Articles | Volume 18, issue 7
https://doi.org/10.5194/nhess-18-1919-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-18-1919-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of a physically based model to forecast shallow landslides at a regional scale
Teresa Salvatici
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Veronica Tofani
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Guglielmo Rossi
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Michele D'Ambrosio
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Carlo Tacconi Stefanelli
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Elena Benedetta Masi
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Ascanio Rosi
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Veronica Pazzi
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Pietro Vannocci
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Miriana Petrolo
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Filippo Catani
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Sara Ratto
Centro funzionale, Regione Autonoma Valle d'Aosta, Aosta, 11100, Italy
Hervè Stevenin
Centro funzionale, Regione Autonoma Valle d'Aosta, Aosta, 11100, Italy
Nicola Casagli
Department of Earth Sciences, University of Florence, Florence, 50121,
Italy
Related authors
V. Bonora, I. Centauro, L. Fiorini, A. Conti, T. Salvatici, S. Calandra, R. Raffa, E. Intrieri, C. A. Garzonio, and G. Tucci
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 273–280, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-273-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-273-2023, 2023
William Frodella, Teresa Salvatici, Veronica Pazzi, Stefano Morelli, and Riccardo Fanti
Nat. Hazards Earth Syst. Sci., 17, 1779–1793, https://doi.org/10.5194/nhess-17-1779-2017, https://doi.org/10.5194/nhess-17-1779-2017, 2017
Short summary
Short summary
A local scale GB-InSAR system was implemented for mapping and monitoring slope landslide residual deformations and for early warning purposes in case of landslide reactivations, with the aim of assuring the safety of the valley inhabitants and the personnel involved in the post-event recovery phase. The here presented methodology could represent a useful contribution to a better understanding of landslide phenomena and decision making process during the post-emergency management activities.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, Globally Distributed Coseismic Landslide Dataset (GDCLD), which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-146, https://doi.org/10.5194/nhess-2024-146, 2024
Preprint under review for NHESS
Short summary
Short summary
On April 2, 2024, a Mw 7.4 earthquake hit Taiwan’s eastern coast, causing extensive landslides and damage. We used automated methods combining Earth Observation (EO) data with Artificial Intelligence (AI) to quickly inventory the landslides. This approach identified 7,090 landslides over 75 km2 within 3 hours of acquiring the EO imagery. The study highlights AI’s role in improving landslide detection and understanding earthquake-landslide interactions for better hazard mitigation.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023, https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
Short summary
Automatic snow depth data are a valuable source of information for hydrologists, but they also tend to be noisy. To maximize the value of these measurements for real-world applications, we developed an automatic procedure to differentiate snow cover from grass or bare ground data, as well as to detect random errors. This procedure can enhance snow data quality, thus providing more reliable data for snow models.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
V. Bonora, I. Centauro, L. Fiorini, A. Conti, T. Salvatici, S. Calandra, R. Raffa, E. Intrieri, C. A. Garzonio, and G. Tucci
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 273–280, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-273-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-273-2023, 2023
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary
Short summary
Snow cover has profound implications for worldwide water supply and security, but knowledge of its amount and distribution across the landscape is still elusive. We present IT-SNOW, a reanalysis comprising daily maps of snow amount and distribution across Italy for 11 snow seasons from September 2010 to August 2021. The reanalysis was validated using satellite images and snow measurements and will provide highly needed data to manage snow water resources in a warming climate.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
M. Crosetto, L. Solari, J. Balasis-Levinsen, L. Bateson, N. Casagli, M. Frei, A. Oyen, D. A. Moldestad, and M. Mróz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 141–146, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-141-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-141-2021, 2021
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
M. Crosetto, L. Solari, J. Balasis-Levinsen, N. Casagli, M. Frei, A. Oyen, and D. A. Moldestad
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 293–298, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-293-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-293-2020, 2020
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Samuele Segoni, Ascanio Rosi, Daniela Lagomarsino, Riccardo Fanti, and Nicola Casagli
Nat. Hazards Earth Syst. Sci., 18, 807–812, https://doi.org/10.5194/nhess-18-807-2018, https://doi.org/10.5194/nhess-18-807-2018, 2018
Short summary
Short summary
We improve the warning system (WS) used to forecast landslides in Emilia Romagna (Italy) by using averaged soil moisture estimates. We tested two approaches. The first (based on a soil moisture threshold under which the original WS is not used) is very simple, reduces false alarms and can be easily applied elsewhere. The second (integrating rainfall and soil moisture thresholds in the WS) is more complicated but reduces both false alarms and missed alarms.
