Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2349-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2349-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Camilla Lanfranconi
CORRESPONDING AUTHOR
Dept. of Earth and Environmental Sciences – DISAT, Università degli studi di Milano – Bicocca, Milan 20126, Italy
Paolo Frattini
Dept. of Earth and Environmental Sciences – DISAT, Università degli studi di Milano – Bicocca, Milan 20126, Italy
Gianluca Sala
Dept. of Earth and Environmental Sciences – DISAT, Università degli studi di Milano – Bicocca, Milan 20126, Italy
Giuseppe Dattola
Dept. of Earth and Environmental Sciences – DISAT, Università degli studi di Milano – Bicocca, Milan 20126, Italy
Davide Bertolo
Struttura attività geologiche, Regione autonoma Valle d'Aosta,
Quart 11020, Italy
Juanjuan Sun
Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Giovanni Battista Crosta
Dept. of Earth and Environmental Sciences – DISAT, Università degli studi di Milano – Bicocca, Milan 20126, Italy
Related authors
No articles found.
Francesca Noemi Bonometti, Giuseppe Dattola, Paolo Frattini, and Giovanni Battista Crosta
EGUsphere, https://doi.org/10.5194/egusphere-2024-4122, https://doi.org/10.5194/egusphere-2024-4122, 2025
Short summary
Short summary
Alpine areas are undergoing the highest change temperature and rainfall intensity that are main rockfall triggering factors. This article proposes a new approach based on the frequency of meteorological variables to comprehend implication between climatic scenarios and rockfall events in the Dolomites. Several climate variables were considered and the outcomes reveal warming rates, reduction in icing and freeze-thaw cycles and anticipation of both starting of summer and of the winter ending.
Micol Fumagalli, Alberto Previati, Paolo Frattini, and Giovanni B. Crosta
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-140, https://doi.org/10.5194/nhess-2024-140, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Shallow landslides are mass movements of limited thickness, mainly triggered by extreme rainfalls, that can pose a serious risk to the population. This study uses statistical methods to analyse and simulate the relationship between shallow landslides and rainfalls, showing that in the studied area shallow landslides are modulated by rainfall but controlled by lithology. A new classification method considering the costs associated with a misclassification of the susceptibility is also proposed.
Cited articles
Agliardi, F., Crosta, G. B., and Frattini, P.: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques, Nat. Hazards Earth Syst. Sci., 9, 1059–1073, https://doi.org/10.5194/nhess-9-1059-2009, 2009.
Azzoni, A., La Barbera, G., and Zaninetti, A.: Analysis and prediction of
rockfalls using a mathematical model, Int. J. Rock Mech, 32, 709–724,
1995.
Berger, F. and Dorren, L. K.: Principles of the tool Rockfor.net for
quantifying the rockfall hazard below a protection forest, Schweiz. Z. fur
Forstwes., 158, 157–165, https://doi.org/10.3188/szf.2007.0157, 2007.
Berger, F., Quetel, C., and Dorren, L. K.: Forest: a natural protection mean
against rockfalls, but with which efficiency, International congress
INTERPRAEVENT, 2, 815–826, 2002.
Bigot, C., Dorren, L. K., and Berger, F.: Quantifying the protective
function of a forest against rockfall for past, present and future scenarios
using two modelling approaches, Nat. hazards, 49, 99–111, 2009.
Chau, K. T., Wong, R. H. C., Liu, J., and Lee, C. F.: Rockfall hazard
analysis for Hong Kong based on rockfall inventory, Mech. Rock Eng., 36,
383–408, 2003.
Corominas, J., Copons, R., Moya, J., Vilaplana, J. M., Altimir, J., and
Amigó, J.: Quantitative assessment of the residual risk in a rockfall
protected area, Landslides, 2, 343–357, 2005.
Corominas, J., Mavrouli, O., Santana, D., and Moya, J.: Simplified approach for
obtaining the block volume distribution of fragmental rockfalls, edited by: Eberhardt,
E., Froese, C., Turner, A. K., and Leroueil, S., Landslides Eng. Slopes, 2,
1159–1164, 2012.
Corominas, J., Mavrouli, O., and Ruiz-Carulla, R.: Rockfall occurrence and fragmentation, Advancing Culture of Living with Landslides, Volume 1 ISDR-ICL Sendai Partnerships 2015–2025, 75–97 pp., Springer,
https://doi.org/10.1007/978-3-319-59469-9_4, 2017.
Corominas, J., Matas, G., and Ruiz-Carulla, R.: Quantitative analysis of
risk from fragmental rockfalls, Landslides, 16, 5–21, 2019.
