Articles | Volume 16, issue 12
https://doi.org/10.5194/nhess-16-2529-2016
https://doi.org/10.5194/nhess-16-2529-2016
Research article
 | 
30 Nov 2016
Research article |  | 30 Nov 2016

Analyzing the sensitivity of a flood risk assessment model towards its input data

Hanne Glas, Greet Deruyter, Philippe De Maeyer, Arpita Mandal, and Sherene James-Williamson

Related authors

Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023,https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
The changing role of the map in Western European society over the last 250 years
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 6, 49, https://doi.org/10.5194/ica-abs-6-49-2023,https://doi.org/10.5194/ica-abs-6-49-2023, 2023
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023,https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
AUTOMATED REGISTRATION OF BUILDING SCAN WITH BIM THROUGH DETECTION OF CONGRUENT CORNER POINTS
N. A. Sheik, G. Deruyter, and P. Veelaert
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W3-2022, 179–185, https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-179-2022,https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-179-2022, 2022
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022,https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025,https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025,https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Ready, Set & Go! An anticipatory action system against droughts
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024,https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024,https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Flood risk assessment through large-scale modeling under uncertainty
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024,https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary

Cited articles

Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: Flood risk assessment and associated uncertainty, Nat. Hazards Earth Syst. Sci., 4, 295–308, https://doi.org/10.5194/nhess-4-295-2004, 2004.
Apel, H., Merz, B., and Thieken, A. H.: Quantification of uncertainties in flood risk assessments, Int. J. River Basin Manage., 6, 149–162, https://doi.org/10.1080/15715124.2008.9635344, 2008.
Apel, H., Aronica, G. T., Kreibich, H., and Thiecken, A. H.: Flood risk analyses – How detailed do we need to be?, Nat Hazards, 49, 79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009.
Carrington, C. D. and Bolger, M. P.: Uncertainty and Risk Assessment, Hum. Ecol. Risk Assess., 4, 253–257, https://doi.org/10.1080/10807039891284325, 1998.
Collier, P., Kirchberger, M., and Söderbom, M.: The Cost of Road Infrastructure in Developing Countries, Oxford, Centre for the Study of African Economies, Department of Economics, 2013.
Download
Short summary
Adequate flood damage assessments can help to minimize damage costs in the SIDS. Data availability is, however, a major issue in these areas. In order to determine the minimal data necessary for an adequate result, a sensitivity analysis was performed on the input data. This has shown that population density, in combination with an average number of people per household, is a good parameter to determine building damage. Furthermore, a complete road dataset is visually indispensable.
Altmetrics
Final-revised paper
Preprint