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Abstract. Forecasting snow avalanches requires a reliable
stream of field observations, which are often difficult and ex-
pensive to collect. Despite the increasing capability of sim-
ulating snowpack conditions with physical models, models
have seen limited adoption by avalanche forecasters. Feed-
back from forecasters suggests that model data are presented
in ways that are difficult to interpret and irrelevant to opera-
tional needs. We apply a visualization design framework to
enhance the value of snowpack models to avalanche forecast-
ers. An established risk-based avalanche forecasting work-
flow is used to define the ways forecasters solve problems
with snowpack data. We suggest that model data be visual-
ized in ways that directly support common forecasting tasks
such as identifying snowpack features related to avalanche
problems and locating avalanche problems in terrain at rel-
evant spatial scales. Examples of visualizations that support
these tasks and follow established perceptual and cognitive
principles from the field of information visualization are pre-
sented. Interactive designs play a critical role in understand-
ing these complex datasets and are well suited for forecast-
ing workflows. Although extensive user testing is still needed
to evaluate the effectiveness of these designs, visualization
design principles open the door to more relevant and inter-
pretable applications of snowpack model for avalanche fore-
casters. This work sets the stage for implementing snow-
pack models into visualization tools where forecasters can
test their operational value and learn their capabilities and
deficiencies.

1 Introduction

Numerical environmental and weather prediction models
have dramatically transformed the accuracy of weather fore-
casts and the role of weather forecasters since the 1980s
(Benjamin et al., 2019). As model performance improved,
forecasting tasks shifted from predicting weather conditions
to interpreting and communicating model guidance. A cen-
terpiece in the adoption of prediction models by weather
forecasters was the development of visualization tools that
allowed them to work directly with gridded modelled data in
combination with in situ weather observations and remote-
sensing data (Benjamin et al., 2019). This setup allowed fore-
casters to visualize model output along with observations and
gradually learn the operational value of the models.

The work of avalanche forecasters is similar in nature and
complexity to the work of weather forecasters. The objec-
tive of avalanche forecasting is to develop an accurate mental
model of the current and future nature of avalanche hazard
by integrating avalanche, snowpack, and weather informa-
tion from a variety of sources (Canadian Avalanche Asso-
ciation, 2016b). This assessment is then combined with ter-
rain information to make risk management decisions regard-
ing specific elements at risk. The spatial scale of avalanche
forecasting can range from individual slopes in backcountry
guiding to groups of avalanche paths when protecting infras-
tructure and to entire mountain ranges in public avalanche
warnings. To assist avalanche forecasters at the higher end of
the spatial scale spectrum, physical snowpack models such as
Crocus (Brun et al., 1992) and SNOWPACK (Lehning et al.,
1999) were developed in the 1990s to provide supplementary
data about snowpack conditions. Despite the fact that model
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developers have created numerous operational tools to visu-
alize model output, snowpack models have so far only seen
limited adoption into operational workflows when compared
to weather prediction models (Morin et al., 2020).

Morin et al. (2020) employed the information quality
framework of Bovee et al. (2003) to describe issues with op-
erational snowpack model tools in terms of the accessibility,
interpretability, relevance, and integrity of the information.
Accessibility to snowpack models is limited by the time con-
straints in forecasting environments and workflows that are
designed for field data rather than model data. Existing tools
are also difficult to interpret, as model output is complex, and
in their current form require expertise or substantial train-
ing to comprehend and apply. The relevance of the informa-
tion they provide is also questioned, as similar information
may be available from other sources. The integrity of model
output is also difficult to evaluate in an operational setting
where there are limited validation data. Snowpack models
can produce snow stratigraphy profiles for multiple parame-
ters (e.g. grain size, hardness, temperature) at different time
intervals at potentially hundreds or thousands of locations.
These data can be so complex and voluminous that it be-
comes challenging for operational forecasters to make sense
of them in their raw form using conventional methods such
as viewing manual snow stratigraphy profiles. This has been
described as “information overload” and characterizes “big-
data” environments (De Mauro et al., 2016). As avalanche
forecasting requires substantial cognitive effort to continu-
ously maintain a mental model of conditions (Maguire and
Percival, 2018), introducing additional complex data can dis-
rupt this process and have adverse effects on performance.
Based on their analysis, Morin et al. (2020) aptly conclude
that while it was important for researchers to focus on im-
proving the accuracy of snowpack models, we are now at a
point where addressing issues with the design of operational
tools is critical for making snowpack models truly valuable
for avalanche forecasting.

To address the challenges of big data and make them
tractable for human analysis, the field of visual analytics
blends automatic analysis with human analysis via visual
interfaces (Keim et al., 2008). Specifically, visualization
in combination with interaction techniques supports a pro-
cess of iterative inquiry into data to support sense-making.
This reduces the cognitive work needed to perform analytic
tasks by leveraging the pattern-detecting abilities of the hu-
man visual system for processing complex information that
would normally exceed cognitive limits (Ware, 2012). Vi-
sual analytics has made complex problems and model out-
put tractable for non-scientists and non-model experts in a
variety of domains, including physics, business, intelligence
analysis, and disaster management (Keim et al., 2008). Ef-
fective visualization techniques are particularly valuable for
environmental data, which are often complex due their spa-
tiotemporal dimensions and uncertainties (Grainger et al.,
2016). For example, studying visualization design principles

has improved the interpretability of complex datasets in the
fields of meteorology (Rautenhaus et al., 2018; Stauffer et al.,
2015) and oceanography (Thyng et al., 2016).

