Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-169-2025
https://doi.org/10.5194/nhess-25-169-2025
Invited perspectives
 | 
07 Jan 2025
Invited perspectives |  | 07 Jan 2025

Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems

Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli

Related authors

Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024,https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023,https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary

Related subject area

Landslides and Debris Flows Hazards
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025,https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Limit analysis of earthquake-induced landslides considering two strength envelopes
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024,https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary

Cited articles

Abraham, M. T., Satyam, N., Pradhan, B., and Alamri, A. M.: IoT-based geotechnical monitoring of unstable slopes for landslide early warning in the Darjeeling Himalayas, Sensors, 20, 2611, https://doi.org/10.3390/s20092611, 2020. 
Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.: Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning, CATENA, 200, 105147, https://doi.org/10.1016/j.catena.2021.105147, 2021. 
Ashland, F. X.: Critical shallow and deep hydrologic conditions associated with widespread landslides during a series of storms between February and April 2018 in Pittsburgh and vicinity, western Pennsylvania, USA, Landslides, 18, 2159–2174, https://doi.org/10.1007/s10346-021-01665-x, 2021. 
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, https://doi.org/10.1007/s10346-009-0177-0, 2010. 
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, 3013, https://doi.org/10.1029/2009JF001321, 2010. 
Download
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Altmetrics
Final-revised paper
Preprint