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Abstract. The risk of flooding is on the rise in delta cities,
such as Ho Chi Minh City (HCMC) in Vietnam, with pro-
jections indicating further increases due to climate change
and urbanization. Flood risk analyses, for which loss mod-
elling is a key component, play a crucial role in decisions
on flood risk management and urban development. Prob-
abilistic multi-variable loss models are increasingly being
used to improve loss estimation, as they describe loss pro-
cesses better and inherently provide a quantification of un-
certainties. However, such models are often based on input
variables that are determined by expert judgement. Thus,
we propose the first probabilistic multi-variable flood loss
model designed for residential buildings in delta cities such
as HCMC. The Bayesian-network-based flood loss estima-
tion model BN-FLEMO1 is built upon new building-level
empirical survey data. The model is developed with an auto-
matic machine-learning-based (ML-based) feature selection
framework and a systematic learning process to determine
the optimal structure of the Bayesian network. Based on a
method comparison, we demonstrate the following key ad-
vantages of BN-FLEMO1: (1) enhanced empirically based
description of flood loss processes leading to improved ac-
curacy in loss estimation; (2) provision of a probability dis-
tribution of losses and inherent quantification of modelling
uncertainty; and a (3) network structure that allows model
application even when data for one or more input variables
are missing, which is particularly valuable in data-scarce en-
vironments. We therefore expect that BN-FLEMO1 will sig-
nificantly improve risk analyses in HCMC and similar delta

cities and support decision-makers in developing sustainable
flood risk management strategies for these dynamic flood-
prone regions.

1 Introduction

The risk of flooding in delta cities such as Ho Chi Minh City
(HCMC) in Vietnam is severe due to complex, compound
flood situations and rapidly increasing exposure due to pop-
ulation growth, urban sprawl, and densification (Garschagen
and Romero-Lankao, 2015; Bangalore et al., 2019; IPCC,
2023). HCMC, located at the periphery of the Mekong
Delta, experiences pluvial, riverine, and coastal floods (Luu
et al., 2019; Vachaud et al., 2019; Nguyen et al., 2021;
UNDRR, 2022). The city has 2953 canals, predominantly
sourced from the Dong Nai, Saigon, and Vam Co rivers. El-
evated water levels in rivers and canals, particularly those
associated with the Mekong River basin, contribute signifi-
cantly to widespread inundation (Nguyen et al., 2023; Cao
et al., 2021). Furthermore, heavy and recurrent rainfall ex-
acerbates flooding in HCMC, particularly when it surpasses
the drainage system’s capacity (Luu et al., 2019). The intri-
cate interplay between topography and land subsidence also
significantly influences flood dynamics. Specifically, eleva-
tion gradients and surface roughness dictate the flow path-
ways of floodwaters, while land subsidence, driven by fac-
tors such as groundwater extraction and urban development,
worsens flooding by raising relative sea levels and altering
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drainage patterns (Bank, 2010). As a result, it is expected
that flood risk will continue to increase in HCMC due to cli-
mate change, e.g. increased precipitation and sea level rise, as
well as due to socio-economic changes (Bank, 2010; Hanson
et al., 2011; Hallegatte et al., 2013; Lasage et al., 2014; Cao
et al., 2021). To counteract this trend, sustainable adaptation
strategies need to be planned on the basis of comprehensive
risk analyses, including reliable flood loss modelling (Apel
et al., 2009; Poljansek et al., 2017).

In flood risk analyses, flood loss models play a pivotal
role in assessing the impact of hazards on exposed assets
such as buildings. Traditionally, deterministic stage–damage
functions (SDF-Dets) differentiated by building or land use
have been used, with water depth being the sole input vari-
able (Smith, 1994; Merz et al., 2010). However, despite their
limitations, SDF-Dets are still the most common method for
estimating flood-related financial losses and can still be con-
sidered state of the art (Scawthorn et al., 2006; Thieken et al.,
2008; Schoppa et al., 2020). Nonetheless, with many stud-
ies recognizing that damage processes are driven by various
factors, such as inundation duration, contamination of flood-
water, effectiveness of flood warnings, and precautionary
measures, multi-variable flood loss models have been devel-
oped (Wind et al., 1999; Penning-Rowsell and Green, 2000;
Thieken et al., 2005; De Moel et al., 2015; Gerl et al., 2016).
For instance, Thieken et al. (2008) proposed utilizing var-
ious loss-influencing variables, including building type and
precautionary measures in addition to inundation depth, as
predictors for a rule-based flood loss estimation model de-
signed for the private sector. Their research demonstrated
that such multi-variable models describe damage processes
better and thus outperform SDF-Dets, but the uncertainties
associated with loss estimation remained high (Thieken et
al., 2008; Elmer et al., 2010). In addition, the selection of
input variables for the loss models heavily relies on the lit-
erature review and expert judgement. Therefore, advanced,
data-based, and automated frameworks for feature selection
are crucial to enhance our understanding of complex flood
loss processes and to improve flood loss models.

