Articles | Volume 20, issue 4
https://doi.org/10.5194/nhess-20-1149-2020
https://doi.org/10.5194/nhess-20-1149-2020
Invited perspectives
 | 
29 Apr 2020
Invited perspectives |  | 29 Apr 2020

Invited perspectives: How machine learning will change flood risk and impact assessment

Dennis Wagenaar, Alex Curran, Mariano Balbi, Alok Bhardwaj, Robert Soden, Emir Hartato, Gizem Mestav Sarica, Laddaporn Ruangpan, Giuseppe Molinario, and David Lallemant

Related authors

Multi-variable flood damage modelling with limited data using supervised learning approaches
Dennis Wagenaar, Jurjen de Jong, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 17, 1683–1696, https://doi.org/10.5194/nhess-17-1683-2017,https://doi.org/10.5194/nhess-17-1683-2017, 2017
Short summary
Uncertainty in flood damage estimates and its potential effect on investment decisions
D. J. Wagenaar, K. M. de Bruijn, L. M. Bouwer, and H. de Moel
Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016,https://doi.org/10.5194/nhess-16-1-2016, 2016
Short summary

Related subject area

Hydrological Hazards
Floods in the Pyrenees: a global view through a regional database
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024,https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024,https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024,https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024,https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary

Cited articles

Aarthi, A. D. and Gnanappazham, L.: Comparison of Urban Growth Modeling Using Deep Belief and Neural Network Based Cellular Automata Model – A Case Study of Chennai Metropolitan Area, Tamil Nadu, India, Journal of Geographic Information System, 11, 1–16, 2019. 
Abrahart, R. J. and See, L. M.: Neural network modelling of non-linear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563–1579, https://doi.org/10.5194/hess-11-1563-2007, 2007. 
Alshehhi, R., Marpu, P. R., Woon, W., and Dalla Maru, M.: Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks, ISPRS J. Photogramm., 130, 139–149, 2017. 
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019. 
Ames, M. G.: Deconstructing the algorithmic sublime, Big Data & Society, 5, 1–4, https://doi.org/10.1177/2053951718779194, 2018. 
Short summary
This invited perspective paper addresses how machine learning may change flood risk and impact assessments. It goes through different modelling components and provides an analysis of how current assessments are done without machine learning, current applications of machine learning and potential future improvements. It is based on a 2-week-long intensive collaboration among experts from around the world during the Understanding Risk Field lab on urban flooding in June 2019.
Altmetrics
Final-revised paper
Preprint