Articles | Volume 18, issue 8
https://doi.org/10.5194/nhess-18-2183-2018
https://doi.org/10.5194/nhess-18-2183-2018
Research article
 | 
16 Aug 2018
Research article |  | 16 Aug 2018

Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology

Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade

Related authors

The Parraguirre ice-rock avalanche 1987, semi-arid Andes, Chile – A holistic revision
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103,https://doi.org/10.5194/egusphere-2024-3103, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Exploring implications of input parameter uncertainties on GLOF modelling results using the state-of-the-art modelling code, r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819,https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022,https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021,https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021,https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Limit analysis of earthquake-induced landslides considering two strength envelopes
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024,https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary

Cited articles

Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Pol., 21, 35–49, https://doi.org/10.1016/j.envsci.2012.01.008, 2012a. 
Alfieri, L., Thielen, J., and Pappenberger, F.: Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland, J. Hydrol., 424–425, https://doi.org/10.1016/j.jhydrol.2011.12.038, 2012b. 
Althuwaynee, O. F., Pradhan, B., Park, H.-J., and Lee, J. H.: A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping, Catena, 114, 21–36, https://doi.org/10.1016/j.catena.2013.10.011, 2014a. 
Althuwaynee, O. F., Pradhan, B., Park, H.-J., and Lee, J. H.: A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping, Landslides, 11, 1063–1078, https://doi.org/10.1007/s10346-014-0466-0, 2014b. 
Alvioli, M. and Baum, R. L.: Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface, Environ. Modell. Softw., 81, 122–135, https://doi.org/10.1016/j.envsoft.2016.04.002, 2016. 
Download
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Altmetrics
Final-revised paper
Preprint