Articles | Volume 25, issue 8
https://doi.org/10.5194/nhess-25-2845-2025
https://doi.org/10.5194/nhess-25-2845-2025
Research article
 | 
25 Aug 2025
Research article |  | 25 Aug 2025

BN-FLEMOΔ: a Bayesian-network-based flood loss estimation model for adaptation planning in Ho Chi Minh City, Vietnam

Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich

Related authors

Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025,https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary

Cited articles

Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Modell. Softw., 26, 1376–1388, 2011. a, b
Apel, H., Aronica, G., Kreibich, H., and Thieken, A.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, 2009. a
Ayyanar, M., Jeganathan, S., Parthasarathy, S., Jayaraman, V., and Lakshminarayanan, A. R.: Predicting the Cardiac Diseases using SelectKBest Method Equipped Light Gradient Boosting Machine, in: 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022, IEEE, 117–122, https://doi.org/10.1109/ICOEI53556.2022.9777224, 2022. a, b
Bangalore, M., Smith, A., and Veldkamp, T.: Exposure to floods, climate change, and poverty in Vietnam, Economics of Disasters and Climate Change, 3, 79–99, 2019. a
Bank, A. D.: Ho Chi Minh City adaptation to climate change, Summary Report, Asian Development Bank, Mandaluyong City, Philippines, ISBN 978-971-561-893-9, 2010. a, b
Download
Short summary
Ho Chi Minh City (HCMC) faces severe flood risks from climatic and socio-economic changes, requiring effective adaptation solutions. Flood loss estimation is crucial, but advanced probabilistic models accounting for key drivers and uncertainty are lacking. This study presents a probabilistic flood loss model with a feature selection paradigm for HCMC’s residential sector. Experiments using new survey data from flood-affected households demonstrate the model's superior performance.
Share
Altmetrics
Final-revised paper
Preprint