Flood loss modelling is associated with high uncertainty,
which can be separated into aleatoric uncertainty that is not
reducible and epistemic uncertainty that can be reduced by
more knowledge. Aleatory uncertainty refers to stochastic
processes that are inherently variable in time, space, or pop-
ulations of objects, such as a tree trunk that may severely
damage one building and may spare the adjacent building
or localized high-flow velocity that may scour the founda-
tion of one building, leading to collapse, whereas a neigh-
bouring building may only be inundated (Merz and Thieken,
2009). Epistemic uncertainty results from incomplete knowl-
edge and is related to our inability to understand, measure,
and describe the damage processes; it is thus linked to disre-
garding factors influencing damage or the misjudgement of
their manifestations and effects (Merz and Thieken, 2009).
It is, therefore, crucial to quantify uncertainties in flood loss

estimates and hereby support informed and robust decision
making (de Brito and Evers, 2016; Pappenberger and Beven,
2006). To quantify this uncertainty, probabilistic loss mod-
els have been developed (e.g. Bayesian networks), which in-
herently provide quantitative information on uncertainty as-
sociated with the input data’s random heterogeneity and the
model structure (Schröter et al., 2014; Vogel et al., 2018; Pa-
protny et al., 2021). Bayesian networks can capture the joint
probability distribution of all input variables and model the
probabilistic dependency among the variables (Jensen and
Nielsen, 2007). As such, they can model damage processes
better and are applicable even when data for one or more
predictors are missing. Further, Bayesian networks offer the
option to incorporate prior information (e.g. from previous
studies or expert knowledge) and to communicate the model
functionality transparently through the graph structure (Vo-
gel et al., 2014). Nevertheless, probabilistic loss models are
also specific to the region and the type of flood for which
they were developed (Schröter et al., 2014; Wagenaar et al.,
2018; Mohor et al., 2021). The transfer of damage models in
time and space is critical and leads to significantly increased
uncertainty (Wagenaar et al., 2018; Mohor et al., 2021). This
is due to differences in hazard characteristics, e.g. between
slowly rising river floods in the lowlands and flash floods in
the mountains, as well as due to differences in vulnerability
between countries, e.g. due to differences in building com-
position. For example, Chinh et al. (2017) showed that under
the specific flooding conditions in the Mekong Delta, with
relatively well-adapted households, long flood duration, and
shallow water depth, water depth does not determine flood
damage as much as in other regions. Despite the high flood
risk in the Mekong Delta, not many studies have focused on
flood loss modelling in this region (Luu et al., 2019). Scus-
solini et al. (2017) and Couasnon et al. (2022) used determin-
istic depth–damage curves to calculate flood risk. Wu et al.
(2021) assessed flood risk in HCMC using a nature–human
framework, which integrated social and environmental fac-
tors to develop flood hazard and vulnerability maps.

The objective of our study is to fill this gap and tackle
some of the challenges in developing the first probabilistic
flood loss model tailored to HCMC and to similar delta cities.
Our framework shall not only enable the quantification of
model uncertainty through Bayesian inference, essential for
decision-making, but also incorporate an automatic feature
selection workflow. The latter aids in automatically identify-
ing the key factors determining flood loss in HCMC.

The remainder of the paper is organized as follows. Sec-
tion 2.1 outlines the survey data utilized for model develop-
ment. The method is detailed in Sect. 2.2. Section 3 presents
the results obtained along with a discussion. Finally, Sect. 4
summarizes the conclusions drawn from the study.
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2 Data and method

2.1 Household survey data

The empirical data used in the development of the flood loss
model were collected from a questionnaire-based structured
household survey of 1000 households (Vishwanath Harish
et al., 2023). The individuals in the households were inter-
viewed face-to-face. The prerequisite for the households to
participate was that they must have experienced flood dam-
age in the last 10 years before 2020, i.e. starting in 2010. In
addition to information pertaining to flood hazard and im-
pacts, the questions covered a variety of topics including
household composition, building characteristics, implemen-
tation of private precautionary measures, socio-economic as-
pects, previous flood experience, and their perception of
changing flood risk and potential adaptation options. Based
on discussions with flood risk experts from HCMC, the sur-
vey areas were chosen such that they spread over different
socio-economic profiles and flood types. The spatial dis-
tribution of the survey can be found in Appendix A (see
Fig. A1). However, the household selection within the areas
was made at random. Households were asked to report on
two flood events (i.e. the most recent event and the most se-
rious event in terms of impact within the last 10 years). Out
of 1000 households, 530 provided information on both types
of events, while the remaining households reported only one
event (in these cases, the more recent event was also the most
serious). This resulted in 1530 records of flood loss data.
Among these records, 467 contained missing values in one
or more of the flood loss predictors (e.g. water depth, inun-
dation duration) or in the target variable (rloss). To ensure
the integrity of the analysis, we adopted a complete-case ap-
proach by excluding all records with missing values. Subse-
quently, 16 loss-influencing variables were selected based on
an extensive literature review and consultations with domain
experts in Ho Chi Minh City (Table 1). As shown in Table 1,
these 16 variables cover a wide range of loss-influencing
variables, including hydrological factors, socio-economic in-
dicators, and building characteristics. As for the target vari-
able, the relative loss to the building is computed as the ratio
of absolute monetary building damage to the building’s re-
construction cost. Further details on these 16 variables can
be found in Appendix A (see Table A1).