Judging from the success of visual analytics applications
in other disciplines of environmental science, we believe ap-
plying a visualization design perspective to snowpack mod-
els has the potential to substantially address some of the
shortcomings that have so far limited their operational use.
In this paper, we present design principles for visualization
tools that increase the interpretability and relevance of snow-
pack models for operational avalanche forecasters. These de-
sign principles are informed by information visualization,
avalanche forecasting practices, and the unique features of
snowpack model data. First, we apply a visualization design
framework to the domain of avalanche forecasting to outline
principles of how data should be visualized to solve opera-
tional problems (Sect. 2). Then we provide examples of vi-
sualizations where these principles are applied with snow-
pack model data (Sect. 3), followed by suggestions for next
steps towards operational applications (Sect. 4) and conclu-
sions (Sect. 5).

2 Visualization design principles for avalanche
forecasting

2.1 Nested levels of visualization design

The nested model for visualization design described by Mun-
zner (2009) has established itself as a valuable framework for
designing and evaluating visualization tools. This framework
considers four nested levels where distinct design issues arise
and where issues at one level can cascade to other levels. The
issues with operational snowpack model tools identified by
Morin et al. (2020) relate to design issues at each level of
the nested model. These four levels provide designers with
a tangible framework for understanding the users’ problems,
showing the appropriate information, and presenting it both
effectively and efficiently:

1. Domain situation level. The domain situation describes
the target users, their field of interest, their questions,
and their data. A domain has unique vocabulary for de-
scribing its data and problems and usually has an exist-
ing workflow for how data are used to solve problems.
Issues arise when designers misunderstand the users’
needs. For example, existing tools that present snow-
pack model data may not address the major needs and
questions of avalanche forecasters, such as assessing the
spatial distribution of an avalanche problem (relevance).

2. Task and data abstraction level. Task and data abstrac-
tion maps domain-specific problems into generic vocab-
ulary that clearly describes what type of data is being
visualized and why. Tasks are described with generic
verbs (e.g. locate, compare), and data are described with
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generic nouns and adjectives (e.g. table, network, or-
dered, categorical). Issues arise when the functions and
data types in a design do not solve the intended prob-
lem. For example, detailed snow stratigraphy profiles
provided by snowpack models may not be the type of
information needed for specific forecasting tasks (rele-
vance).

3. Visual encoding and interaction idiom level. This level
creates visual representations of the data. A distinct vi-
sual representation is called an idiom. Data are encoded
by arranging them along spatial dimensions and map-
ping attributes to non-spatial visual features such as
colour, size, and shape, while interaction idioms allow
the user to change the view. Issues arise when idioms are
ineffective at visualizing information. Existing idioms
for visualizing snowpack model data are often complex,
busy, and difficult for non-model experts to understand
(interpretability).

4. Algorithm level. This is the level where idioms are pro-
duced from raw data with a computer. Issues arise when
algorithms are too slow. At the algorithm level, most
snowpack model visualizations are too time-consuming
for forecasters because they are poorly integrated into
their workflows (accessibility).

Munzner (2014) also describes that visualization problems
can be attacked from two possible directions within the
nested model: top-down approaches that first understand the
domain and tasks and then design visual idioms accordingly
and bottom-up approaches that start with developing new al-
gorithms and idioms. Most existing snowpack model visu-
alizations were developed with bottom-up approaches that
began with model development, followed by the creation of
visualizations of the model output. Bottom-up approaches al-
low novel visualizations that reveal nuances and anomalies in
new types of data but also have the potential to not solve the
intended problem (Munzner, 2014). While it is worth con-
sidering bottom-up designs that take advantage of the unique
capabilities of snowpack models, it is also important to care-
fully examine the domain and tasks of avalanche forecasting
to establish top-down design principles that support forecast-
ing needs.

2.2 Domain of avalanche forecasting

Avalanche forecasting is a common task for all operations
that manage short-term avalanche risk (e.g. ski areas, trans-
portation corridors, backcountry warnings, resource extrac-
tion). The forecasting process consists of iterative data analy-
sis and is dominated by human judgement and inductive logic
(LaChapelle, 1980; McClung, 2002). Statham et al. (2018)
surveyed existing operational practices within North Amer-
ican avalanche forecasting operations to develop a standard
framework for this process. The resulting conceptual model

of avalanche hazard (CMAH) identifies the key components
of avalanche hazard and provides a standard workflow and
terminology to guide the forecasting process. The CMAH is
a risk-based framework that is consistent with other natural
hazard disciplines and can be applied at any scale in space or
time. A central part of the CMAH is the concept of avalanche
problems that represent individual, identifiable operational
concerns that can be described in terms of their potential
avalanche type, location, likelihood, and size (Statham et al.,
2018). Under the CMAH, avalanche forecasting is viewed as
sequentially answering four questions:

1. What type of avalanche problems exist?

2. Where are these problems located in the terrain?

3. How likely is it that an avalanche will occur?

4. How destructive will the avalanche be?

Over the past decade, the CMAH has been widely adopted by
all industry sectors in North America (Statham et al., 2018),
which clearly indicates that it is a useful model to describe
the domain situation of avalanche forecasting.

2.3 Task and data abstractions for snowpack analysis

Given the importance of avalanche problems in avalanche
forecasting, operational visualization tools should be de-
signed to help forecasters identify and characterize avalanche
problems. Assessing avalanche problems consists of integrat-
ing a complex array of data that includes observations of
avalanches, snowpack, weather, and terrain (Statham et al.,
2018). There is no structured or standardized way these data
are used to answer the CMAH questions, as the analysis
relies on subjective judgement and heuristics (LaChapelle,
1980); however there are common practices for interpreting
field observations.

Snowpack models produce data that are analogous to man-
ual snow stratigraphy profiles, which is a key type of field
data used by forecasters to understand snowpack condi-
tions. Building off familiar visual representations is an ef-
fective way for people to understand new types of informa-
tion (Blackwell, 2001), and thus examining existing practices
for visualizing and analyzing manual snow profiles provides
insight into ways snowpack models could be visualized to
support forecasting tasks.