William Frodella, Teresa Salvatici, Veronica Pazzi, Stefano Morelli, and Riccardo Fanti
Nat. Hazards Earth Syst. Sci., 17, 1779–1793, https://doi.org/10.5194/nhess-17-1779-2017, https://doi.org/10.5194/nhess-17-1779-2017, 2017
Short summary
Short summary
A local scale GB-InSAR system was implemented for mapping and monitoring slope landslide residual deformations and for early warning purposes in case of landslide reactivations, with the aim of assuring the safety of the valley inhabitants and the personnel involved in the post-event recovery phase. The here presented methodology could represent a useful contribution to a better understanding of landslide phenomena and decision making process during the post-emergency management activities.
Emanuele Intrieri, Federica Bardi, Riccardo Fanti, Giovanni Gigli, Francesco Fidolini, Nicola Casagli, Sandra Costanzo, Antonio Raffo, Giuseppe Di Massa, Giovanna Capparelli, and Pasquale Versace
Nat. Hazards Earth Syst. Sci., 17, 1713–1723, https://doi.org/10.5194/nhess-17-1713-2017, https://doi.org/10.5194/nhess-17-1713-2017, 2017
Short summary
Short summary
Landslides are a threat not only to people but also to important infrastructure, like highways. Nowadays there are several monitoring systems that are able to detect slope displacements in order to give prompt alarms. On the other hand, such instruments produce a huge amount of information, which is often not totally used and which can also represent an issue for data storage and transmission. In this paper we explain how we dealt with the large quantity of data provided by one of these tools.
Federica Ferrigno, Giovanni Gigli, Riccardo Fanti, Emanuele Intrieri, and Nicola Casagli
Nat. Hazards Earth Syst. Sci., 17, 845–860, https://doi.org/10.5194/nhess-17-845-2017, https://doi.org/10.5194/nhess-17-845-2017, 2017
Short summary
Short summary
This paper represents one of the main outcomes of a 3-year PhD program at the Earth Sciences Department of the University of Firenze (Centre of Competence of the Italian Civil Protection for geohazards). The main objectives of this paper were to investigate the landslide kinematics through the monitoring activity using GB-InSAR technology and to validate the stabilization works effectiveness using the coupled action of the GB-InSAR and the observational method (OM).
Guglielmo Rossi, Luca Tanteri, Veronica Tofani, Pietro Vannocci, Sandro Moretti, and Nicola Casagli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-46, https://doi.org/10.5194/nhess-2017-46, 2017
Preprint retracted
Short summary
Short summary
The Department of Earth Sciences of Florence (DST) has developed a new type of drone chassis that has been equipped with an optical camera to map landslides. The images acquired during the aerial drone surveys allowed to obtain a continuous 3D surface model of the studied area using a photogrammetric approach.The drone survey has proven to be an easier and more cost- and time-effective approach with respect to other techniques to mpa landslides.
D. Lagomarsino, S. Segoni, A. Rosi, G. Rossi, A. Battistini, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 15, 2413–2423, https://doi.org/10.5194/nhess-15-2413-2015, https://doi.org/10.5194/nhess-15-2413-2015, 2015
S. Segoni, A. Battistini, G. Rossi, A. Rosi, D. Lagomarsino, F. Catani, S. Moretti, and N. Casagli
Nat. Hazards Earth Syst. Sci., 15, 853–861, https://doi.org/10.5194/nhess-15-853-2015, https://doi.org/10.5194/nhess-15-853-2015, 2015
Short summary
Short summary
We monitor and forecast (with lead times up to 48h) regional-scale landslide hazard with an early warning system (EWS) implemented on a user-friendly WebGIS interface.