2.2 Development of the Bayesian-network-based flood
loss estimation model

Our proposed framework consists of two phases: (1) an au-
tomatic feature selection process to identify the most impor-
tant variables that determine flood loss and (2) development
of the Bayesian-network-based flood loss estimation model
(BN-FLEMO1) (see Fig. 1). In the following sections, we
elaborate on each of these phases.

2.2.1 Automatic feature selection using machine
learning

The first step of flood loss model development is the identi-
fication of the most important factors influencing flood loss.
Traditionally, this has been done relying on expert judgement
or the existing literature. In recent years, there has been a
shift towards data-driven approaches to identify significant
predictors from empirical datasets (Vishwanath Harish et al.,
2023; Schoppa et al., 2020; Vogel et al., 2018). Such data-
driven approaches provide users with insights into the im-
portance of loss-influencing variables. We propose an auto-
matic feature selection framework that employs the Selec-
tKBest technique to assign scores to each predictor based on
their F statistics (Ayyanar et al., 2022). F statistics assesses
the overall significance of the relationship between indepen-
dent variables and the dependent target variable and are cal-
culated as the ratio of two variances, one capturing the ex-
plained variability by the model and the other representing
unexplained variability (Fisher, 1970). A high F value sig-
nifies a strong relationship between predictors and the out-
come, indicating improved model performance. Conversely,
a low F value suggests that the model may not substantially
enhance predictions (Desyani et al., 2020). SelectKBest then
selects the top k predictors with the highest scores for further
analysis. Although SelectKBest contributes to improving the
predictive performance of models, there are some disadvan-
tages (Ayyanar et al., 2022).

Firstly, the method investigates each predictor variable in-
dividually. Secondly, the user must define the parameter k
prior to feature selection. As depicted in Fig. 1, to address
the former challenge, we analyse the predictive performance
of selected k predictors using standard multi-variable linear
regression (MLR) in terms of the mean squared error (MSE)
(Hocking, 1976). To address the latter challenge, we cre-
ate an automatic framework using the grid search technique.
This technique serves as a hyperparameter optimizer and
searches within a specified range to determine the optimal
value of a hyperparameter (Liashchynskyi and Liashchyn-
skyi, 2019). In our study, we explore a range of values for k
from 1 to D, where D represents the original number of fea-
tures (i.e. the 16 features described in Table 1). By leveraging
the proposed automated feature selection workflow, we iden-
tify the optimal subset of features to use as input variables for
the loss model and gain knowledge about the loss processes
in terms of the underlying relationship between the drivers
and the relative loss.

2.2.2 Systematic learning process to determine the
structure of the Bayesian network

Bayesian networks (BNs) are graphical models that describe
the probabilistic dependencies between a set of random vari-
ables as a directed acyclic graph (Aguilera et al., 2011; Na-
garajan et al., 2013). The graph consists of nodes represent-
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Table 1. The 16 potential flood-loss-influencing variables along with the target variable (rloss).

Categories Explanatory variables Type, (range), unit Mean, median

Hydrologic aspects
Water depth (wd) Continuous, (1–220), cm 28.78, 20.00
Inundation duration (dur) Continuous, (0.5–600), hours 10.86, 3.00

Contamination
Sewage (sew)

Binary, (yes: 1, no: 0), –
–, –

Garbage (gar) –, –

Warning Warning (warn) Binary, (yes: 1, no: 0), – –, –

Emergency measures
Pumped-down water (pdw)

Binary, (yes: 1, no: 0), –
–, –

Temporary small-scale measures (temp) –, –

Private precautionary Acquire/purchase water barriers (w_bar) –, –
measures and flood Acquire/purchase pumping equipment (equ) Binary, (yes: 1, no: 0), – –, –
experience Elevate the house (elev) –, –

Flood experience – floods per year in the last 10 years (fe) Discrete, (0–4), – –, 5.00

Socio-economic/ Building area (barea) Continuous, (12–1000), m2 77.74, 60.00
building characteristics Number of persons in the household (hh_size) Continuous, (1–20), – 4.90, 4.00

Years since the last renovation (renov) Continuous, (0–10), years 7.55, 3.00
Income (inc) Discrete, (1–9), million VND per month –, 3.00
Education (edu) Binary, (yes: 1, no: 0), – –, –

Response variable

Losses Relative loss to building (rloss) Continuous, (0–1), – 0.16, 0.02

Figure 1. The proposed workflow to develop the flood loss estimation model. In the systematic structure learning procedure, SL1 and SL2
refer to the first and the second structure learning algorithms utilized.