Forecasters perform several analysis tasks with manual
snow profiles to develop a comprehensive mental model of
hazard conditions. Manual snow profiles are either recorded
in tables of unstructured text or illustrated as hardness stratig-
raphy profiles (Canadian Avalanche Association, 2016a).
Forecasters learn to identify relevant snowpack features in
these profiles and then compare multiple snow profiles along
with other observations to summarize the snowpack condi-
tions within a forecast area. Forecasters summarize snow-
pack data in a written snowpack summary that gives a con-
cise overview of conditions in their forecast area. The goal
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Figure 1. Example of a snowpack summary for a large forecast area drawn on a whiteboard to summarize relevant snowpack conditions.
This example was drawn on 23 December 2017 by an avalanche forecaster at Mike Wiegele Helicopter Skiing in Canada. Each row shows
conditions for a different elevation band (alpine, treeline, and below treeline). The profile column has stratigraphy profiles showing typical
layer depths and hardness (widespread layers are shown with solid lines and localized layers with dashed lines). The remaining columns
identify important layers and provide details on their burial date, grain type, depth (in cm), and representative shovel shear test results (photo:
Mike Wiegele Helicopter Skiing).

of a written snowpack summary is to organize and reduce
data, focusing on average conditions along with potential
anomalies and outliers (Canadian Avalanche Association,
2016a). Some forecasters visualize their snowpack summary
with a representative profile for their forecast area, which
helps them organize and communicate relevant information
(Fig. 1). These visual snowpack summaries are an example
of where forecasters already use visualization to help sum-
marize and understand complex information.

Tracking trends in snowpack conditions over time is an-
other common forecasting task, which is most often done
with tables of text. Temporal trends in the likelihood and size
of avalanches are particularly relevant. For example, the In-
foEx forecasting workflow allows forecasters to track weak
layers in their forecast area with qualitative summaries of
their status and depth each day of the season (Haegeli et al.,
2014). Basic snowpack observations are plotted as time se-
ries (e.g. daily snowfall at fixed observation sites), but com-
plex data like snowpack structure are rarely visualized tem-
porally.

To help forecasters answer the four key questions about
avalanche problems posed by the CMAH, visualizations of
snowpack data should help forecasters identify, compare, and

summarize snowpack features in their forecast area and high-
light trends over time. These specific tasks should be consid-
ered when designing tools to visualize either field data or
snowpack model data.

2.4 Information visualization principles

The field of information visualization studies how to lever-
age the human visual system to offload cognitive work and
visualize information effectively. Information visualization
principles should be considered when designing the visual
appearance and interactive components of tools for snow-
pack model data (i.e. the visual encoding and interaction id-
iom level of the nested model). These principles consider ef-
fective ways of representing data visually and are explained
in greater detail in textbooks by Ware (2012) and Munzner
(2014). The following list summarizes information visualiza-
tion principles that are relevant when visualizing snowpack
model data:

– When representing information visually, designers en-
code data to visual features, such as spatial position,
size, colour, or shape, among others. Colour can be fur-
ther divided into hue (the actual colour), luminance (the
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brightness or darkness of a colour), and saturation (the
intensity of the colour). Through years of perception
studies, standard guidelines for mapping these visual
features to data types have been established (Cleveland
and McGill, 1984).

– Visual encodings should present data in ways that match
the capabilities of our visual system. Hence, categori-
cal and ordered data should be encoded with visual fea-
tures that match human visual aptitudes. For example,
when using colours, hues should be used for categorical
attributes such as avalanche problem types, and lumi-
nance (lightness or brightness) should be used for or-
dered attributes such as avalanche likelihood.

– Designs should prioritize the importance of information
and encode data to visual features that are perceived
more quickly and accurately and draw our attention
to make this information more salient (i.e. noticeable)
and discriminable (Cleveland and McGill, 1984). Spa-
tial position is perceived the fastest and most accurately,
and thus most important attributes should be encoded by
their position in a visualization. After spatial position,
designs should consider the hierarchy of salience for
non-spatial visual features. For example, size features
such as length and area are more salient than colour
features such as hue, luminance, and saturation. For a
comprehensive breakdown of this hierarchy, see Mun-
zner (2014).

– Choose designs that are accessible and effective for
common types of colour blindness. For example, red–
green colour blindness (deuteranopes) affects roughly
8 % of males of European descent (Birch, 2012).

– Interaction reduces cognitive load and helps users un-
derstand data by asking questions and performing
queries. A practical guideline for designing interac-
tion idioms is the visual information seeking mantra
of Shneiderman (1996): “overview first, zoom and fil-
ter, then details on demand”. The initial visualization
should provide an overview of the entire dataset, and
then the interactions should allow the users to change
the view to see subsets of the data and then visualize
details about features of interest. This design approach
offers users a flexible way to explore data while being
able to maintain a sense of context and orientation.

– Comparison tasks are most effective on aligned scales.
Furthermore, comparisons of large numbers of data are
often more effective when seeing multiple frames in
a single side-by-side view rather than changing views
over time. The human perceptual system is effective at
reading spatial information in parallel, whereas chang-
ing views with animations or multiple tabs relies on hu-
man memory and results in substantial cognitive load
(Ware, 2012).

– Visualization idioms should present data with the
smallest number of spatial dimensions, avoiding three-
dimensional visualizations and using one-dimensional
lists where possible. Displaying three-dimensional data
on planar surfaces has numerous issues with depth per-
ception and overplotting (Ware, 2012).

3 Applications of visualization design principles

This section presents examples of how visualization design
principles can be applied to enhance the relevance and inter-
pretability of snowpack model data. Rather than presenting
the optimal avalanche forecasting tool, these examples show
how to apply a top-down approach to design. Each visual-
ization addresses a specific question posed by the CMAH,
which can be combined into a single interactive tool that al-
lows sequential question asking. This section starts by intro-
ducing each individual visualization and then finishes with
an example of an interactive forecasting tool that combines
them.

