Articles | Volume 20, issue 6
https://doi.org/10.5194/nhess-20-1557-2020
https://doi.org/10.5194/nhess-20-1557-2020
Research article
 | 
02 Jun 2020
Research article |  | 02 Jun 2020

Enhancing the operational value of snowpack models with visualization design principles

Simon Horton, Stan Nowak, and Pascal Haegeli

Related authors

A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1609,https://doi.org/10.5194/egusphere-2024-1609, 2024
Short summary
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871,https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting
Simon Horton and Pascal Haegeli
The Cryosphere, 16, 3393–3411, https://doi.org/10.5194/tc-16-3393-2022,https://doi.org/10.5194/tc-16-3393-2022, 2022
Short summary
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021,https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024,https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024,https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Dynamic response of pile–slab retaining wall structure under rockfall impact
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024,https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024,https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary

Cited articles

Benjamin, S. G., Brown, J. M., Brunet, G., Lynch, P., Saito, K., and Schlatter, T. W.: 100 years of progress in forecasting and NWP applications, Meteorol. Monogr., 59, 13.1–13.67, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1, 2019. a, b, c
Birch, J.: Worldwide prevalence of red-green color deficiency, J. Opt. Soc. Am,, 29, 313–320, https://doi.org/10.1364/JOSAA.29.000313, 2012. a
Blackwell, A. F.: Pictorial representation and metaphor in visual language design, J. Vis. Lang. Comput., 12, 223–252, https://doi.org/10.1006/jvlc.2001.0207, 2001. a
Bovee, M., Srivastava, R. P., and Mak, B.: A conceptual framework and belief – function approach to assessing overall information quality, Int. J. Intell. Syst., 18, 51–74, https://doi.org/10.1002/int.10074, 2003. a
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a
Short summary
Numeric snowpack models currently offer limited value to operational avalanche forecasters. To improve the relevance and interpretability of model data, we introduce and discuss visualization principles that map model data into visual representations that can inform avalanche hazard assessments.
Altmetrics
Final-revised paper
Preprint