ing random variables and arcs indicating conditional depen-
dencies between the variables. Analogously, network vari-
ables that are not connected are considered statistically inde-
pendent. BNs can be used for both continuous and discrete
variables, but in practice, BNs assume that all random vari-
ables are discrete (Chen et al., 2017). Thus, in this study,
we design a discrete BN model to estimate flood loss. Thus,
we discretize the continuous model variables using equal-
frequency binning. We performed a sensitivity analysis re-
garding the discretization of relative loss to determine how
to effectively capture the variability in flood loss. This analy-
sis specifically investigated the effects of discretizing relative

loss into three, five, and seven bins. Our findings indicated
that the alterations in the final BN structure were not substan-
tial. Consequently, we opted for five bins for all continuous
variables including relative loss, as they allow for a nuanced
representation of patterns within the dataset (see Fig. A2).
Using factorization, the global joint probability distribution
(P(X)=P(X1,X2, . . .,Xk)) of a random variable X can be
written as

P (X)=
k∏
i=1
P (Xi | pa(Xi)) , (1)
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where k denotes the number of input features for the BN.
Xi and pa(Xi) represent the ith node and its corresponding
parental node/nodes, respectively (i.e. the set of nodes point-
ing towards Xi) (Aguilera et al., 2011).

To build the BN-FLEMO1 structure, we utilize a data-
driven learning approach in which 500 bootstrap samples
are drawn from the data, and various structure learning algo-
rithms are applied to generate potential Bayesian networks.
These algorithms fall into three primary categories: score-
based, constraint-based, and hybrid methods. In our study,
we explore widely used structure learning approaches from
each category (Lüdtke et al., 2019; Schoppa et al., 2020).
Specifically, we employ hill-climbing (hc) (Russell, 2010)
as a score-based approach, incremental association (iamb)
(Tsamardinos et al., 2003) as a constraint-based approach,
and max–min hill climbing (mmhc) (Tsamardinos et al.,
2006) along with general two-phase restricted maximization
(rs2max) (Friedman et al., 2013) as hybrid approaches. Ap-
plying each method to the bootstrap samples results in 500
independent networks per algorithm. These realizations are
then averaged, and arcs that appear frequently based on a
quantitative selection criterion are retained in the final struc-
ture. The quantitative evaluation using the mean absolute er-
ror (MAE), root-mean-squared error (RMSE), and mean con-
tinuous ranked probability score (mean CRPS) indicates that
the structure learned via the hill-climbing algorithm performs
favourably compared to the other approaches (see Fig. A3).
A qualitative assessment further supports this finding, show-
ing that the hc-derived structure more accurately represents
the underlying flood damage process (see Fig. A4). There-
fore, we selected the hc algorithm to construct the final BN-
FLEMO1 structure. In addition to the network structure, the
complete specification of the Bayesian network requires es-
timating the conditional probability tables (CPTs) for each
node. For this purpose, we apply Bayesian parameter estima-
tion using the Bayesian Dirichlet equivalent uniform (BDeu)
score with an exact inference algorithm implemented in the
bnlearn R package (Scutari and Denis, 2014). This method is
used on the full empirical survey dataset or on relevant sub-
sets during cross-validation to ensure robust parameter learn-
ing.

2.3 Model validation

2.3.1 Model performance comparison

To assess the predictive efficacy of BN-FLEMO1, we com-
pare its performance with other flood loss modelling ap-
proaches. To make a fair model comparison, we compare our
proposed probabilistic model with other probabilistic mod-
els, with the only exception being a deterministic stage dam-
age function (SDF-Det), as this represents the state of the art
(Merz et al., 2010; Scussolini et al., 2017; Couasnon et al.,
2022). The uni- and multi-variable machine-learning-based
(ML-based) approaches include the following:

– Stage damage functions (SDFs). The most commonly
used flood loss modelling methods are deterministic
SDFs, which are univariate techniques relying on wa-
ter depth as a single flood loss driver (Merz et al., 2010;
Scussolini et al., 2017; Couasnon et al., 2022). Various
studies have shown that the square root function pro-
vides more accurate estimates compared to linear re-
lationships. Additionally, we use a probabilistic SDF
(SDF-Prob) that utilizes probabilistic modelling tech-
niques, such as Monte Carlo sampling, to estimate the
probability distribution of flood damage (Schoppa et al.,
2020). We formulate an SDF-Det that uses water depth
as its independent variable as

y =
√

wd × c+α, (2)

where wd ∈ RN × 1 represents the measured water
depth, and c is an unknown coefficient. y ∈ RN × 1 ex-
presses the relative loss values, and α denotes the in-
tercept. To transform SDF-Det into a probabilistic ver-
sion, we must define a distribution function that can ap-
proximate the distribution of our target variable. Given
that our target variable (relative loss) falls within the
range of 0 to 1 and exhibits a bimodal distribution with
peaks at 0 (no loss) and 1 (total loss), we opt for a zero-
and-one-inflated beta (BEINF) distribution to represent
the target variable. The cumulative distribution function
(CDF) of a zero-and-one-inflated beta distribution can
then be expressed as

BEINF(y|λ,γ,µ,φ)= λFBernoulli(y;γ )

+ (1− λ)Fbeta(y;µ,φ)logit(µ)=
√

wd × c+α, (3)

where the CDF function FBernoulli represents a Bernoulli
random variable with the parameter γ , while Fbeta rep-
resents a beta distribution with parameters µ (loca-
tion) and φ (precision). In Eq. (3), the values of λ,
µ, and γ are constrained to the range [0,1], while φ
must be greater than zero (Ospina and Ferrari, 2010).
In this model formulation, µ varies for each household,
whereas the other distribution parameters (λ, φ, γ ) re-
main constant across all households.

