Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-2961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joshua Kiesel
CORRESPONDING AUTHOR
Department of Geography, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
Marvin Lorenz
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, 18119, Germany
Marcel König
private consultant
now at: Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85281, USA
Ulf Gräwe
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, 18119, Germany
Athanasios T. Vafeidis
Department of Geography, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
Related authors
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025, https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches, and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Giulia Galluccio, Jochen Hinkel, Elisa Fiorini Beckhauser, Alexander Bisaro, Rebeca Biancardi Aleu, Pierpaolo Campostrini, Maria Florencia Casas, Océane Espin, and Athanasios T. Vafeidis
State Planet, 3-slre1, 6, https://doi.org/10.5194/sp-3-slre1-6-2024, https://doi.org/10.5194/sp-3-slre1-6-2024, 2024
Short summary
Short summary
The paper synthesises knowledge of European sea level rise (SLR), guiding evidence-based policy. SLR poses challenges for coastal decision-making addressed through hard and soft strategies across sea basins: incorporation of SLR projections into spatial planning, focus on adaptation plans and nature-based solutions and priorisation of early-warning systems. The study stresses key coastal adaptation considerations, e.g. flexibility, integration of SLR information and iterative decision-making.
Marvin Lorenz and Ulf Gräwe
Ocean Sci., 19, 1753–1771, https://doi.org/10.5194/os-19-1753-2023, https://doi.org/10.5194/os-19-1753-2023, 2023
Short summary
Short summary
We study the variability of extreme sea levels in a 13 member hindcast ensemble for the Baltic Sea. The ensemble mean shows good agreement with observations regarding return levels and trends. However, we find great variability and uncertainty within the ensemble. We argue that the variability of storms in the atmospheric data directly translates into the variability of the return levels. These results highlight the need for large regional ensembles to minimise uncertainties.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Pia Kolb, Anna Zorndt, Hans Burchard, Ulf Gräwe, and Frank Kösters
Ocean Sci., 18, 1725–1739, https://doi.org/10.5194/os-18-1725-2022, https://doi.org/10.5194/os-18-1725-2022, 2022
Short summary
Short summary
River engineering measures greatly changed tidal dynamics in the Weser estuary. We studied the effect on saltwater intrusion with numerical models. Our analysis shows that a deepening of the navigation channel causes saltwater to intrude further into the Weser estuary. This effect is mostly masked by the natural variability of river discharge. In our study, it proved essential to recalibrate individual hindcast models due to differences in sediments, bed forms, and underlying bathymetric data.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, https://doi.org/10.5194/nhess-22-187-2022, 2022
Short summary
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Hagen Radtke, Sandra-Esther Brunnabend, Ulf Gräwe, and H. E. Markus Meier
Clim. Past, 16, 1617–1642, https://doi.org/10.5194/cp-16-1617-2020, https://doi.org/10.5194/cp-16-1617-2020, 2020
Short summary
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.
Cited articles
Alari, V.: Multi-Scale Wind Wave Modeling in the Baltic Sea, PhD thesis, ISBN 978-9949-23-511-7, 2013. a
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.:
Advances in pan-European flood hazard mapping, Hydrol. Process., 28,
4067–4077, https://doi.org/10.1002/hyp.9947, 2014. a
Arns, A., Wahl, T., Wolff, C., Vafeidis, A., Haigh, I., Woodworth, P.,
Niehüser, S., and Jensen, J.: Non-linear interaction modulates global
extreme sea levels, coastal flood exposure, and impacts, Nat.