The following examples are for Glacier National Park,
Canada, a forecast region covering 1354 km2 of mountain-
ous terrain (Fig. 2). The examples focus on the needs of
regional-scale avalanche forecasters (considerations for other
forecasting contexts are discussed in Sect. 4). The exam-
ples use simulated snowpack data for 8 January 2018, as
this day had interesting snowpack conditions, with consid-
erable avalanche danger at all elevation bands and two com-
mon avalanche problems (Parks Canada, 2018): a storm slab
problem at all elevations (size 1–2 avalanches were possible
to likely) and a persistent slab problem at the treeline and
below treeline elevations (size 1–3 avalanches were possible
to likely). Appendix A provides additional examples of the
visualizations for several other days throughout the 2017–
2018 season.

Simulated snow profiles were produced by forcing the
physical snowpack model SNOWPACK (Lehning et al.,
1999) with gridded meteorological data from the Cana-
dian HRDPS numerical weather prediction model (Milbrandt
et al., 2016). Numerous configurations of weather inputs
and geometries are possible with snowpack models (Morin
et al., 2020). The ideal configuration for avalanche forecast-
ing should produce a representative sample of snow profiles
that capture the spatial variability across the forecast region.
Choosing an optimal configuration remains an open research
question that requires model expertise and field validation.
To produce a sample of profiles that cover the type of loca-
tions considered by regional forecasters, a gridded approach
was used to extract meteorological data from all 236 grid
points in the forecast region. A single flat field profile and
four virtual slope profiles were simulated at each grid point
(38◦ slopes in four cardinal directions), resulting in a total of
1180 profiles covering a range of aspect and elevation bands.
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Figure 2. Location of Glacier National Park in western Canada and
locations of grid points where meteorological data were extracted
to produce simulated snow profiles (coloured according to elevation
band).

3.1 Identify snowpack structure patterns with colour

Snowpack features related to avalanche problems should be
easy to identify in visualizations of snowpack structure. For
example, thin weak layers are important for slab avalanche
problems, so these layers should have high contrast from sur-
rounding layers. From a perceptual perspective, the standard
colour palette for snow grains (i.e. Fierz et al., 2009) may
place undesired emphasis on certain types of snow due to
the relative contrast between colours. For example, the fuch-
sia colour used for surface hoar has little contrast with sur-
rounding layers, while melt forms and ice formations are
highly emphasized (despite being less important for identi-
fying most avalanche problems). The colours also make it
difficult for individuals with colour blindness to distinguish
important features (e.g. precipitation particles and melt forms
are difficult to discern for individuals with red–green colour
blindness).

We propose a perception-informed colour palette for snow
grain types that emphasizes features related to avalanche
problems (Table 1). Similar perception-informed colour
palettes have been proposed to improve the interpretation
of visualizations in meteorology and oceanography (Stauf-
fer et al., 2015; Thyng et al., 2016). The proposed colour
palette groups grain types into four categories based on their
role in avalanche problems: persistent weak layers (surface
hoar and depth hoar), new snow layers (precipitation parti-
cles and decomposing and fragmented particles), bulk layers
(rounded grains and faceted crystals), and melt and ice form
layers. While faceted crystals are typically considered per-
sistent weak layers, the SNOWPACK model classifies any
faceted crystal with a grain sizes greater than 1.5 mm as

depth hoar. This rule causes most modelled layers composed
of large faceted crystals (i.e. those associated with persistent
weak layers) to be classified as depth hoar, while layers with
smaller faceted crystals tend to be thicker and associated with
slabs. While these grain type groups are defined by model be-
haviour, they are consistent with common snow profile anal-
ysis techniques that consider a combination of grain type and
grain size (amongst other properties) to identify weak layers
(Schweizer and Jamieson, 2007).

These groups were visually related using analogous colour
schemes (e.g. the hues are perceptually close to each other)
that remained visually discriminable. The visual salience of
these groups was adjusted using properties of colour, such
as how dark they appear (i.e. luminance) and how vivid the
colours are (i.e. saturation). In this way a visual hierarchy
of importance was created. Weak layers that tend to take up
the smallest area were made the most salient by using strong
contrast against other grain types; next new snow was made
salient. Finally, the other layers formed the lowest level of
perceptual salience and serve as a neutral background. All
colours were made to be perceptually distinct and accessible
for common types of colour blindness (see Table 1). Unique
colours were also assigned to melt–freeze crust and round-
ing faceted particles, as distinguishing these sub-classes was
deemed meaningful for avalanche forecasters. A simplified
colour palette was also designed using only the four main
categories of grain types for non-model experts (Table 2).
The simplified palette uses colours that are analogous to the
full palette and maintain the established visual hierarchy.

The colour palettes were tested with common visualiza-
tion idioms such as hardness and time series profiles (Fig. 3).
Comparing the standard and redesigned colour palettes at a
single treeline location in Glacier National Park shows how
the new palettes simplify the interpretation of the profiles by
drawing attention to the most important snowpack features.
The increased salience of the thin depth hoar layer highlights
a potential persistent slab avalanche problem, and the new
snow highlights a potential storm slab avalanche problem.

3.2 Identify avalanche problem types from multiple
profiles

Visualizing information from an ensemble of snow profiles is
an effective way to identify snowpack patterns in a forecast
area. Identification and summarization tasks can be done fast
and effectively by deriving visual summary statistics from
distributed visual information. For example, humans can vi-
sually calculate correlation coefficients, clusters, and aver-
ages with their visual perception systems (Szafir et al., 2016).
The volume and continuity of data produced by snowpack
models offer new opportunities for summarizing snowpack
structure that are not possible with manual snow profiles.
When used in combination with a colour palette that em-
phasizes snowpack features related to avalanche problems,
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Table 1. A perception-informed colour palette for snow grain types that emphasizes features related to avalanche problems and is effective
in greyscale and for common types of colour blindness (HTML codes provided for perception-informed colour palette).