– Random forest (RF). RF is a powerful multi-variable
ML tool in flood loss modelling due to its adeptness at
handling intricate datasets and diverse predictor types
effectively. This method is particularly advantageous
for flood loss modelling tasks owing to its ability to
accommodate both numerical and categorical variables
that are commonly encountered in flood risk assessment
data (Sieg et al., 2017). In flood loss modelling with
RF, an ensemble of decision trees is constructed, with
each tree trained on a random subset of the dataset.
These decision trees individually predict flood losses
based on various input variables. By amalgamating the

https://doi.org/10.5194/nhess-25-2845-2025 Nat. Hazards Earth Syst. Sci., 25, 2845–2861, 2025



2850 K. R. Shahi et al.: BN-FLEMO1: a BN-based flood loss estimation model in HCMC, Vietnam

predictions of multiple trees, RF can capture the un-
derlying relationships between predictors and the rel-
ative losses, thereby yielding accurate and dependable
estimates. Notably, RF excels at handling nonlinear re-
lationships and interactions between predictors, which
is indispensable in flood risk assessment (Merz et al.,
2013). Nonetheless, RF can be biased toward predictors
with many possible splits. To address this issue, the con-
ditional inference tree (CIT) algorithm based on permu-
tation tests was developed, wherein RF can obtain con-
ditional response distributions instead of mean values
using quantile regression forest methodology (Hothorn
et al., 2006). Recent studies have increasingly employed
the conditional inference tree algorithm or a combina-
tion of conditional inference trees and quantile regres-
sion forests due to their advantages over conventional
classification and regression tree algorithms (Sieg et al.,
2017). The parameters controlling the RF model include
the number of trees (ntree) and the number of randomly
sampled predictors during partitioning (mtry). In our ex-
periment we follow the common parameter values, typ-
ically set to ntree= 1000 and mtry= 3 (Schoppa et al.,
2020). While BN-FLEMO1 can update the parameters
of the network (the conditional probability distributions
associated with each node) using new data, RF requires
complete retraining with new data.

– Bayesian regression (BR). BR is a statistical modelling
technique that extends traditional linear regression by
incorporating Bayesian principles. In BR, instead of es-
timating fixed model parameters, we treat them as ran-
dom variables with probability distributions. This al-
lows us to quantify uncertainty in our estimates and
make probabilistic predictions (Gelman et al., 1995).
Thus, within flood loss modelling, we can adapt the BR
concept to model relative loss using a zero-and-one-
inflated beta distribution (Schoppa et al., 2020). This
way we ensure that the model is capable of reproducing
the extreme cases of no damage or total damage within
our dataset. Although BR offers flexibility in modelling
complex relationships and handling various types of un-
certainties, making it a powerful tool in data analysis
and prediction tasks, it does not provide a graphical rep-
resentation to assist experts in analysing the loss pro-
cesses. Additionally, BR models the conditional dis-
tribution of the relative loss given the predictor vari-
ables, while BN computes the joint probability distri-
bution over sets of variables using conditional probabil-
ities (Mohor et al., 2021). In addition, unlike BN, which
can handle missing input parameters, BR requires com-
plete data and is prone to issues if missing inputs are not
properly addressed.

For the probabilistic approaches SDF-Prob, BR, and BN-
FLEMO1, we calculate the average of the distribution of pre-
dicted values to calculate the evaluation metrics.

The proposed feature selection workflow was imple-
mented using Python 3.10 with the Scikit-learn 1.2.2 library.
BN-FLEMO1 was implemented in R 4.2.2 using the Bn-
learn 4.8.1 package. Notably, to ensure consistency across
different components of the proposed framework, we used
the same set of training and testing samples for each phase.

2.3.2 Evaluation metrics

To assess the performance of BN-FLEMO1 in comparison
with other flood loss modelling approaches, we employ 10-
fold cross-validation. This method involves iteratively train-
ing the model on 9 subsets of the data and testing it on the
remaining 10th subset. This process is repeated 10 times to
ensure that all data points are used for both training and test-
ing. Then we report the average over these 10 runs in terms
of the following metrics:

– Root-mean-squared error (RMSE). RMSE is a com-
monly used metric in regression analysis to measure
the average magnitude of the errors between predicted
and observed values. RMSE is calculated by taking the
square root of the average of the squared differences be-
tween predicted and observed values. It provides a mea-
sure of the model’s accuracy, with lower RMSE values
indicating better performance.

