Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-261-2023
https://doi.org/10.5194/nhess-23-261-2023
Research article
 | 
20 Jan 2023
Research article |  | 20 Jan 2023

Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps

Joseph L. Gutenson, Ahmad A. Tavakoly, Mohammad S. Islam, Oliver E. J. Wing, William P. Lehman, Chase O. Hamilton, Mark D. Wahl, and T. Christopher Massey

Related authors

Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020,https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
Improved accuracy and efficiency of flood inundation mapping of low-, medium-, and high-flow events using the AutoRoute model
Michael L. Follum, Ricardo Vera, Ahmad A. Tavakoly, and Joseph L. Gutenson
Nat. Hazards Earth Syst. Sci., 20, 625–641, https://doi.org/10.5194/nhess-20-625-2020,https://doi.org/10.5194/nhess-20-625-2020, 2020
Short summary

Related subject area

Hydrological Hazards
A climate-conditioned catastrophe risk model for UK flooding
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023,https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
A globally applicable framework for compound flood hazard modeling
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023,https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023,https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023,https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Evolution of multivariate drought hazard, vulnerability and risk in India under climate change
Venkataswamy Sahana and Arpita Mondal
Nat. Hazards Earth Syst. Sci., 23, 623–641, https://doi.org/10.5194/nhess-23-623-2023,https://doi.org/10.5194/nhess-23-623-2023, 2023
Short summary

Cited articles

About: See the Storm Surge in Real-Time, About, https://coastalrisk.live/about/, last access: 20 January 2022. 
AECOM: 2018 Coastal Texas LiDAR Final QA/QC Report, Statement of Work #580-18-SOW0051, https://prd-tnm.s3.amazonaws.com/StagedProducts/Elevation/metadata/TX_CoastalRegion_2018_A18/TX_Coastal_B1_2018/reports/thrid-party-QAQC/2018CoastalTexasLiDAR_FinalQAQCReport_20181221.pdf (last access: 4 January 2023), 2018. 
Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., and Fekete, B. M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, https://doi.org/10.1016/j.jhydrol.2017.11.036, 2018. 
Bass, B. and Bedient, P.: Surrogate modeling of joint flood risk across coastal watersheds, J. Hydrol., 558, 159–173, https://doi.org/10.1016/j.jhydrol.2018.01.014, 2018. 
Brody, S. D., Sebastian, A., Blessing, R., and Bedient, P. B.: Case study results from southeast Houston, Texas: identifying the impacts of residential location on flood risk and loss, J. Flood Risk Manag., 11, S110–S120, https://doi.org/10.1111/jfr3.12184, 2018. 
Download
Short summary
Emergency managers use event-based flood inundation maps (FIMs) to plan and coordinate flood emergency response. We perform a case study test of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the FIMs are very different spatially and that the spatial differences do produce differences in the location and magnitude of exposure and consequences.
Altmetrics
Final-revised paper
Preprint