Figure 3. Applying different colour palettes to common snowpack model visualizations. The same timeline and stratigraphy profiles are
shown with the standard colours for grain types (a, b), perception-informed colours for grain types from Table 1 (c, d), and perception-
informed colours for grain type groups from Table 2 (e, f). Timeline profiles (a, c, e) show the evolution of layer heights and grain type from
1 October 2017 to 8 January 2018. Stratigraphy profiles (b, d, f) show layer height, grain type, and hand hardness (F is fist, 4F is four finger,
1F is one finger, P is pencil, K is knife) on 8 January 2018.

profile ensemble visualizations can help forecasters identify
prominent avalanche problem types.

A simple and powerful summary is obtained by plotting
multiple grain type profiles side by side (Fig. 4). In this ex-
ample, 1180 profiles are sorted from thinnest to thickest,

and over 46 000 individual snow layers are shown in a sin-
gle view. Despite the large volume of data, a few prominent
snowpack features pop out, and attention is drawn to the main
snowpack patterns in the forecast area. Since this visualiza-
tion is specifically designed for the task of identifying po-
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Table 2. Simplified colour palette for groups of grain types related
to avalanche problems.

Figure 4. A visualization to identify avalanche problem types from
1180 simulated profiles on 8 January 2018. The profiles are summa-
rized by plotting grain type stratigraphies side by side and sorting
the profiles from thinnest to thickest. Grain types are coloured us-
ing the perception-informed palette from Table 1. The storm slab
avalanche problem is emphasized with yellow surface layers, and
the persistent slab avalanche problem is emphasized by the band of
blue depth hoar layers 30 to 50 cm below the surface.

tential avalanche problem types, other idioms are required
for visualizing geospatial patterns in a meaningful way (see
Sect. 3.3).

Another summary visualization that draws attention to po-
tential avalanche problem types is produced by aggregating
layers by their age (Fig. 5). The simulated profiles for 8 Jan-
uary 2018 have layers dating back to the start of the winter.
Common features amongst the set of profiles such as new
snow near the surface and widespread weak layers share sim-
ilar deposition dates; thus counting the number of profiles
with different age and grain type combinations results in a
summary of the snowpack structure. In Fig. 5, grain types
associated with persistent weak layers are emphasized with
a diverging horizontal scale to distinguish them from other
grain types. The persistent weak layers are easier to notice in
this visualization than in Figs. 3 and 4 because they occupy
a greater spatial area in the visualization than visualizations
where the spatial area occupied by a layer is proportional
to its thickness. It is also possible to produce an aggregated

Figure 5. A visualization to identify avalanche problem types from
1180 simulated profiles on 8 January 2018. Snowpack layers are
aggregated by their age to show their prevalence throughout the re-
gion (with widespread layers appearing in a greater percentage of
profiles). A diverging scale distinguishes the layers with grain types
associated with persistent weak layers (i.e. surface hoar and depth
hoar) on the right from the layers containing other grain types on the
left. Grain types are coloured using the perception-informed palette
from Table 1.

stratigraphy profile by aligning layers based on other prop-
erties such as hardness (e.g. Hagenmuller and Pilloix, 2016);
however this requires complex data transformations and as-
sumptions about averaging layer properties. The layer preva-
lence visualization in Fig. 5 supports the task of identifying
potential avalanche problem types in a way that is fast and
simple to implement.

The visualizations in Figs. 4 and 5 use colour and posi-
tion to draw attention to snowpack features that relate to the
storm slab and persistent slab avalanche problems on 8 Jan-
uary 2018. The storm slab problem is apparent from the yel-
low new snow grains on the surface, and a potential persistent
slab avalanche problem is apparent from the salient surface
hoar and depth hoar layers that are buried 30 to 50 cm be-
low the surface (Fig. 4) and formed in early December 2017
(Fig. 5).

3.3 Locate avalanche problems in terrain

When locating avalanche problems in terrain, the descrip-
tion of the terrain depends on the context and scale of the
forecast (Statham et al., 2018). For example, regional fore-
casters describe terrain by elevation bands and aspects, while
highway forecasters reference avalanche paths. Partitioning
snowpack data into distinct terrain classes and comparing
side-by-side views of the data for each terrain class are
an effective way to visualize complex geospatial patterns.
High-dimension (3-D) visualizations are tempting in charac-
terizing mountainous terrain, particularly with high-density
model datasets, but there is large potential for misinterpreta-
tion on two-dimensional displays due to depth perception is-
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sues and overplotting (Ware, 2012). Instead, simultaneously
comparing one- or two-dimensional visualizations for differ-
ent types of terrain has low cognitive load and less potential
for misinterpretation.

To provide insight into the location of avalanche problems,
the simulated profiles from Glacier National Park were par-
titioned into bins for elevation band and aspect classes to
support regional-scale forecasting (Fig. 6). Avalanche fore-
casters often use radial plots to visualize simple aspect and
elevation patterns such as danger ratings or the presence of
an avalanche problem. While radial plots are familiar and
widely used because of their metaphor for cardinal direc-
tions, the skewed and unaligned coordinate plane makes pre-
cise comparisons much more difficult. Given the complexity
of snowpack model data, Fig. 6 uses rectilinear plots with an
aligned scale for more accurate comparisons (Cleveland and
McGill, 1984). A randomized horizontal position (i.e. jitter)
was applied to each layer to reduce overplotting and random-
ize the order within a bin (Ellis and Dix, 2007). The jitter plot
allows the user to derive visual summary statistics about the
snowpack structure in each terrain class and make compar-
isons between different terrain bins, such as the following:

– Snow depth generally increases with elevation, except
for south- and west-facing slopes in the alpine.