The EWS detects the most critical rainfall conditions using a mosaic of 25 site-specific thresholds. Moreover, when the rainfall paths recorded by the instruments are compared with the thresholds, the thresholds are shifted in the time axis and adjusted to all possible starting times until the most hazardous scenario is found.
S. Segoni, A. Rosi, G. Rossi, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 14, 2637–2648, https://doi.org/10.5194/nhess-14-2637-2014, https://doi.org/10.5194/nhess-14-2637-2014, 2014
F. Catani, D. Lagomarsino, S. Segoni, and V. Tofani
Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, https://doi.org/10.5194/nhess-13-2815-2013, 2013
P. Mercogliano, S. Segoni, G. Rossi, B. Sikorsky, V. Tofani, P. Schiano, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 13, 771–777, https://doi.org/10.5194/nhess-13-771-2013, https://doi.org/10.5194/nhess-13-771-2013, 2013
G. Martelloni, S. Segoni, D. Lagomarsino, R. Fanti, and F. Catani
Hydrol. Earth Syst. Sci., 17, 1229–1240, https://doi.org/10.5194/hess-17-1229-2013, https://doi.org/10.5194/hess-17-1229-2013, 2013
V. Tofani, S. Segoni, A. Agostini, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 13, 299–309, https://doi.org/10.5194/nhess-13-299-2013, https://doi.org/10.5194/nhess-13-299-2013, 2013
G. Rossi, F. Catani, L. Leoni, S. Segoni, and V. Tofani
Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, https://doi.org/10.5194/nhess-13-151-2013, 2013
Related subject area
Landslides and Debris Flows Hazards
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Limit analysis of earthquake-induced landslides considering two strength envelopes
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Size scaling of large landslides from incomplete inventories
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
A participatory approach to determine the use of road cut slope design guidelines in Nepal to lessen landslides
Unravelling Landslide Failure Mechanisms with Seismic Signal Analysis for Enhanced Pre-Survey Understanding
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Predicting the thickness of shallow landslides in Switzerland using machine learning
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Exploratory analysis of the annual risk to life from debris flows
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
A data-driven evaluation of post-fire landslide susceptibility
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025, https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025, https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing 8 years of data from Taiwan's Lushan, improving early warning and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024, https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
Short summary
This paper proposes a 3D limit analysis for seismic stability of soil slopes to address the influence of earthquakes on slope stabilities with nonlinear and linear criteria. Comparison results illustrate that the use of a linear envelope leads to the non-negligible overestimation of steep-slope stability, and this overestimation will be significant with increasing earthquakes. Earthquakes have a smaller influence on slope slip surfaces with a nonlinear envelope than those with a linear envelope.
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024, https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) sequentially buried by debris flow and inundated by dam-burst flood. The threshold of the impact pressures in Zones (II) and (III) where vulnerability is equal to 1 is 84 kPa and 116 kPa, respectively. Heavy damage occurs at an impact pressure greater than 50 kPa, while slight damage occurs below 30 kPa.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024, https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy-rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-156, https://doi.org/10.5194/nhess-2024-156, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We proposed an interated method with the combination of a physical vulnerability matric and a machine learning model to estimate the potential physical damage and associated economic loss caused by future debris flows based on the collected historical data on the Qinghai-Tibet Plateau regions.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Ellen B. Robson, Bhim Kumar Dahal, and David G. Toll
EGUsphere, https://doi.org/10.5194/egusphere-2024-1300, https://doi.org/10.5194/egusphere-2024-1300, 2024
Short summary
Short summary
Slopes excavated alongside roads in Nepal frequently fail (a landslide), resulting in substantial losses. Our participatory approach study involving road engineers aimed to assess the efficacy of the current slope design guidelines in Nepal. Our study revealed inconsistent guideline adherence due to their lack of user-friendliness and inadequate training. We recommend developing simpler, context-specific guidelines and comprehensive training to enhance resilience in Nepal's road network.
