Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-261-2023
https://doi.org/10.5194/nhess-23-261-2023
Research article
 | 
20 Jan 2023
Research article |  | 20 Jan 2023

Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps

Joseph L. Gutenson, Ahmad A. Tavakoly, Mohammad S. Islam, Oliver E. J. Wing, William P. Lehman, Chase O. Hamilton, Mark D. Wahl, and T. Christopher Massey

Related authors

Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020,https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
Improved accuracy and efficiency of flood inundation mapping of low-, medium-, and high-flow events using the AutoRoute model
Michael L. Follum, Ricardo Vera, Ahmad A. Tavakoly, and Joseph L. Gutenson
Nat. Hazards Earth Syst. Sci., 20, 625–641, https://doi.org/10.5194/nhess-20-625-2020,https://doi.org/10.5194/nhess-20-625-2020, 2020
Short summary

Related subject area

Hydrological Hazards
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci., 24, 3683–3701, https://doi.org/10.5194/nhess-24-3683-2024,https://doi.org/10.5194/nhess-24-3683-2024, 2024
Short summary
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024,https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024,https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Floods in the Pyrenees: a global view through a regional database
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024,https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary

Cited articles

About: See the Storm Surge in Real-Time, About, https://coastalrisk.live/about/, last access: 20 January 2022. 
AECOM: 2018 Coastal Texas LiDAR Final QA/QC Report, Statement of Work #580-18-SOW0051, https://prd-tnm.s3.amazonaws.com/StagedProducts/Elevation/metadata/TX_CoastalRegion_2018_A18/TX_Coastal_B1_2018/reports/thrid-party-QAQC/2018CoastalTexasLiDAR_FinalQAQCReport_20181221.pdf (last access: 4 January 2023), 2018. 
Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018. 
Bass, B. and Bedient, P.: Surrogate modeling of joint flood risk across coastal watersheds, J. Hydrol., 558, 159–173, https://doi.org/10.1016/j.jhydrol.2018.01.014, 2018. 
Brody, S. D., Sebastian, A., Blessing, R., and Bedient, P. B.: Case study results from southeast Houston, Texas: identifying the impacts of residential location on flood risk and loss, J. Flood Risk Manag., 11, S110–S120, https://doi.org/10.1111/jfr3.12184, 2018. 
Download
Short summary
Emergency managers use event-based flood inundation maps (FIMs) to plan and coordinate flood emergency response. We perform a case study test of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the FIMs are very different spatially and that the spatial differences do produce differences in the location and magnitude of exposure and consequences.
Altmetrics
Final-revised paper
Preprint