Crosta, G. B. and Agliardi, F.: A methodology for physically based rockfall hazard assessment, Nat. Hazards Earth Syst. Sci., 3, 407–422, https://doi.org/10.5194/nhess-3-407-2003, 2003.
Crosta, G. B. and Agliardi, F.: Parametric evaluation of 3D dispersion of rockfall trajectories, Nat. Hazards Earth Syst. Sci., 4, 583–598, https://doi.org/10.5194/nhess-4-583-2004, 2004.
Crosta, G. B., Agliardi, F., Frattini, P., and Lari, S.: Key Issues in Rock
Fall Modeling, Hazard and Risk Assessment for Rockfall Protection,
Eng. Geol. Soc., 2, 43–58,
https://doi.org/10.1007/978-3-319-09057-3_4, 2015/
Crovelli, R. A.: Probability Models for Estimation of Number and Costs of
Landslides. U.S., Geological Survey Open File Report 00–249, 1–24, https://doi.org/10.3133/ofr00249, 2000.
Dal Piaz, G. V., Bistacchi, A., Gianotti, F., Monopoli, B., Passeri, L., and
Schiavo, A.: Note illustrative del F. 070 Monte Cervino della Carta
Geologica d'Italia alla scala 1: 50.000, https://www.isprambiente.gov.it/Media/carg/note_illustrative/70_Monte_Cervino.pdf (last access: 20 June 2023), 2016.
Dattola, G., Crosta, G. B., and di Prisco, C.: Investigating the influence
of block rotation and shape on the impact process, Int. J. Rock Mech, 147,
104867, https://doi.org/10.1016/j.ijrmms.2021.104867, 2021.
Di Prisco, C. and Vecchiotti, M.: A rheological model for the description of boulder impacts on granular strata, Geotechnique,
56, 469–482, https://doi.org/10.1680/geot.56.7.469, 2006.
Dorren, L. K. A., Berger, F., Imeson, A. C., Maier, B., and Rey, F.: Integrity,
stability and management of protection forests in the European Alps, For.
Ecol., 195, 165–176, 2004a.
Dorren, L. K. A., Maier, B., Putters, U. S., and Seijmonsbergen, A. C.: Combining
field and modelling techniques to assess rockfall dynamics on a protection
forest hillslope in the European Alps, Geomorphology, 57, 151–167, 2004b.
Dorren, L. K. A., Berger, F., and Putters, U. S.: Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., 6, 145–153, https://doi.org/10.5194/nhess-6-145-2006, 2006.
Dupire, S., Bourrier, F., Monnet, J. M., Bigot, S., Borgniet, L., Berger,
F., and Curt, T.: Novel quantitative indicators to characterize the
protective effect of mountain forests against rockfall, Eco. Indic., 67,
98–107, 2016.
Dussauge-Peisser, C., Helmstetter, A., Grasso, J.-R., Hantz, D., Desvarreux, P., Jeannin, M., and Giraud, A.: Probabilistic approach to rock fall hazard assessment: potential of historical data analysis, Nat. Hazards Earth Syst. Sci., 2, 15–26, https://doi.org/10.5194/nhess-2-15-2002, 2002.
Evans, S. G. and Hungr, O.: The assessment of rockfall hazard at the base
of talus slopes, Can. Geotech. J., 30, 620–636, 1993.
Farvacque, M., Lopez-Saez, J., Corona, C., Toe, D., Bourrier, F., and
Eckert, N.: Quantitative risk assessment in a rockfall-prone area: the case
study of the Crolles municipality (Massif de la Chartreuse, French Alps),
Geomorphol. Relief, Process. Environ., 25, 7–19, 2019.
Farvacque, M., Eckert, N., Bourrier, F., Corona, C., Lopez-Saez, J., and
Toe, D.: Quantile-based individual risk measures for rockfall-prone
areas, Int. J. Disaster Risk Reduct., 53, 101932, https://doi.org/10.1016/j.ijdrr.2020.101932, 2021.
Frattini, P., Crosta, G. B., Agliardi, F., Clague, J. J., and Stead, D.: 22
Rockfall characterization and modelling, Landslides: types, mechanisms and
modeling, 267, Landslides: Types, mechanisms and modeling, 267–281, https://doi.org/10.1017/CBO9780511740367.023, 2012.
Getzner, M., Gutheil-KnoppKirchwald, G., Kreimer, E., Kirchmeir, H., and Huber,
M.: Gravitational natural hazards: Valuing the protective function of alpine
forests, For. Policy Econ., 80, 150–159, 2017.
