Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1357-2024
https://doi.org/10.5194/nhess-24-1357-2024
Research article
 | 
24 Apr 2024
Research article |  | 24 Apr 2024

Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA

Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter

Related authors

Geometric constraints on tributary fluvial network junction angles
Jon D. Pelletier, Robert G. Hayes, Olivia Hoch, Brendan Fenerty, and Luke A. McGuire
EGUsphere, https://doi.org/10.5194/egusphere-2024-1153,https://doi.org/10.5194/egusphere-2024-1153, 2024
Short summary
Steady-state forms of channel profiles shaped by debris flow and fluvial processes
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam., 11, 1117–1143, https://doi.org/10.5194/esurf-11-1117-2023,https://doi.org/10.5194/esurf-11-1117-2023, 2023
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
EGUsphere, https://doi.org/10.5194/egusphere-2023-1931,https://doi.org/10.5194/egusphere-2023-1931, 2023
Short summary
The influence of large woody debris on post-wildfire debris flow sediment storage
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023,https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Temporal changes in rainfall intensity–duration thresholds for post-wildfire flash floods in southern California
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022,https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
Evaluation of debris-flow building damage forecasts
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024,https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024,https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024,https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024,https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary

Cited articles

Benavides-Solorio, J. and MacDonald, L. H.: Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range, Hydrol. Process., 15, 2931–2952, 2001. 
Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., and Riley, D.: NOAA Atlas 14, Precipitation-Frequency Atlas of the United States, Volume 1 Version 5.0: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah), National Weather Service, Silver Spring, MD, https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html (last access: 8 April 2024), 2011. 
Bunte, K. and Abt, S. R.: Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring, General Technical Report RMRS-GTR-74, US Department of Agriculture, Forest Service, 450 pp., https://doi.org/10.2737/RMRS-GTR-74, 2001. 
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250–269, 2008. 
Cannon, S. H., Gartner, J. E., Rupert, M. G., Michael, J. A., Rea, A. H., and Parrett, C.: Predicting the probability and volume of postwildfire debris flows in the intermountain western United States, Geol. Soc. Am. Bull., 122, 127–144, 2010. 
Download
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Altmetrics
Final-revised paper
Preprint