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1267, https://doi.org/10.5194/egusphere-2024-1267, 2024
Short summary
Short summary
The study on the Cilan Landslide (CL) demonstrates the utilization of seismic analysis results as preliminary data for geologists during field surveys. Spectrograms revealed that the 1st event of CL consisted of 4 sliding failures, accompanied by a gradual reduction in landslide volume. The 2nd and 3rd events were minor topplings and rockfalls. Then combining the seismological-based knowledge and field survey results, the temporal-spatial variation of landslide evolution is proposed.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-76, https://doi.org/10.5194/nhess-2024-76, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We developed a machine learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables including metrics on terrain, geomorphology, vegetation height, and lithology and used data from two Swiss field inventories to calibrate and test the models. The best performing machine learning model consistently reduced the mean average error by least 17 % compared to previously existing models.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Jonathan P. Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
EGUsphere, https://doi.org/10.5194/egusphere-2024-873, https://doi.org/10.5194/egusphere-2024-873, 2024
Short summary
Short summary
Landslides are a global issue that results in deaths and economic losses annually. However, it is not clear how storm severity relates to landslide severity across large regions. Here we develop a method to estimate the footprint of landslide area and compare this to meteorologic estimates of storm severity. We find that total storm strength does not clearly relate to landslide area. Rather, landslide area depends on soil wetness and smaller storm structures that can produce intense rainfall.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024, https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Short summary
Rainfall intensity–duration (ID) thresholds can aid in the prediction of natural hazards. Large-scale sediment disasters like landslides, debris flows, and flash floods happen frequently in the Himalayas because of their propensity for intense precipitation events. We provide a new framework that combines the Weather Research and Forecasting (WRF) model with a regionally distributed numerical model for debris flows to analyse and predict intense rainfall-induced landslides in the Himalayas.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024, https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2695, https://doi.org/10.5194/egusphere-2023-2695, 2023
Short summary
Short summary
Debris flows occur infrequently, with average recurrence intervals (ARIs) ranging from decades to millennia. Consequently, they pose an underappreciated hazard. We describe how to make a preliminary identification of debris flow-susceptible catchments, estimate threshold ARIs for debris flows which pose an unacceptable risk to life, and identify the "window of non-recognition" where debris flows are infrequent enough that their hazard is unrecognised, yet frequent enough to pose a risk to life.
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Cited articles
Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng.
Geol., 73, 247–265, https://doi.org/10.1016/j.enggeo.2004.01.007, 2004.
Amoozegar, A.: Compact constant head permeameter for measuring saturated
hydraulic conductivity of the vadose zone, Soil Sci. Soc. Am. J., 53,
1356–1361, 1989.
Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically- based and
distributed approach to analyse rainfall-triggered land- slides at watershed
scale, Geomorphology, 133, 3–4, 121–131, 2011.
Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and van Dam,
J. C.: Uncertainty in the determination of soil hydraulic parameters and its
influence on the performance of two hydrological models of different
complexity, Hydrol. Earth Syst. Sci., 14, 251–270,
https://doi.org/10.5194/hess-14-251-2010, 2010.
Baum, R., Savage, W., and Godt, J.: Trigrs: A FORTRAN program for transient
rainfall infiltration and grid-based regional slope – stability analysis,
Open-file Report, US Geol. Survey, 2002, USGS Open-File Report 02-424,
Reston, VA, available at: http://pubs.usgs.gov/of/2002/ofr-02-424/
(last access: 7 December 2016), 2002.
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow
landslides and debris flows in the USA, Landslides, 7, 259–272, 2010.
Bicocchi, G., D'Ambrosio, M., Rossi, G., Rosi, A., Tacconi Stefanelli, C.,
Segoni, S., Nocentini, M., Vannocci, P., Tofani, V., Casagli, N., and Catani,
F.: Geotechnical in situ measures to improve landslides forecasting models:
A case study in Tuscany (Central Italy), Landslides and Engineered Slopes,
Experience, Theory and Practice, 2, 419–424, 2016.
Bischetti, G. B., Chiaradia, E. A., and Epis, T.: Prove di trazione su radici
di esemplari di piante pratiarmati, Rapporto interno, Istituto di Idraulica
Agraria, Università degli Studi di Milano, 2009.
Burylo, M.: Relations entre les traits fonctionnels des espèces
végétales et leurs fonctions de protection contre l'erosion dans le
milieu marneux restaurés de montagne, Dissertation, University of
Grenoble, France, 2010.