Commun., 11, 1918, https://doi.org/10.1038/s41467-020-15752-5, 2020. a, b
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage,
J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter,
J. R., Amodeo, M. F., Chu, Z., Lewis-Gruss, S., Freeman, N. B., Houser, T.,
Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira,
C. M., Khalid, A., Haigh, I. D., Couasnon, A., Kopp, R., Hsiang, S., and
Krajewski, W. F.: Combined Modeling of US Fluvial, Pluvial, and Coastal Flood
Hazard Under Current and Future Climates, Water Resour. Res., 57, e2020WR028673,
https://doi.org/10.1029/2020WR028673, 2021. a, b
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M.,
Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C.,
Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts,
H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and
Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model
Development and Validation, Mon. Weather Rev., 138, 345–377,
https://doi.org/10.1175/2009MWR2906.1, 2010. a
Burchard, H. and Bolding, K.: GETM: A General Estuarine Transport Model:
Scientific Documentation, European Commission, Joint Research Centre,
Institute for Environment and Sustainability,
https://publications.jrc.ec.europa.eu/repository/handle/JRC23237 (last access: 31 August 2023),
2002. a
Chini, M., Pelich, R., Li, Y., Hostache, R., Zhao, J., Di Mauro, C., and
Matgen, P.: Sar based flood mapping, where we are and future challenges,
IEEE International Geoscience and Remote Sensing Symposium IGARSS, 884–886,
https://doi.org/10.1109/IGARSS47720.2021.9554975, 2021. a
Clement, M. A., Kilsby, C. G., and Moore, P.: Multi-temporal synthetic
aperture radar flood mapping using change detection, J. Flood Risk
Manag., 11, 152–168, https://doi.org/10.1111/jfr3.12303, 2018. a
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer
Series in Statistics, Springer London, London, ISBN 978-1-85233-459-8, 2001. a
Dangendorf, S., Kelln, J., Arns, A., Gräwe, U., Steffen, H., Hofstede, J., and
Jensen, J.: Untersuchungen zur Rekonstruktion des Meeresspiegels und
vertikaler Landbewegungen and den deutschen Küsten, in: Die Küste 91,
Bundesanstalt für Wasserbau, 101–137,
https://doi.org/10.18171/1.091103, 2022. a
de Moel, H. and Aerts, J. C. J. H.: Effect of uncertainty in land use, damage
models and inundation depth on flood damage estimates, Nat. Hazards, 58,
407–425, https://doi.org/10.1007/s11069-010-9675-6, 2011. a
Didier, D., Baudry, J., Bernatchez, P., Dumont, D., Sadegh, M., Bismuth, E.,
Bandet, M., Dugas, S., and Sévigny, C.: Multihazard simulation for
coastal flood mapping: Bathtub versus numerical modelling in an open estuary,
Eastern Canada, J. Flood Risk Manag., 12,
https://doi.org/10.1111/jfr3.12505, 2019. a, b
Dorn, H., Vetter, M., and Höfle, B.: GIS-Based Roughness Derivation for
Flood Simulations: A Comparison of Orthophotos, LiDAR and Crowdsourced
Geodata, Remote Sensing, 6, 1739–1759, https://doi.org/10.3390/rs6021739, 2014. a
Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Haag, A., Winsemius, H. C., and Ward, P. J.: A globally applicable framework for compound flood hazard modeling, Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, 2023. a, b
EU Flood Directive 2007/60/EC: On the assessment and management of flood risk, Official Journal of the European Union, L 288/27, LEX-FAOC074931, 2007.
Fox-Kemper, B., Hewitt, H., Xiao, C., Adalgeirsdottir, G., Drijfhout, S.,
Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz,
D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J., Slangen, A., and Yu, Y.:
Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
1211–1362, IPCC, https://doi.org/10.1017/9781009157896.011, 2021. a
Garzon, J. and Ferreira, C.: Storm Surge Modeling in Large Estuaries:
Sensitivity Analyses to Parameters and Physical Processes in the Chesapeake
Bay, Journal of Marine Science and Engineering, 4, 45,
https://doi.org/10.3390/jmse4030045, 2016. a, b
Google Earth Engine (GEE): Sentinel-1 SAR GRD: C-band Synthetic Aperture
Radar Ground Range Detected, log scaling,
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (last access: 12 February 2021),
2022. a
Gräwe, U. and Burchard, H.: Storm surges in the Western Baltic Sea: the
present and a possible future, Clim. Dynam., 39, 165–183,
https://doi.org/10.1007/s00382-011-1185-z, 2012. a, b
Gräwe, U., Naumann, M., Mohrholz, V., and Burchard, H.: Anatomizing one of
the largest saltwater inflows into the Baltic Sea in December 2014,
J. Geophys. Res.-Oceans, 120, 7676–7697,
https://doi.org/10.1002/2015JC011269, 2015. a
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hieronymus, M., Dieterich, C., Andersson, H., and Hordoir, R.: The effects of
mean sea level rise and strengthened winds on extreme sea levels in the
Baltic Sea, Theoretical and Applied Mechanics Letters, 8, 366–371,
https://doi.org/10.1016/j.taml.2018.06.008, 2018. a
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R.
