi.org/10.1017/s0022112086001325, 1986. a
Magnusson, A. K. and Donelan, M. A.: Extremes of waves measured by a wave rider buoy and vertical lasers, in: Proc. Rogue Waves 2000, Brest, France, 17, 231–245, available at: http://www.ifremer.fr/metocean/conferences/stw_abstracts/magnusson.pdf
(last access: 30 September 2020), 2000. a
Magnusson, A. K. and Donelan, M. A.: The Andrea wave characteristics of a
measured North Sea rogue wave, J. Offshore Mech. Arct., 135, 031108, https://doi.org/10.1115/1.4023800, 2013. a
Magnusson, A. K., Jenkins, A., Niedermayer, A., and Nieto-Borge, J. C.: Extreme wave statistics from time-series data, in: Proceedings of MAXWAVE Final Meeting, 8–10 October 2003, Geneva, 231–245, available at: https://www.researchgate.net/publication/238621373_EXTREME_WAVE_STATISTICS_FROM_TIME-SERIES_DATA
(last access: 30 September 2020), 2003. a, b
Mori, N., Liu, P., and Yasuda, T.: Analysis of freak wave measurements in the
Sea of Japan, Ocean Eng., 29, 1399–1414, https://doi.org/10.1016/S0029-8018(01)00073-7, 2002. a, b
Naess, A.: The joint crossing frequency of stochastic processes and its
application to wave theory, Appl. Ocean Res., 7, 35–50,
https://doi.org/10.1016/0141-1187(85)90016-1, 1985. a
Olagnon, M. and van Iseghem, S.: Some observed characteristics of sea states
with extreme waves, in: Proc. 10th Int. Offshore Polar Engineering Conf.,
International Society of Offshore and Polar Engineers, 28 May–2 June 2000, Seattle, Washington, USA, 84–90, 2000. a
Onorato, M., Osborne, A. R., and Serio, M.: Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, L25–L28,
https://doi.org/10.1063/1.1453466, 2002. a
Sergeeva, A. and Slunyaev, A.: Rogue waves, rogue events and extreme wave
kinematics in spatio-temporal fields of simulated sea states, Nat. Hazard
Earth Syst Sci., 13, 1759–1771, https://doi.org/10.5194/nhess-13-1759-2013, 2013. a
Skourup, J. K., Andreassen, K., and Hansen, N. H. O.: Non-Gaussian extreme
waves in the central North Sea, J. Offshore Mech. Arct. Eng. Aug., 119, 146–150, https://doi.org/10.1115/1.2829061, 1997. a
Slunyaev, A., Sergeeva, A., and Didenkulova, I.: Rogue events in spatio-temporal numerical simulations of unidirectional waves in basins of
different depth, Nat. Hazards, 84, 549–565, https://doi.org/10.1007/s11069-016-2430-x, 2016. a
Soares, C. G., Cherneva, Z., and Antão, E.: Characteristics of abnormal
waves in North Sea storm sea states, Appl. Ocean Res., 25, 337–344,
https://doi.org/10.1016/j.apor.2004.02.005, 2003. a, b
Stansell, P.: Distributions of freak wave heights measured in the North Sea,
Appl. Ocean Res., 26, 35–48, https://doi.org/10.1016/j.apor.2004.01.004, 2004. a, b, c
Tayfun, M. A.: Distribution of large wave heights, J. Waterw. Port. C., 116, 686–707, https://doi.org/10.1061/(ASCE)0733-950X(1990)116:6(686), 1990. a
Trulsen, K., Zeng, H., and Gramstad, O.: Laboratory evidence of freak waves
provoked by non-uniform bathymetry, Phys. Fluids, 24, 097101,
https://doi.org/10.1063/1.4748346, 2012. a
Trulsen, K., Raustøl, A., Jorde, S., and Rye, L. B.: Extreme wave statistics of long-crested irregular waves over a shoal, J. Fluid Mech.,
882, R2, https://doi.org/10.1017/jfm.2019.861, 2020. a
von Storch, H. and Zwiers, F. W.: Statistical analysis in climate research,
Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/cbo9780511612336, 1999.
a
Waseda, T., Hallerstig, M., Ozaki, K., and Tomita, H.: Enhanced freak wave
occurrence with narrow directional spectrum in the North Sea, Geophys. Res. Lett., 38, L13605, https://doi.org/10.1029/2011gl047779, 2011. a, b, c
Wilms, M.: Criteria of wave breaking onset and its variability in irregular
wave trains, PhD thesis, Gottfried Wilhelm Leibniz Universität, Hannover, Germany, https://doi.org/10.15488/3520, 2017. a, b, c
WMO: Guide to Wave Analysis and Forecasting, WMO-No. 702, Secretariat of the
World Meteorological Organization, Geneva, Switzerland, available at:
https://www.wmo.int/pages/prog/amp/mmop/documents/WMO No 702/WMO702.pdf
(last access: 30 September 2020), 1998. a
Short summary
Rogue waves pose a threat to marine operations and structures. Typically, a wave is called a rogue wave when its height exceeds twice that of the surrounding waves. There is still discussion on the extent to which such waves are unusual. A new data set of about 329 million waves from the southern North Sea was analyzed. While data from wave buoys mostly corresponded to expectations from known distributions, radar measurements showed some deviations pointing towards higher rogue wave frequencies.
Rogue waves pose a threat to marine operations and structures. Typically, a wave is called a...
Altmetrics
Final-revised paper
Preprint