Cannon, S. H., Boldt, E. M., Laber, J. L., Kean, J. W., and Staley, D. M.:
Rainfall intensity – duration thresholds for postfire debris – flow
emergency-response planning, Nat. Hazards, 59, 209–236, 2011.
Carrara, A., Crosta, G., and Frattini, P.: Comparing models of debris-flow
susceptibility in the alpine environment, Geomorphology 94, 353–378, 2008.
Catani, F., Segoni, S., and Falorni, G.: An empirical geomorphology-based
approach to the spatial prediction of soil thickness at catchment scale,
Water Resour. Res., 46, W05508, https://doi.org/10.1029/2008WR007450, 2010.
De Giusti, F., Dal Piaz, G. V., Massironi, M., and Schiavo, A.: Carta
geotettonica della Valle d'Aosta alla scala 1 : 150.000, Mem. Sci. Geol., 55,
129–149, 2004.
Del Soldato, M., Segoni, S., De Vita, P., Pazzi, V., Tofani, V., and Moretti,
S.: Thickness model of pyroclastic soils along mountain slopes of Campania
(southern Italy), in: Landslides and Engineered Slopes, Experience, Theory
and Practice, Associazione Geotecnica Italaian, Aversa, et al. (Eds.), Rome,
Italy, 797–804, 2016.
Dietrich, W. and Montgomery, D.: Shalstab: a digital terrain model for
mapping shallow landslide potential, NCASI (National Council of the Paper
Industry for Air and Stream Improvement) Technical Report, February, 1998.
Fanelli, G., Salciarini, D., and Tamagnini, C.: Reliable soil property maps
over large areas: a case study in Central Italy, Enviro. Eng. Geosci., 22,
37–52, https://doi.org/10.2113/gseegeosci.22.1.37, 2016.
Giadrossich, F., Preti, F., Guastini, E., and Vannocci, P.: Metodologie
sperimentali per l'esecuzione di prove di taglio diretto su terre rinforzate
con radici, Experimental methodologies for the direct shear tests on soils
reinforced by roots, Geologia tecnica & ambientale, 4, 5–12, 2010.
Gray, D. H. and Ohashi, H.: Mechanics of fiber reinforcement in sand, J.
Geotech. Eng., 109, 335–353, 1983.
Jiang, S. H., Li, D. Q., Zhang, L. M., Zhou, C. B.: Slope reliability analysis
considering spatially variable shear strength parameters using a
non-intrusive stochastic finite element method, Eng. Geol, 168, 120–128,
2013.
Lagomarsino, D., Segoni, S., Fanti, R., and Catani, F.: Updating and tuning
a regional scale landslide early warning system, Landslides, 10, 91–97,
2013.
Lu, N. and Godt, J. W.: Infinite-slope stability under steady unsaturated
seepage conditions, Water Resour. Res., 44, W11404,
https://doi.org/10.1029/2008WR006976, 2008.
Martelloni, G., Segoni, S., Fanti, R., and Catani, F.: Rainfall thresholds
for the forecasting of landslide occurrence at regional scale, Landslides,
9, 485–495, 2012.
Mercogliano, P., Segoni, S., Rossi, G., Sikorsky, B., Tofani, V., Schiano,
P., Catani, F., and Casagli, N.: Brief communication “A prototype forecasting
chain for rainfall induced shallow landslides”, Nat. Hazards Earth Syst.
Sci., 13, 771–777, https://doi.org/10.5194/nhess-13-771-2013, 2013.
Operstein, V. and Frydman, S.: The influence of vegetation on soil
strength, Ground Improv., 4, 81–89, 2000.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: Assessing terrain
stability in a gis using sinmap, in: “15th Annual GIS Conference, GIS 2001,
Vancouver, British Columbia, Canada, 2001.
Park, H. J., Lee, J. H., and Woo, I.: Assessment of rainfall-induced shallow
landslide susceptibility using a GIS-based probabilistic approach, Eng.
Geol., 161, 1–15, 2013.
Pollen, N., Simon, A., and Collison, A. J. C.: Advances in assessing the
mechanical and hydrologic effects of riparian vegetation on streambank
stability, in: Riparian Vegetation and Fluvial Geomorphology, Water Sci.