S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal
flood damage and adaptation costs under 21st century sea-level rise,
P. Natl. Acad. Sci. USA, 111, 3292–3297, https://doi.org/10.1073/pnas.1222469111, 2014. a, b, c, d
Hinkel, J., Feyen, L., Hemer, M., Le Cozannet, G., L. D. M. M. M. L. M. J.,
de Moel, H., Muis, S., Nicholls, R., Vafeidis, A., van de Wal, R.,
Vousdoukas, M., Wahl, T., Ward, P., and Wolff, C.: Uncertainty and bias in
global to regional scale assessments of current and future coastal flood
risk, Earth´s Future, 9, e2020EF001882, https://doi.org/10.1029/2020EF001882, 2021. a, b, c, d, e
Höffken, J., Vafeidis, A. T., MacPherson, L. R., and Dangendorf, S.:
Effects of the Temporal Variability of Storm Surges on Coastal Flooding,
Front. Mar. Sci., 7, 98, https://doi.org/10.3389/fmars.2020.00098, 2020. a, b, c, d
Hofstede, J. and Hamann, M.: The 1872 catastrophic storm surge at the Baltic
Sea coast of Schleswig-Holstein; lessons learned?, Die Küste, 92, 22 pp.,
https://doi.org/10.18171/1.092101, 2022. a, b, c
Hossain, A., Jia, Y., and Chao, X.: Estimation of Manning's roughness
coefficient distribution for hydrodynamic model using remotely sensed land
cover features, in: 2009 17th International Conference on Geoinformatics,
1–4, IEEE, 12–14 August 2009, https://doi.org/10.1109/GEOINFORMATICS.2009.5293484, 2009. a
Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B., Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019. a
Kiesel, J., Lorenz, M., König, M., Gräwe, U., and Vafeidis, Athanasios, T.:
Coastal flood maps and extreme sea levels for the German Baltic Sea coast
(1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7886455, 2023. a
Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke,
D., and Hinkel, J.: Projections of global-scale extreme sea levels and
resulting episodic coastal flooding over the 21st Century, Sci.
Rep., 10, 11629, https://doi.org/10.1038/s41598-020-67736-6, 2020. a
Klingbeil, K., Lemarié, F., Debreu, L., and Burchard, H.: The numerics of
hydrostatic structured-grid coastal ocean models: State of the art and future
perspectives, Ocean Model., 125, 80–105, https://doi.org/10.1016/j.ocemod.2018.01.007, 2018. a
Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe, C. D.: Modelling
inundation extents of the June 2016 storm surges in estuarine environments
using static and dynamic approaches: 26th NSW Coastal Conference, Faculty of
Science, Medicine and Health – Papers: part A. 5351, 1–15, https://core.ac.uk/download/pdf/158250917.pdf (last access: 24 August 2023), 2017. a
Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling
compound flooding in coastal systems using a computationally efficient
reduced-physics solver: Including fluvial, pluvial, tidal, wind- and
wave-driven processes, Coast. Eng., 163, 103796,
https://doi.org/10.1016/j.coastaleng.2020.103796, 2021. a
Leszczyńska, K., Stattegger, K., Moskalewicz, D., Jagodziński, R.,
Kokociński, M., Niedzielski, P., and Szczuciński, W.: Controls on
coastal flooding in the southern Baltic Sea revealed from the late Holocene
sedimentary records, Sci. Rep., 12, 9710,
https://doi.org/10.1038/s41598-022-13860-4, 2022. a
Liang, Q. and Smith, L. S.: A high-performance integrated hydrodynamic
modelling system for urban flood simulations, J. Hydroinform.,
17, 518–533, https://doi.org/10.2166/hydro.2015.029, 2015. a
Liu, H., Zhang, K., Li, Y., and Xie, L.: Numerical study of the sensitivity of
mangroves in reducing storm surge and flooding to hurricane characteristics
in southern Florida, Cont. Shelf Res., 64, 51–65,
https://doi.org/10.1016/j.csr.2013.05.015, 2013. a
Lopes, C. L., Sousa, M. C., Ribeiro, A., Pereira, H., Pinheiro, J. P., Vaz, L.,
and Dias, J. M.: Evaluation of future estuarine floods in a sea level rise
context, Sci. Rep., 12, 8083, https://doi.org/10.1038/s41598-022-12122-7,
2022. a, b, c
Lorenz, M. and Gräwe, U.: Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: a hind-cast ensemble for the Baltic Sea, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-820, 2023. a, b
MacPherson, L. R., Arns, A., Dangendorf, S., and Vafeidis, A. T.: A Stochastic
Extreme Sea Level Model for the German Baltic Sea Coast, J.