Geoportale Regione Valle
d'Aosta: Modello Digitale del Terreno, SCT [data set], https://geoportale.regione.vda.it/download/dtm/ (last access: 20 June 2023), 2023.
Grêt-Regamey A., Bebi P., Bishop, I. D., and Smid W. A.: Linking GIS-based
models to value ecosystem services in an alpine region, J. Environ. Manage.,
89, 197–208, 2008
Guccione, D. E., Giacomini, A., Thoeni, K., Fityus, S., and Buzzi, O.: On
the Dynamic Fragmentation of Rock-Like Spheres: Insights into Fragment
Distribution and Energy Partition, Mech. Rock. Eng., 56, 847–873, https://doi.org/10.1007/s00603-022-03114-0, 2022
Guthrie, R. H. and Evans, S. G.: Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia, Nat. Hazards Earth Syst. Sci., 4, 475–483, https://doi.org/10.5194/nhess-4-475-2004, 2004.
Guzzetti, F., Reichenbach, P., and Wieczorek, G. F.: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA, Nat. Hazards Earth Syst. Sci., 3, 491–503, https://doi.org/10.5194/nhess-3-491-2003, 2003.
Hantz, D., Ventroux, Q., Rossetti, J. P., and Berger, F.: A new approach of
diffuse rockfall hazard, Landslides and Engineered Slopes, Experience,
Theory and Practice, CRC Press, 1063–1067, 2018.
Hantz, D., Colas, B., Dewez, T., Lévy, C., Rossetti, J. P., Guerin, A.,
and Jaboyedoff, M.: Caractérisation quantitative des aléas rocheux
de départ diffuse, Revue Française de Géotechnique, (163), 2, 8–16, https://doi.org/10.1051/geotech/2020011,
2020.
Hantz, D., Corominas, J., Crosta, G. B., and Jaboyedoff, M.: Definitions and
concepts for quantitative rockfall hazard and risk analysis,
Geosciences, 11, 158, https://doi.org/10.3390/geosciences11040158, 2021.
Häyhä, T., Franzese, P. P., Paletto, A., and Fath, B. D.: Assessing,
valuing, and mapping ecosystem services in alpine forests, Ecosyst. Serv.,
14, 12–24, 2015.
Hungr, O., Evans, S. G., and Hazzard, J.: Magnitude and frequency of rock
falls and rock slides along the main transportation corridors of
southwestern British Columbia, Can. Geotech. J., 36, 224–238, 1999.
Jancke, O., Dorren, L. K., Berger, F., Fuhr, M., and Köhl, M.:
Implications of coppice stand characteristics on the rockfall protection
function, For. Ecol., 259, 124–131, 2009.
Kajdiž, P., Diaci, J., and Rebernik, J.: Modelling facilitates
silvicultural decision-making for improving the mitigating effect of beech
(Fagus sylvatica L.) dominated alpine forest against
rockfall, Forests, 6, 2178–2198, 2015.
Lambert, S., Toe, D., Mentani, A., and Bourrier, F.: A meta-model-based
procedure for quantifying the on-site efficiency of rockfall barriers, Mech.
Rock. Eng., 54, 487–500, 2021.
Lari, S., Frattini, P., and Crosta, G. B.: A probabilistic approach for
landslide hazard analysis, Eng. Geol., 182, 3–14, 2014.
Leine, R. I., Schweizer, A., Christen, M., Glover, J., Bartelt, P., and
Gerber, W.: Simulation of rockfall trajectories with consideration of rock
shape, Multibody Syst. Dyn., 32, 241–271, 2014.
Macciotta, R., Martin, C. D., and Cruden, D. M.: Probabilistic estimation of
rockfall height and kinetic energy based on a three-dimensional trajectory
model and Monte Carlo simulation, Landslides, 12, 757–772, 2015.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf. Process.
Landf., 29, 687–711, 2004.
Matas, G., Lantada, N., Corominas, J., Gili, J. A., Ruiz-Carulla, R., and
Prades, A.: RockGIS: a GIS-based model for the analysis of fragmentation in
rockfalls, Landslides, 14, 1565–1578, 2017.
Matasci, B., Jaboyedoff, M., Loye, A., Pedrazzini, A., Derron, M. H., and
Pedrozzi, G.: Impacts of fracturing patterns on the rockfall susceptibility
and erosion rate of stratified limestone, Geomorphology, 241, 83–97, 2015.