Appl. Ser., edited by: Bennett, S. and Simon, A., AGU, Washington, D. C.,
8, 125–139, 2004.
Rawls, W. J., Brakensiek, D. L., and Saxton, K. E.: Estimating soil water
properties, Transactions, ASAE, 25, 1316–1320 and p. 1328, 1982.
Ren, D., Fu, R., Leslie, L. M., Dickinson, R., and Xin, X.: A storm-triggered
landslide monitoring and prediction system: formulation and case study,
Earth Interact., 14, 1–24, 2010.
Rhynsburger, D.: Analytic delineation of Thiessen polygons, Geogr. Anal.,
5, 133–144, 1973.
Richards, L. A.: Capillary conduction of liquids through porous mediums, PhD
Thesis, Cornell University, New York, 1931.
Rosi, A., Segoni, S., Catani, F., and Casagli, N.: Statistical and envi-
ronmental analyses for the definition of a regional rainfall thresholds
system for landslide triggering in Tuscany (Italy), J. Geogr. Sci., 22,
617–629, 2012.
Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a
physically based slope stability simulator for HPC applications, Nat. Hazards
Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013,
2013.
Salciarini, D., Tamagnini, C., Conversini, P., and Rapinesi, S.: Spatially
distributed rainfall thresholds for the initiation of shallow landslides,
Nat. Hazards, 61, 229–245, https://doi.org/10.1007/s11069-011-9739-2, 2012.
Salciarini, D., Fanelli, G., and Tamagnini, C.: A probabilistic model for
rainfall-induced shallow landslide prediction at the regional scale,
Landslides, 14,1731–1746, https://doi.org/10.1007/s10346-017-0812-0, 2017.
Segoni, S., Leoni, L., Benedetti, A. I., Catani, F., Righini, G., Falorni,
G., Gabellani, S., Rudari, R., Silvestro, F., and Rebora, N.: Towards a
definition of a real-time forecasting network for rainfall induced shallow
landslides, Nat. Hazards Earth Syst. Sci., 9, 2119–2133,
https://doi.org/10.5194/nhess-9-2119-2009, 2009.
Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R.: Modelling the
probability of occurrence of shallow landslides and channelized debris flows
using GEOtop-FS, Hydrol. Process., 22, 532–545, 2008.
Tofani, V., Bicocchi, G., Rossi, G., Segoni, S., D'Ambrosio, M., Casagli,
N., and Catani, F.: Soil characterization for shallow landslides modeling: a
case study in the Northern Apennines (Central Italy), Landslides, 14,
755–770, https://doi.org/10.1007/s10346-017-0809-8, 2017.
Vergani, C., Bassanelli, C., Rossi, L., Chiaradia, E. A., and Bischetti, G.
B.: The effect of chestnut coppice forest abandon on slope stability: a case
study, Geophys. Res Abstr, 15, EGU2013-10151, 2013.
Vergani, C., Giadrossich, F., Schwarz, M., Buckley, P., Conedera, M.,
Pividori, M., Salbitano, F., Rauch, H. S., and Lovreglio, R.: Root
reinforcement dynamics of European coppice woodlands and their effect on
shallow landslides, a review, Earth Sci. Rev., 167, 88–102,
https://doi.org/10.1016/j.earscirev.2017.02.002, 2017.
Wagner, A. A.: The use of the Unified Soil Classification System by the
Bureau of Reclamation, Proc. 4th Intern. Conf. Soil Mech. Found. Eng.,
London, 1, 125, 1957.
Waldron, L. J. and Dakessian, S.: Soil reinforcement by roots: calculations
of increased soil shear resistance from root properties, Soil Sci., 132,
427–435, 1981.
Short summary
In this paper, we present the application of the physically based HIRESSS model (High Resolution Stability Simulator) to forecast the occurrence of shallow landslides in a portion of the Aosta Valley region (Italy). An in-depth study of the geotechnical and hydrological properties of the hillslopes controlling shallow landslides formation was conducted, in order to generate an input map of parameters. The main aim of this study is to set up a regional landslide early warning system.
In this paper, we present the application of the physically based HIRESSS model (High Resolution...
Altmetrics
Final-revised paper
Preprint