Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1631-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1631-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A data-driven evaluation of post-fire landslide susceptibility
Department of Civil, Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Ben Livneh
Department of Civil, Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Balaji Rajagopalan
Department of Civil, Architectural and Environmental Engineering, University of Colorado Boulder, Boulder, Colorado, USA
Kristy F. Tiampo
Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Related authors
No articles found.
Parthkumar A. Modi, Jared C. Carbone, Keith S. Jennings, Hannah Kamen, Joseph R. Kasprzyk, Bill Szafranski, Cameron W. Wobus, and Ben Livneh
Hydrol. Earth Syst. Sci., 29, 5593–5623, https://doi.org/10.5194/hess-29-5593-2025, https://doi.org/10.5194/hess-29-5593-2025, 2025
Short summary
Short summary
This study shows that, in unmanaged snow-dominated basins, high forecast accuracy does not always lead to high economic value, especially during extreme conditions like droughts. It highlights how irregular errors in modern forecasting systems weaken the connection between accuracy and value. These findings call for forecast evaluations to focus not only on accuracy but also on economic impacts, providing valuable guidance for better water resource management under uncertainty.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Sandeep Kumar Mondal, Rishikesh Bharti, and Kristy F. Tiampo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2253, https://doi.org/10.5194/egusphere-2023-2253, 2023
Preprint archived
Short summary
Short summary
This study explains the capabilities of C-band Synthetic Aperture Radar (SAR) system in detection of glacial deformation due to earthquakes. Due to the remote location of the Himalayan glaciers associated with harsh weather conditions and rugged topography, the method of differential interferometric SAR (DInSAR) can be very useful in studying the impact of earthquakes in the glaciated regions where field-based seismological study is extremely tough to execute.
Justin M. Pflug, Yiwen Fang, Steven A. Margulis, and Ben Livneh
Hydrol. Earth Syst. Sci., 27, 2747–2762, https://doi.org/10.5194/hess-27-2747-2023, https://doi.org/10.5194/hess-27-2747-2023, 2023
Short summary
Short summary
Wolverine denning habitat inferred using a snow threshold differed for three different spatial representations of snow. These differences were based on the annual volume of snow and the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our results show that studies applying thresholds to environmental datasets should report uncertainties stemming from different spatial resolutions and uncertainties introduced by the thresholds themselves.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021, https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
P. Sharma, J. Wang, M. Zhang, C. Woods, B. Kar, D. Bausch, Z. Chen, K. Tiampo, M. Glasscoe, G. Schumann, M. Pierce, and R. Eguchi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-3-W1-2020, 107–113, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, 2020
Cited articles
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate extremes and compound hazards in a warming world, Annu. Rev. Earth Pl. Sc., 48, 519–548, 2020. a
Araújo, J. R., Ramos, A. M., Soares, P. M., Melo, R., Oliveira, S. C., and Trigo, R. M.: Impact of extreme rainfall events on landslide activity in Portugal under climate change scenarios, Landslides, 19, 2279–2293, https://doi.org/10.1007/s10346-022-01895-7, 2022. a
Balling, R. C., Meyer, G. A., and Wells, S. G.: Climate change in Yellowstone National Park: is the drought-related risk of wildfires increasing?, Clim. Change, 22, 35–45, 1992. a
Becker, R. A. and Wilks, A. R.: maps: Draw Geographical Maps, R package version 3.4.0, https://CRAN.R-project.org/package=maps (last access: 2 March 2023), 2021. a
Benda, L. and Dunne, T.: Stochastic forcing of sediment supply to channel networks from landsliding and debris flow, Water Resour. Res., 33, 2849–2863, 1997. a
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: A Systematic Review of Landslide Probability Mapping Using Logistic Regression, Landslides, 12, 419–436, https://doi.org/10.1007/s10346-014-0550-5, 2015. a
Burrows, K., Walters, R. J., Milledge, D., Spaans, K., and Densmore, A. L.: A New Method for Large-Scale Landslide Classification from Satellite Radar, Remote Sensing, 11, 237, https://doi.org/10.3390/rs11030237, 2019. a
Cannon, S. H. and DeGraff, J.: The Increasing Wildfire and Post-Fire Debris-Flow Threat in Western USA, and Implications for Consequences of Climate Change, in: Landslides – Disaster Risk Reduction, Springer, Berlin, Heidelberg, 177–190, https://doi.org/10.1007/978-3-540-69970-5_9, 2009. a
Cannon, S. H. and Gartner, J. E.: Wildfire-Related Debris Flow from a Hazards Perspective, in: Debris-flow Hazards and Related Phenomena, edited by: Jakob, M. and Hungr, O., Springer Praxis Books, Springer, Berlin, Heidelberg, 363–385, https://doi.org/10.1007/3-540-27129-5_15, 2005. a, b, c, d, e, f
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California, Geomorphology, 96, 250–269, https://doi.org/10.1016/j.geomorph.2007.03.019, 2008. a, b
Culler, E., Livneh, B., Rajagopalan, B., and Tiampo, K.: Analysis code: A data-driven evaluation of post-fire landslide susceptibility (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.7653683, 2023a. a
Culler, E., Livneh, B., Rajagopalan, B., and Tiampo, K.: Precipitation and fire history at landslide sites (1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7653639, 2023b. a