Geophys. Res.-Oceans, 3, 2054–2071, https://doi.org/10.1029/2018JC014718, 2019. a, b, c
Madsen, K. S., Høyer, J. L., Fu, W., and Donlon, C.: Blending of satellite
and tide gauge sea level observations and its assimilation in a storm surge
model of the North Sea and Baltic Sea, J. Geophys. Res.-Oceans, 120, 6405–6418, https://doi.org/10.1002/2015JC011070, 2015. a
Marijnissen, R. J., Kok, M., Kroeze, C., and van Loon-Steensma, J. M.: Flood
risk reduction by parallel flood defences – Case-study of a coastal
multifunctional flood protection zone, Coast. Eng., 167, 103903,
https://doi.org/10.1016/j.coastaleng.2021.103903, 2021. a
Mason, D., Bates, P., and Dall´Amico, J.: Calibration of uncertain flood
inundation models using remotely sensed water levels, J. Hydrol.,
368, 224–236, https://doi.org/10.1016/j.jhydrol.2009.02.034, 2009. a
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate change in the Baltic Sea region: a summary, Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, 2022. a
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8,
234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018. a
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010. a
Molinari, D., de Bruijn, K. M., Castillo-Rodríguez, J. T., Aronica, G. T.,
and Bouwer, L. M.: Validation of flood risk models: Current practice and
possible improvements, Int. J. Disast. Risk Re., 33,
441–448, https://doi.org/10.1016/j.ijdrr.2018.10.022, 2019. a
Morris, R. L., Konlechner, T. M., Ghisalberti, M., and Swearer, S. E.: From
grey to green: Efficacy of eco-engineering solutions for nature-based coastal
defence, Glob. Change Biol., 24, 1827–1842, https://doi.org/10.1111/gcb.14063,
2018. a
Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., and Mason, D.:
Evaluating a new LISFLOOD-FP formulation with data from the summer 2007
floods in Tewkesbury, UK, J. Flood Risk Manag., 4, 88–95,
https://doi.org/10.1111/j.1753-318X.2011.01093.x, 2011. a
Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S.,
Koukouvinos, A., Tsoukalas, I., and Kossieris, P.: An Operational Method for
Flood Directive Implementation in Ungauged Urban Areas, Hydrology, 5, 24,
https://doi.org/10.3390/hydrology5020024, 2018. a
Pietrzak, J.: The Use of TVD Limiters for Forward-in-Time Upstream-Biased
Advection Schemes in Ocean Modeling, Mon. Weather Rev., 126, 812–830,
https://doi.org/10.1175/1520-0493(1998)126<0812:TUOTLF>2.0.CO;2,
1998. a
Reinert, M., Pineau-Guillou, L., Raillard, N., and Chapron, B.: Seasonal Shift
in Storm Surges at Brest Revealed by Extreme Value Analysis, J.
Geophys. Res.-Oceans, 126, e2021JC017794, https://doi.org/10.1029/2021JC017794, 2021. a
Richter, A., Groh, A., and Dietrich, R.: Geodetic observation of sea-level
change and crustal deformation in the Baltic Sea region, Phys.
Chem. Earth, 53–54, 43–53, https://doi.org/10.1016/j.pce.2011.04.011, 2012. a
Rollason, E., Bracken, L. J., Hardy, R. J., and Large, A.: The importance of
volunteered geographic information for the validation of flood inundation
models, J. Hydrol., 562, 267–280, https://doi.org/10.1016/j.jhydrol.2018.05.002, 2018. a
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, 2022. a, b
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour.
Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015. a
Schuldt, C., Schiewe, J., and Kröger, J.: Sea-level rise in northern
Germany: A GIS-based simulation and visualization, KN – Journal of
Cartography and Geographic Information, 70, 145–154,
https://doi.org/10.1007/s42489-020-00059-8, 2020. a
Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel, H., and Ward, P. J.: FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, 2016. a
Soomere, T., Pindsoo, K., Bishop, S. R., Käärd, A., and Valdmann, A.: Mapping wave set-up near a complex geometric urban coastline, Nat. Hazards Earth Syst. Sci., 13, 3049–3061, https://doi.org/10.5194/nhess-13-3049-2013, 2013. a
Sterr, H.: Assessment of Vulnerability and Adaptation to Sea-Level Rise for the
Coastal Zone of Germany, J. Coastal Res., 24, 380–393,
https://doi.org/10.2112/07A-0011.1, 2008. a, b
Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J., and
Merilain, M.: Cyclone Gudrun in January 2005 and modelling its hydrodynamic
consequences in the Estonian coastal waters, Boreal Environ. Res., 11,
143–159, 2006. a
van der Pol, T., Hinkel, J., Merkens, J., MacPherson, L., Vafeidis, A. T.,
Arns, A., and Dangendorf, S.: Regional economic analysis of flood defence
heights at the German Baltic Sea coast: A multi-method cost-benefit approach
for flood prevention, Climate Risk Management, 32, 100289, https://doi.org/10.1016/j.crm.2021.100289, 2021. a, b, c
Vollstedt, B., Koerth, J., Tsakiris, M., Nieskens, N., and Vafeidis, A. T.:
Co-production of climate services: A stroy map for future coastal flooding
for the city of Flensburg, Climate Services, 22, 100225,
https://doi.org/10.1016/j.cliser.2021.100225, 2021. a
Vousdoukas, M., Mentaschi, L., Mongelli, I., Martinez, C., Hinkel, J., Ward,
P., Gosling, S., and Feyen, L.: Adapting to rising coastal flood risk in the
EU under climate change, EUR 29969 EN, Publications Office of the European
Union, Luxembourg, https://doi.org/10.2760/456870, 2020. a
Vousdoukas, M. I., Almeida, L. P. M., and Ferreira, Ó.: Beach erosion and
recovery during consecutive storms at a steep-sloping, meso-tidal beach,
Earth Surf. Proc. Land., 37, 583–593, https://doi.org/10.1002/esp.2264,
2012a. a, b
Vousdoukas, M. I., Ferreira, Ó., Almeida, L. P., and Pacheco, A.: Toward
reliable storm-hazard forecasts: XBeach calibration and its potential
application in an operational early-warning system, Ocean Dynam., 62,
1001–1015, https://doi.org/10.1007/s10236-012-0544-6, 2012b.
a, b
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen, L.:
Extreme sea levels on the rise along Europe's coasts, Earth's Future, 5,
304–323, https://doi.org/10.1002/2016EF000505, 2017. a
Vousdoukas, M. I., Bouziotas, D., Giardino, A., Bouwer, L. M., Mentaschi, L., Voukouvalas, E., and Feyen, L.: Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates, Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, 2018. a, b, c, d, e, f
Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A., and
Grzegorzewski, A. S.: Influence of landscape restoration and degradation on
storm surge and waves in southern Louisiana, Nat. Hazards, 51, 207–224,
https://doi.org/10.1007/s11069-009-9378-z, 2009. a
Weisse, R. and Hünicke, B.: Baltic Sea Level: Past, Present, and Future,
in: Oxford Research Encyclopedia of Climate Science, Oxford University
Press, Oxford, https://doi.org/10.1093/acrefore/9780190228620.013.693, 2019. a
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, 2021. a, b, c, d
Wolski, T. and Wiśniewski, B.: Geographical diversity in the occurrence of
extreme sea levels on the coasts of the Baltic Sea, J. Sea Res.,
159, 101890, https://doi.org/10.1016/j.seares.2020.101890, 2020. a, b
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H.,
Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., and Lydeikaitė,
Ž.: Extreme sea levels at selected stations on the Baltic Sea coast,
Oceanologia, 56, 259–290, https://doi.org/10.5697/oc.56-2.259, 2014. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J.
Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage...
Altmetrics
Final-revised paper
Preprint