– There is more new snow on northern and eastern as-
pects.

– Buried surface hoar layers are more prevalent on north-
ern and eastern aspects.

– The early December 2017 weak layer is more prevalent
at the treeline and below treeline elevations.

These types of visual patterns could help forecasters local-
ize avalanche problems in their terrain. Different types of
terrain bins could be applied for other forecasting contexts
to highlight differences between relevant types of terrain
such as sub-regions, avalanche paths, or classes of ski terrain
(e.g. Sterchi et al., 2019).

3.4 Compare distributions of avalanche size and
likelihood

Avalanche size is easily visualized by aligning layers by
depth rather than height. Layer depth is more relevant to fore-
casting avalanches than layer height, as weak layer depths
correlate to the destructive potential of slab avalanches (Mc-
Clung, 2009). From an information visualization perspective,
comparisons are more effective on aligned scales, and thus
aligning layers by depth allows users to browse the distribu-
tion of depths for specific weak layers. From the distribution
of layer depths in Figs. 4 and 6, forecasters could estimate the
potential sizes of storm slab and persistent slab avalanches.
The distribution of layer depths in these visualizations relates

Figure 6. A visualization to locate avalanche problems in terrain.
Snowpack layers from 1180 simulated profiles on 8 January 2018
are partitioned into terrain class bins for elevation band and aspect.
Elevation bins include alpine (ALP), treeline (TL), and below tree-
line (BTL), and aspect bins include four cardinal directions (north,
east, south, west). Each layer is given a random horizontal position
within the bin to allow visual summary statistics. Grain types are
coloured using the perception-informed palette from Table 1.

to spatial variability amongst the profile locations. Overlay-
ing summary statistics on the visualizations, such as the me-
dian depth of a specific layer, could further help in estimating
the size of avalanches in different types of terrain (as done in
the interactive dashboard in Sect. 3.5).

The CMAH defines the likelihood of avalanches as a com-
bination of sensitivity to triggers and spatial distribution
(Statham et al., 2018), making it a relatively difficult at-
tribute to visualize. Options for visualizing avalanche like-
lihood could include encoding related attributes with visual
features such as shape, size, or motion in any of the previous
idioms or by designing new idioms that focus specifically on
likelihood. We present examples of both approaches using
some simple attributes related to sensitivity to triggers and
spatial distribution.

When working with snow profiles, one potential method
for assessing the spatial distribution of a problem is counting
relevant layers amongst a set of profiles as an indication of
spatial density. Meanwhile, sensitivity to triggers can poten-
tially be assessed with snowpack tests, stability indices, or
structural criteria such as grain size and hardness (Schweizer
and Jamieson, 2007). Snowpack models offer several sta-
bility indices based on the mechanical and structural prop-
erties of the layers (Schweizer et al., 2006). We derive a
relative measure of sensitivity to triggers (S) from SNOW-
PACK’s structural stability index (SSI). The SSI combines a
stress–strength ratio with differences in hardness and grain
size to calculate a value between 0 and 6, where lower val-
ues correspond to less stable layers. The SSI is most effec-
tive for avalanche problems associated with deep weak lay-
ers (e.g. persistent slab problems) because it ignores surface
layers within skier penetration depth. To visually emphasize
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unstable layers, SSI was transformed into a relative measure
of sensitivity to triggers:

S ∝ exp−SSI, (1)

where the SSI for each layer is scaled inverse exponentially
to produce an ordered variable that correlates with the sensi-
tivity categories from the CMAH (i.e. unreactive, stubborn,
reactive, touchy). This transformation produces values be-
tween 0 and 1 and exaggerates differences for unstable weak
layers with low SSI. The numeric value of the sensitivity
measure does not have an interpretable meaning but can il-
lustrate relative patterns when applied in visualizations.

We present two examples of visualizing likelihood infor-
mation with this relative measure for sensitivity to triggers.
The terrain class visualization in Fig. 6 was modified to
scale the dot size of each layer to its sensitivity to triggers
(Fig. 7). This places greater emphasis on sensitive weak lay-
ers, so the combination of the number and size of weak layer
dots in a terrain bin relates to the likelihood of persistent
slab avalanches in that type of terrain. Another visualization
specifically designed for likelihood is given in Fig. 8, where
the Fig. 8a provides information about the spatial distribution
of each layer and Fig. 8b provides information about their
sensitivity to triggers. Information about the spatial distribu-
tion is shown with the same visualization as Fig. 5, where
the prevalence of each layer by age is related to the spatial
density of the problem. Sensitivity to triggers is shown with
the distribution of the relative sensitivity of each layer by
age. The side-by-side comparison of spatial distribution and
sensitivity to triggers provides information about the poten-
tial likelihood of persistent slab avalanche problems. For ex-
ample, the weak layers that formed in early December 2017
are more widely distributed and sensitive to triggers than the
weak layers that formed in late October (i.e. avalanches are
more likely).

It is important to note that we present these likelihood vi-
sualizations to illustrate the concept of visually encoding sta-
bility information rather than suggest these derivations for
an operational tool. These derivations are most effective for
persistent and deep persistent slab avalanche problems, while
the likelihood of other avalanche problem types may be bet-
ter represented by other attributes such as weather variables
or snow temperatures (Haegeli et al., 2010). Deriving sta-
bility information from simulated snow profiles is an active
research topic (Monti et al., 2014), and new stability indices
will likely provide more accurate information about the like-
lihood of avalanches.