– Mean absolute error (MAE). MAE is the average of the
absolute difference between the predicted and observed
values (residuals). MAE can be written as

1
N
||y− ŷ||1. (4)

– Mean bias error (MBE). MBE quantifies the average
difference between predicted values and actual observa-
tions in a dataset. It measures the tendency of a model to
consistently overestimate or underestimate the true val-
ues. MBE is calculated by taking the average of the dif-
ferences between predicted and observed values, where
positive values indicate an overall overestimation and
negative values indicate an overall underestimation.

– Continuous ranked probability score (CRPS). CRPS is
a metric used to evaluate probabilistic models by as-
sessing the accuracy and reliability of their predictions.
Unlike traditional point estimates, which provide only
a single value, probabilistic models generate entire dis-
tributions of possible outcomes. The CRPS compares
these predicted distributions with observed outcomes.
By considering both the accuracy of the predicted val-
ues and the uncertainty represented by the distribution
for each observation (Gneiting and Raftery, 2007), we
can formulate CRPS as follows:

CRPSi(Fi,yi)=
∞∫
−∞

(
Fi(x)− 1

{
x > yi

})2dx, (5)
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where Fi(x) is the empirical CDF of the predictive dis-
tribution fi(x), and 1{.} is the indicator function, which
represents conditions or events in probability theory. We
compute CRPS using an empirical CDF estimated from
samples of fi(x). The CRPS ranges between 0 and 1,
with the optimum at 0. Additionally, to facilitate com-
parison with other evaluation metrics, we computed the
mean CRPS value in each cross-validation fold.

3 Results and discussion

3.1 Important variables for flood loss modelling

Our proposed feature selection workflow automatically iden-
tifies the relevant features for estimating flood losses (see
Fig. 2). Figure 2a illustrates that the optimal number of fea-
tures to obtain the lowest MSE value (≈ 0.0719) is seven.
The top seven features with the highest scores are water depth
(wd), flood experience (fe), building elevation (elev), sewage
contamination (sew), years since last renovation (renov),
warning (warn), and inundation duration (dur) (see Fig. 2b).

Water depth is found to be the most important driver for
flood loss, which is in agreement with comprehensive re-
views and state-of-the-art flood loss models (Merz et al.,
2013; Chinh et al., 2017; Rözer et al., 2019; Merz et al.,
2010). The second flood intensity parameter, i.e. inundation
duration, has been identified as an important predictor of
flood loss as well, although it is only in the seventh position
with a score of ≈ 1.72.

The second important driver is flood experience. Flood ex-
perience has been found to cause households to implement
precautionary measures such as elevating the building (Vish-
wanath Harish et al., 2023; Kreibich et al., 2005), which is
the next-most-important driver. It has been shown before that
it leads to flood loss reduction (Chinh et al., 2017). As an-
other important factor, we can refer to sewage contamina-
tion. In several cases, contamination of the flood water enter-
ing the buildings was found to increase the damage (Rözer
et al., 2019; Thieken et al., 2005; Penning-Rowsell et al.,
2014). Furthermore, the number of years since the building
was last renovated was also identified as an important factor.
This finding also aligns with the fact that the building qual-
ity degenerates over time; recently renovated buildings are of
better quality and were found to be more resistant to flood-
ing (Chinh et al., 2017). Warning (i.e. whether the household
received a warning before the flood event) is also an impor-
tant feature, which is a prerequisite for the implementation of
emergency measures, such as deploying sandbags and water
barriers that reduce flood damage to buildings.

3.2 BN-FLEMO1

The trained Bayesian network model using the seven features
identified elucidates the interactions across these features and
their relationships to relative loss to residential buildings (see

Fig. 3). The direction of arrows in BN-FLEMO1 indicates
an association between two variables but does not necessar-
ily imply causality (Lüdtke et al., 2019; Sairam et al., 2019).
In BN-FLEMO1, the variable rloss has direct connections
with water depth (wd), flood experience (fe), and years since
last renovation (renov), which form the Markov blanket of
rloss. In cases where the Markov blanket is fully observed,
the other independent variables can be ignored. Thus, wd,
fe, and renov are the most important predictors, which is
aligned with flood loss dynamics and prior research findings
(Chinh et al., 2017). If observations of wd, fe, and renov are
missing, observations related to variables from outside the
Markov blanket provide knowledge that helps to improve the
prediction of rloss. This is most likely the case in relation to
“renov”. Since it is difficult to know when the building was
last renovated, but it is possible to observe whether the build-
ing is elevated (for instance by Google Street View; Pelizari
et al., 2021), the application of the loss model is improved
in practice by the use of elev. Elevating the building is one
of the most common flood precautionary measures among
households in HCMC (Vishwanath Harish et al., 2023). In-
terestingly, we also observe some differences compared to a
somewhat similar study by Chinh et al. (2017) in Can Tho
City, Mekong Delta; they found a significantly higher impor-
tance of flood duration. These differences in flood processes
and important input parameters for damage models confirm
the need for region- and flood-type-specific loss models (Wa-
genaar et al., 2018; Mohor et al., 2021). While applying the
BN-FLEMO1 (see Fig. A5), known values are set to the pre-
dictor nodes, which updates the marginal probability distri-
bution of the response variable conditioned on the predictors.
When one or more values of nodes are unknown, the relative
loss is conditioned on the values of the other known vari-
ables. Hence, the Bayesian network provides loss estimates
even when some predictors are missing (Fig. A5b). Fig-
ure A5 depicts the BN-FLEMO1 structure and parameters
inferred from the survey data. In Fig. A5a, the marginal prob-
ability distributions of the fitted network are presented. Fur-
thermore, Fig. A5b showcases an example prediction gen-
erated by BN-FLEMO1, utilizing three predictor variables
assumed to be known (wd, fe, elev). The marginal probabil-
ity distribution of the relative loss is updated conditionally
based on the evidence in the nodes corresponding to these
three predictors. The equal-frequency discretization of rela-
tive loss resulted in narrow bins for very low (less than 17 %)
losses such that these losses are precisely captured. This dis-
cretization reflects the damage processes in HCMC, which
are characterized by frequent nuisance flooding resulting in
rather low losses (Scheiber et al., 2023).

