Articles | Volume 18, issue 10
https://doi.org/10.5194/nhess-18-2769-2018
https://doi.org/10.5194/nhess-18-2769-2018
Review article
 | 
24 Oct 2018
Review article |  | 24 Oct 2018

Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?

Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson

Related authors

The importance of retention times in Natural Flood Management interventions
Elizabeth Follett, Keith Beven, Barry Hankin, David Mindham, and Nick Chappell
Proc. IAHS, 385, 197–201, https://doi.org/10.5194/piahs-385-197-2024,https://doi.org/10.5194/piahs-385-197-2024, 2024
Short summary
UPH Problem 20 – reducing uncertainty in model prediction: a model invalidation approach based on a Turing-like test
Keith Beven, Trevor Page, Paul Smith, Ann Kretzschmar, Barry Hankin, and Nick Chappell
Proc. IAHS, 385, 129–134, https://doi.org/10.5194/piahs-385-129-2024,https://doi.org/10.5194/piahs-385-129-2024, 2024
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022,https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021,https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025,https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025,https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary

Cited articles

Abbs, D. J.: A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation, Water Resour. Res., 35, 785–796, https://doi.org/10.1029/1998WR900013, 1999. 
Agumya, A. and Hunter, G. J.: Responding to the consequences of uncertainty in geographical data, Int. J. Geogr. Info. Sci., 16, 405–417, 2002. 
Almeida, S., Holcombe, E. A., Pianosi, F., and Wagener, T.: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change, Nat. Hazards Earth Syst. Sci., 17, 225–241, https://doi.org/10.5194/nhess-17-225-2017, 2017. 
Aspinall, W. and Blong, R.: Volcanic Risk Management, Chapter 70 in: The Encyclopedia of Volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S.,Rymer, H., and Stix, J, 2nd Edition, Academic Press ISBN 978-0-12-385938-9, 1215–1234, 2015. 
Aspinall, W. P. and Cooke, R. M.: Expert Elicitation and Judgement, in: Risk and Uncertainty assessment in Natural Hazards, edited by: Rougier, J. C., Sparks, R. S. J., and Hill, L., Cambridge University Press, Chapter 4, 64–99, 2013. 
Short summary
Part 1 of this paper discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and implications of applying the principles to natural hazard science are discussed.
Share
Altmetrics
Final-revised paper
Preprint