3.5 Interactive dashboard

The visualizations presented in this section were combined
into an interactive dashboard using Tableau data visualiza-
tion software (Fig. 9). The dashboard facilitates the sequen-
tial questions of the CMAH by following the “overview first,
zoom and filter, details on demand” mantra (Shneiderman,

Figure 7. Visualization designed to show the likelihood of per-
sistent slab avalanches by combining spatial distribution and the
sensitivity to triggers of snowpack layers. Snowpack layers from
1180 simulated profiles on 8 January 2018 are partitioned into ter-
rain class bins for elevation band and aspect. Elevation bins include
alpine (ALP), treeline (TL), and below treeline (BTL), and aspect
bins include four cardinal directions (north, east, south, west). The
number of dots with persistent grain types in a terrain bin relates
to the spatial density of the problem, and the size of each layer’s
dot relates to its sensitivity to triggers (derived from the structural
stability index). Each layer is given a random horizontal position
within the bin to allow visual summary statistics. Grain types are
coloured using the perception-informed palette from Table 1.

Figure 8. Combining visualizations of spatial distribution and sen-
sitivity to triggers to provide information about the likelihood of
avalanches from 1180 simulated profiles on 8 January 2018. Both
visualizations aggregate the layers by age and colour them by grain
type. Panel (a) shows spatial distribution by counting the number of
profiles with different grain types (see Fig. 5), and panel (b) shows
the distribution of sensitivity to triggers for these same layers as
derived from the structural stability index (with dot size propor-
tional to sensitivity to triggers). Grain types are coloured using the
perception-informed palette from Table 1.
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Figure 9. Screenshots of an interactive dashboard that provides visualizations of layer prevalence, profile summary, and location in terrain
from 1180 simulated profiles on 8 January 2018. The initial view (a) provides an overview of the entire dataset for the user to assess potential
avalanche problems, and (b) the updated view after the user has selected layers that formed between 2 and 15 December 2017 to explore
details about the distribution and depth of the persistent slab avalanche problem.

1996). Interactions allow the user to change the view by se-
lecting visual features and filters from the legend. The initial
view (Fig. 9a) consists of the layer prevalence visualization
from Fig. 5, the profile summary visualization from Fig. 4,
and the location in terrain visualization from Fig. 6. The com-
bination of these visualizations provides a visual overview
of the snowpack structure to support the first question in the

CMAH – identifying potential avalanche problem types. Af-
ter identifying potential avalanche problem types from the
overview visualizations, users select layers of concern from
the layer prevalence panel to update the visualizations. Once
a layer of concern is selected, the layer is highlighted in the
other panels to provide details about the location in terrain
and the distribution of avalanche sizes (Fig. 9b). Horizon-
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tal bars show the median depth of the selected layer in each
terrain class for comparison of potential avalanche sizes. A
tooltip allows the user to hover over any visual feature and
see details such as the grain type, deposition date, and depth
in a pop-up window. In Fig. 9b, the user has selected all the
layers that formed between 2 and 15 December 2017 to in-
vestigate the persistent slab avalanche problem. The profile
summary shows the position of this layer in the snowpack,
and the location in terrain visualization shows that the layer
is more prevalent at the treeline and below treeline elevation
bands, with median depths of 40 cm at the treeline and 35 cm
below the treeline. Appendix A provides examples of this
dashboard for several days throughout the 2017–2018 win-
ter.

4 Implementation

4.1 Design considerations

The visualizations presented in Sect. 3 are a starting point of
how information from snowpack models can be designed to
address specific forecasting needs, but additional user testing
is necessary for them to evolve into a valuable forecasting
tool. The nested model for visualization design of Munzner
(2009) provides a structured approach to evaluating the de-
sign of such tools, where issues can be addressed at each
specific design level (i.e. domain situation, task and data ab-
straction, visualization and interaction idiom, algorithm).

At the domain situation level, creating links between
snowpack models and avalanche forecasting workflows like
the CMAH will address operational challenges faced by
forecasters. Reflecting the broad adoption of the CMAH
(Statham et al., 2018), the proposition of using snowpack
models to characterize avalanche problems across forecast
regions has gained more interest from the Canadian fore-
casting community than previous snowpack model tools that
focused on individual stratigraphy profiles. However, the
CMAH may not characterize all possible domain situations
for snowpack models, as tasks such as terrain selection or
civil protection possibly require distinct domain level con-
siderations.

At the task and data abstraction level, designs should fo-
cus on specific questions and forecasting tasks. This re-
quires a shift from bottom-up scientific visualizations to-
wards top-down information visualizations. The visualiza-
tions in Sect. 3 are specifically designed to answer the four
questions posed by the CMAH by focusing on the type of
task (e.g. identify, locate, compare). Forecasters have exist-
ing methods for performing these tasks with field data, but
aggregating and summarizing those data can be challeng-
ing and uncertain. The continuous spatial coverage of snow-
pack models offers unique opportunities to support these
tasks. The side-by-side profiles (Fig. 4) and terrain class plots
(Fig. 6) visualize snowpack patterns in ways that are not pos-

sible with traditional snow profile data and can help forecast-
ers build a more complete mental model of the snowpack
structure in their forecast area.

While the examples in Sect. 3 are particularly suited to
storm and persistent slab avalanche problem types, the same
principles could be applied to emphasize attributes impor-
tant to other problem types (such as weather data to identify
wind slab avalanche problems and snow temperature data to
identify wet avalanche problem types). The task of locating
avalanche problems in terrain differs for different forecast-
ing contexts. In many cases maps or other geospatial visual-
izations could be valuable for this task. While not directly a
question in the CMAH, the task of tracking temporal trends is
also critical, as the forecasting process is iterative throughout
the winter. The continuous temporal data provided by snow-
pack models offer unique capabilities for tracking snowpack
evolution. Stratigraphy timeline visualizations (e.g. Fig. 3)
are well suited for tracking snowpack evolution at individ-
ual locations; however adding a temporal dimension to spa-
tial information creates additional complexity and requires
specific design considerations. A visualization showing the
temporal evolution of a snowpack summary would be partic-
ularly interesting. Examples of temporal change are shown in
Appendix A with examples of the interactive dashboard for
six different periods over the 2017–2018 winter.