Furthermore, BN-FLEMO1 can provide information on
the uncertainty involved in the flood loss estimation. Fig-
ure 4 illustrates predictive distributions for building loss of
three randomly selected buildings. Vertical orange and green
lines represent the actual observed relative loss and the av-
erage of the predictive distribution, respectively. However, it
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Figure 2. The proposed feature selection workflow (a) identifies the optimal number of features (k) and (b) provides the corresponding
scores to each feature. The results are based on the mean of 10-fold cross-validation.

Figure 3. The final structure of BN-FLEMO1. The green nodes
represent independent variables, including water depth (wd), flood
experience (fe), years since the last renovation (renov), building ele-
vation (elev), sewage contamination (sew), warning (warn), and in-
undation duration (dur). The pink node presents the target variable,
relative loss to residential buildings (rloss).

is evident that prediction accuracy and sharpness are greater
for buildings with lower loss magnitudes (i.e. sample IDs 133
and 100) compared to the ones with more severe losses (i.e.
sample ID 800). Such an observation is due to the scarcity
of extreme losses in the dataset. As shown in Fig. 4, BN-
FLEMO1 can model the lower relative losses with less un-
certainty, while in severe cases (i.e. complete damage= 1)
the model has higher uncertainty.

In addition, to evaluate the performance of BN-FLEMO1
under the influence of different sets of input features, we de-

signed an experiment where input features were incremen-
tally added following the order determined by the feature se-
lection process. As shown in Fig. A6, using only the two ini-
tial loss-influencing variables (set 2), namely wd and fe, re-
sults in poor performance in terms of RMSE values. In con-
trast, set 7, which includes seven identified features (wd, fe,
elev, sew, renov, warn, dur), achieves the best performance
compared to other configurations. We also observe that in-
creasing the number of independent variables beyond this
point does not improve predictive performance, highlighting
the importance of the feature selection phase prior to the es-
timation process.

3.3 Model validation

The quantitative evaluation of the model comparison, i.e.
evaluation metrics, is illustrated in Fig. 5. Our proposed
BN-FLEMO1 performs better than the other ML-based ap-
proaches across nearly all error metrics, e.g. achieving the
lowest absolute MAE value of 0.18± 0.01 and the lowest
mean CRPS of 0.11± 0.01. Results in terms of MBE, shown
in Fig. 5, reveal that BN-FLEMO1 has a relatively low
bias compared to other ML-based approaches. BR and both
stage–damage functions show a slightly lower bias, while
RF tends to strongly overestimate the target value. In gen-
eral, BR, SDF-Prob, and SDF-Det performed similarly well
across all error metrics, whereas RF demonstrates the weak-
est performance of all approaches across all error metrics.
Despite partly marginal differences between BN-FLEMO1
and BR, SDF-Prob, and SDF-Det, the advantages of our
model are its applicability even with some missing input vari-
ables, the inherent quantification of predictive uncertainty,
and the graphical representation of the interaction between
different flood-loss-influencing factors and relative loss, of-
fering insights into loss processes.
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Figure 4. Samples of predictive densities of relative loss generated by BN-FLEMO1 for three randomly selected buildings (identified by ID
sample). The observed loss is represented by the orange lines, and green lines showcase the average of the predicted distribution generated
by BN-FLEMO1. In this visualization, the x axes represent the relative loss, while the y axes display the density.

Figure 5. The quantitative evaluation of the predictive performance of ML-based approaches including the Bayesian network flood loss
estimation model (BN-FLEMO1), Bayesian regression (BR), random forest (RF), the probabilistic stage damage function (SDF-Prob), and
the deterministic stage damage function (SDF-Det). The x axes display the ML-based approaches deployed, while the y axes illustrate their
respective error values based on various evaluation metrics.