Melzner, S., Rossi, M., and Guzzetti, F.: Impact of mapping strategies on
rockfall frequency-size distributions, Eng. Geol., 272, 105639, https://doi.org/10.1016/j.enggeo.2020.105639, 2020.
Moos, C. and Dorren, L.: Cost-Benefit Analysis as a Basis for Risk-Based
Rockfall Protection Forest Management, IntechOpen, https://doi.org/10.5772/intechopen.99513, 2022.
Moos, C., Fehlmann, M., Trappmann, D., Stoffel, M., and Dorren, L.:
Integrating the mitigating effect of forests into quantitative rockfall risk
analysis–Two case studies in Switzerland, Int. J. Disaster Risk
Reduct., 32, 55–74, 2018.
Nocilla, N., Evangelista, A., and Di Santolo, A. S.: Fragmentation during
rock falls: two Italian case studies of hard and soft rocks, Mech. Rock. Eng.,
42, 815, https://doi.org/10.1007/s00603-008-0006-0, 2009.
Perret, S., Dolf, F., and Kienholz, H.: Rockfalls into forests: analysis and
simulation of rockfall trajectories – considerations with respect to
mountainous forests in Switzerland, Landslides, 1, 123–130, 2004.
Pfeiffer, T. J. and Bowen, T. D.: Computer simulation of rockfalls, Bull.
Eng. Geol. Environ., 26, 135–146, 1989
Polino, R., Bonetto, F., Carraro, F., Gianotti, F., Gouffon, Y., Malusà,
M. G., Martin, S., Perello, P., and Schiavo, A.: Foglio 090 Aosta della Carta Geologica d'Italia, https://www.isprambiente.gov.it/Media/carg/note_illustrative/90_Aosta.pdf (last access: 2 June 2023),
2015.
Radtke, A., Toe, D., Berger, F., Zerbe, S., and Bourrier, F.: Managing
coppice forests for rockfall protection: lessons from modelling, Ann. For.
Sci., 71, 485–494, 2014.
Rammer, W., Brauner, M., Dorren, L. K. A., Berger, F., and Lexer, M. J.: Evaluation of a 3-D rockfall module within a forest patch model, Nat. Hazards Earth Syst. Sci., 10, 699–711, https://doi.org/10.5194/nhess-10-699-2010, 2010.
Rosser, N., Lim, M., Petley, D., Dunning, S., and Allison, R.: Patterns of
precursory rockfall prior to slope failure, J. Geophys. Res.-Earth Surf.,
112, https://doi.org/10.1029/2006JF000642,
2007.
Ruiz-Carulla, R.: Rockfall analysis: failure, fragmentation and propagation
characterization. A fractal fragmentation of rockfalls, Ph.D Thesis,
Technical University of Catalonia. Department of Civil and Environmental
Engineering, PhD thesis, 1–354, 2018
Ruiz-Carulla, R., Corominas, J., and Mavrouli, O.: A fractal fragmentation
model for rockfalls, Landslides, 14, 875–889, 2017.
Shen, W. G., Zhao, T., Crosta, G. B., and Dai, F.: Analysis of
impact-induced rock fragmentation using a discrete element approach, Int. J.
Rock. Mech., 98, 33–38, 2017.
Stoffel, M., Wehrli, A., Kühne, R., Dorren, L. K., Perret, S., and
Kienholz, H.: Assessing the protective effect of mountain forests against
rockfall using a 3D simulation model, For. Ecol., 225, 113–122, 2006.
Toe, D., Bourrier, F., Dorren, L., and Berger, F.: A novel DEM approach to
simulate block propagation on forested slopes, Mech. Rock. Eng., 51,
811–825, 2018.
UNI: UNI 112111-4: 2012 rockfall protective measures – Part 4:
definitive and executive design, Ente Nazionale Italiano di Unificazione,
Milano Italia (in Italian), http://www.uni.com (last access: 20 June 2023), 2012.
Volkwein, A., Roth, A., Gerber, W., and Vogel, A.: Flexible rockfall
barriers subjected to extreme loads, Struct. Eng. Int., 19, 327–332,
2009.
Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M.: Rockfall characterisation and structural protection – a review, Nat. Hazards Earth Syst. Sci., 11, 2617–2651, https://doi.org/10.5194/nhess-11-2617-2011, 2011.
Yashima, S., Kanda, Y., and Sano, S.: Relationships between particle size and
fracture energy or impact velocity required to fracture as estimated from
single particle crushing, Powder Technol., 51, 277–282, 1987.
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
This paper presents a study on rockfall dynamics and hazard, examining the impact of the...
Altmetrics
Final-revised paper
Preprint