At the visualization and interaction idiom level, following
established perceptual and cognitive principles ensures that
designs are effective at their intended tasks. The perception-
informed colour palettes (Tables 1 and 2) are examples of
applying these principles to draw attention to the features in
snow profiles that are deemed most important. The standard
grain colour palette may emphasize features without intend-
ing to do so and is likely ineffective for individuals with
colour blindness. The simplified colour palette in Table 2
could potentially be more relevant for forecasters, as it shifts
the purpose of colour from showing snowpack structure to-
wards identifying avalanche problems. Considering informa-
tion visualization principles listed in Sect. 2.4 could prevent
data from being misinterpreted.

At the algorithm level, interactive tools need to be effi-
cient in terms of time and memory performance. We tested
several versions of interactive dashboards with operational
forecasters. While these dashboards were not optimized for
web performance, they worked at reasonable speeds, with
maximum wait times of 2–3 s for filtering layers in large re-
gions with over 5000 profiles. Overplotting becomes an issue
for large datasets, where the total number of layers becomes
larger than the number of pixels on the screen, but can be
addressed by stratified sampling or implementing subpixel
rendering techniques to increase the apparent resolution of
the screen. The visualizations may also be less effective with
small datasets, where there are not enough layers for pat-
terns to emerge. This could be addressed by downscaling
the model to increase the number of modelled profiles. An
important consideration in dataset size is ensuring that the

Nat. Hazards Earth Syst. Sci., 20, 1557–1572, 2020 https://doi.org/10.5194/nhess-20-1557-2020



S. Horton et al.: Visualization principles for snowpack models 1569

model is configured to capture an appropriate amount of spa-
tial variability across the forecast region.

4.2 Steps towards operational implementation

While these designs in Sect. 3 are informed with well-
established visualization principles, user testing is critical to
validate their actual operational value. Various versions of
the interactive dashboard presented in Sect. 3.5 have been
tested with operational forecasters in Canada, resulting in
an agile development process where qualitative feedback has
provided new perspectives and identified issues with the de-
signs. An iterative process of feedback and redesign is criti-
cal for successful implementation of new visualization tools
into operational workflow and is much less risk-prone than
developing visualization tools in entirety. For example, the
US National Weather Service used an agile development pro-
cess to deploy their modern forecasting tool over several
years in the early 2000s (LeFebvre et al., 2003).

The visualization design principles presented for snow-
pack model data are equally relevant for visualizing tradi-
tional field data. An ideal implementation of snowpack mod-
els into forecasting workflows would be combining field data
and model data into a single interactive tool. A major moti-
vation for adding model data into forecasting workflows is
to reduce uncertainty about snowpack conditions. A visual-
ization tool with mixed data sources would allow forecasters
to assess the integrity of the model output as well as place
the field observations into a broader context with the contin-
uous spatial coverage of models. Many of the visualizations
presented in Sect. 3 could be modified for such comparison
tasks. Similarly, visualizing an ensemble of model datasets
(e.g. with different meteorological inputs or geometric con-
figurations) would provide insights about the confidence in
modelled data.

In addition to improved visualization, model develop-
ment and validation remain critical to improving the in-
tegrity of model output. This should continue in parallel with
user testing so forecasters can offer operational feedback
on model accuracy. Assimilating field data into snowpack
models could greatly improve their integrity (Winstral et al.,
2018); however model developers are faced with assimilation
challenges such as mismatched spatial scales between grid-
ded models and point field observations. Interactive visual-
izations of heterogenous field and model data have potential
for researchers and forecasters to gain a deeper understand-
ing of how they relate, and the knowledge gained through
such a process can translate to improved computational as-
similation methods.

5 Conclusions

We present visualization design principles that increase the
interpretability and relevance of snowpack model outputs.
These are two of the four major perceived issues with opera-
tional snowpack model tools identified by Morin et al. (2020)
(besides accessibility and integrity). The nested model for
visualization design (Munzner, 2009) provides a framework
for defining the domain of avalanche forecasting and the
necessary tasks that are needed to analyze data. Tasks re-
quired to assess avalanche hazard are described by applying
the widely adopted conceptual model of avalanche hazard
(Statham et al., 2018). From these tasks, we show how in-
formation visualization principles can be applied to design
visual representations of snowpack model data in ways that
leverage the human visual system to understand the complex
nature of the data. A key idea in these designs is shifting
from bottom-up scientific visualizations towards information
visualizations that address user needs.

A critical next step is implementing and testing these de-
signs in operational forecasting workflows. By addressing
issues with the interpretability and relevance of snowpack
model data, these designs will allow forecasters to learn the
capabilities and deficiencies of snowpack models in a mean-
ingful way. The same design principles should be consid-
ered when visualizing other types of avalanche and snow-
pack data, as the same domain situation and task abstractions
apply when forecasters analyze field observations. Interac-
tion idioms should play an important role in understanding
complex model data, as they allow users to perform custom
queries, test and validate hypotheses, and discover incon-
sistencies and anomalies. Interactions that compare model
data with observation data would be particularly powerful in
building trust in the models and addressing issues with their
integrity. This process was critical in the adoption and trust in
numeric weather predictions models by meteorologists (Ben-
jamin et al., 2019), and just like meteorologists, avalanche
forecasters could become active participants in model vali-
dation and improvement.
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Appendix A: Visualizations for different snowpack
conditions

Figure A1. Comparison of the interactive dashboard for different days over the course of the 2017–2018 winter. Each dashboard includes
visualizations of layer prevalence, a profile summary, and location in terrain for the same 1180 simulated profiles in Glacier National Park.
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