4 Conclusion

The probabilistic flood loss estimation model BN-FLEMO1
presented here is based on a large dataset (n= 1000) of newly
acquired empirical building-level survey data from HCMC.

To construct this model, we introduce an automatic feature
selection framework for the identification of key drivers of
loss, complemented by a systematic learning approach for
optimizing the Bayesian network structure to accurately cap-
ture loss processes. Notably, BN-FLEMO1 offers the abil-
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ity to quantify model uncertainty by providing a probabil-
ity distribution of losses, making it robust even in scenar-
ios where data for certain predictors are missing. Moreover,
the model incorporates predictors related to precautionary
measures (e.g. building elevation), enabling the evaluation of
adaptation strategies. Since Bayesian networks provide struc-
tured updating mechanisms with new data, BN-FLEMO1 is
adaptable to changing conditions and transferable to other,
similar delta cities. Consequently, it is a valuable tool for sup-
porting decision-makers in developing adaptation strategies
in data-scarce and rapidly evolving environments like delta
cities. To this end, BN-FLEMO1 is provided to flood risk
experts for application via the DECIDER decision support
tool (DST, https://plan-risk-consult.de/decider/, last access:
31 October 2023), complemented by descriptions and data.
To ease in model application, a precomputed lookup table is
provided, which associates all possible combinations of pre-
dictor variable values with the building loss that the Bayesian
network predicts.

Appendix A

Figure A1. Selected survey areas in Ho Chi Minh City. Red numbers are the sites of the main survey in 2020. Green letters indicate the areas
of the pretest survey in December 2019 (Yang et al., 2020).

Nat. Hazards Earth Syst. Sci., 25, 2845–2861, 2025 https://doi.org/10.5194/nhess-25-2845-2025

https://plan-risk-consult.de/decider/


K. R. Shahi et al.: BN-FLEMO1: a BN-based flood loss estimation model in HCMC, Vietnam 2855

Figure A2. The Bayesian networks constructed by categorizing the relative loss (rloss) into (a) three bins, (b) five bins, and (c) seven bins.

Figure A3. The quantitative performance of different structure learning algorithms, namely hill-climbing (hc), incremental association
(iamb), max–min hill climbing (mmhc), and general two-phase restricted maximization (rs2max), which were used to build the BN-FLEMO1
model.
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Figure A4. The Bayesian networks learned from (a) hc, (b) iamb, (c) mmhc, and (d) rs2max.
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Figure A5. Bayesian network structure and parameters learned from the survey data. Panel (a) shows the marginal probability distributions
of the fitted network. Panel (b) shows an example prediction of the Bayesian network, in which three predictor variables are assumed to be
known (wd, fe, elev). The marginal probability distribution of the relative loss is updated based on the evidence in the nodes of these three
predictors.

Figure A6. This figure illustrates the predictive performance of BN-FLEMO1 in terms of RMSE, with different predictor sets representing
the incremental addition of independent variables as inputs to the model, following the order determined by the feature selection process.
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Table A1. The questionnaire that was used during the survey campaign. This subset of the original version contains information on the 16
potentially important flood loss drivers studied in this work.

Variable Question Options (if applicable)

Water depth What was the highest water point from your –
ground floor (cm)?

Inundation duration What was the duration of inundation at –
the house (hours, minutes)?

Contamination Did the flood water contain the following 0: no contamination (i.e. normal rain/river water)
contaminants (multiple possible)? 1: sewage water/excrement

2: daily living garbage

Warning Did you receive a warning/know by yourself 0: no
before the flood event? 1: yes

Emergency Did you apply any emergency measures to 0: I did nothing
measures prevent damage (multiple answers possible)? 1: pumped down water

2: used sand bags, temporary, and small-scale protection

Private Which of the following precautionary measures 0: I did nothing
precautionary did you implement before the event? 1: acquire/purchase water barriers to prevent flooding in the house
measures 2: acquire/purchase pumping equipment to pump out water

3: elevate the house ground floor/foundation, etc.

Flood experience How many times have you been flooded 0: ≤ 1 (one or less than one) time per year
since October 2020 (i.e. flood water 1: > 1–2 times per year
entering your house)? 2: > 2–5 times per year

3: > 5–10 times per year
4: > 10 times per year

Building area What is the floor size of the house in m2? –

Number of persons How many people are living in your household? –
in the household

Years since the If you performed a major renovation in –
last renovation the last 10 years, when was this renovation

performed? (give the times of two major
renovations if there were many)

Income How high is the available income per month 1: less than 1
(in million VND)? 2: 1–5

3: 5–10
4: 10–20
5: 20–30
6: 30–50
7: 50–80
8: 80–100
9: > 100

Education Has any member of the household gone to school? 0: no
1: yes

Loss to buildings How much did it cost you in total to repair 1: x million VND
your building (house/business)? 2: I did not repair anything

Reconstruction If you were to rebuild your building (house/business) –
cost of the completely, what would this cost (in million VND)?
building Or how much would it cost if your house

is sold now (without land value)?
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