Deckmyn, A., Becker, R. A., Wilks, A. R., Brownrigg, R., and Minka, T. P.: Maps: Draw Geographical Maps, https://cran.r-project.org/web/packages/maps/ (last access: 8 December 2022), 2018. a
DeGraff, J. V., Cannon, S. H., and Gartner, J. E.: The Timing of Susceptibility to Post-Fire Debris Flows in the Western United States, Environmental and Engineering Geoscience, 21, 277–292, https://doi.org/10.2113/gseegeosci.21.4.277, 2015. a, b
Donnellan, A., Parker, J., Milliner, C., Farr, T. G., Glasscoe, M., Lou, Y., Zheng, Y., and Hawkins, B.: UAVSAR and Optical Analysis of the Thomas Fire Scar and Montecito Debris Flows: Case Study of Methods for Disaster Response Using Remote Sensing Products, Earth Space Sci., 5, 339–347, https://doi.org/10.1029/2018EA000398, 2018. a
Ebel, B. A., Moody, J. A., and Martin, D. A.: Hydrologic Conditions Controlling Runoff Generation Immediately after Wildfire, Water Resour. Res., 48, W03529, https://doi.org/10.1029/2011WR011470, 2012. a
Felicísimo, Á. M., Cuartero, A., Remondo, J., and Quirós, E.: Mapping Landslide Susceptibility with Logistic Regression, Multiple Adaptive Regression Splines, Classification and Regression Trees, and Maximum Entropy Methods: A Comparative Study, Landslides, 10, 175–189, https://doi.org/10.1007/s10346-012-0320-1, 2013. a
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018. a
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., and Verdin, A. P.: A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4 p., Reston, VA, U.S. Geological Survey [code], https://doi.org/10.3133/ds832, 2014. a
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The Climate Hazards Infrared Precipitation with Stations – a New Environmental Record for Monitoring Extremes, Scientific Data, 2, 1–21, https://doi.org/10.1038/sdata.2015.66, 2015. a, b, c
Garcia-Urquia, E. and Axelsson, K.: Rainfall thresholds for the occurrence of urban landslides in Tegucigalpa, Honduras: an application of the critical rainfall intensity, Geogr. Ann. A, 97, 61–83, 2015. a
Gartner, J. E.: Relations between Wildfire Related Debris-Flow Volumes and Basin Morphology, Burn Severity, Material Properties and Triggering Storm Rainfall, M. A., University of Colorado at Boulder, United States –
Colorado, https://www.proquest.com/docview/305008518 (last access: 2 March 2023), 2005. a
Gartner, J. E., Cannon, S. H., Helsel, D. R., and Bandurraga, M.: Mutivariate Statistical Models for Predicting Sediment Yields from Southern California Watersheds, Open-File Report, U.S. Geological Survey, Reston, VA, 2009–1200, https://doi.org/10.3133/ofr20091200, 2009. a, b, c, d
Giglio, L., Justice, C., Boschetti, L., and Roy, D.: MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD64A1.006, 2015. a
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The Collection 6 MODIS burned area mapping algorithm and product, Remote Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018. a, b, c
Glade, T. and Crozier, M. J.: The nature of landslide hazard impact, Landslide hazard and risk, 43–74, https://doi.org/10.1002/9780470012659.ch2, 2005. a
Grolemund, G. and Wickham, H.: Dates and Times Made Easy with lubridate, J. Stat. Softw., 40, 1–25, 2011. a
Gudmundsson, L., Rego, F. C., Rocha, M., and Seneviratne, S. I.: Predicting above normal wildfire activity in southern Europe as a function of meteorological drought, Environ. Res. Lett., 9, 084008, https://doi.org/10.1088/1748-9326/9/8/084008, 2014. a
Gupta, V., Jain, M. K., Singh, P. K., and Singh, V.: An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India, Int. J. Climatol., 40, 3667–3688, 2020. a
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., and Bürgmann, R.: A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure, Scientific Reports, 9, 1–12, 2019. a
Harp, E. L., Keefer, D. K., Sato, H. P., and Yagi, H.: Landslide inventories: The essential part of seismic landslide hazard analyses, Eng. Geol., 122, 9–21, https://doi.org/10.1016/j.enggeo.2010.06.013, 2011. a
Helsel, D., Hirsch, R., Ryberg, K., Archfield, S., and Gilroy, E.: Statistical methods in water resources: Techniques and Methods 4-A3, U.S. Geological Survey, https://doi.org/10.3133/tm4A3, 2020. a
Henry, L. and Wickham, H.: purrr: Functional Programming Tools, R package version 0.3.4, https://CRAN.R-project.org/package=purrr (last access: 2 March 2023), 2020. a
Hong, Y., Adler, R., and Huffman, G.: Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility, Nat. Hazards, 43, 245–256, https://doi.org/10.1007/s11069-006-9104-z, 2007. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, J. Open Res. Softw. [code], 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
James, A. L. and Roulet, N. T.: Antecedent Moisture Conditions and Catchment Morphology as Controls on Spatial Patterns of Runoff Generation in Small Forest Catchments, J. Hydrol., 377, 351–366, https://doi.org/10.1016/j.jhydrol.2009.08.039, 2009. a
Jordan, P.: Post-wildfire debris flows in southern British Columbia, Canada, Int. J. Wildland Fire, 25, 322–336, 2015. a
Kaufman, L. and Rousseeuw, P. J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344, John Wiley & Sons, https://doi.org/10.1002/9780470316801.ch5, 2009. a
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018. a, b, c
Kirschbaum, D., Kapnick, S. B., Stanley, T., and Pascale, S.: Changes in extreme precipitation and landslides over High Mountain Asia, Geophys. Res. Lett., 47, e2019GL085347, https://doi.org/10.1029/2019GL085347, 2020. a, b
Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., and Lerner-Lam, A.: Advances in Landslide Nowcasting: Evaluation of a Global and Regional Modeling Approach, Environ. Earth Sci., 66, 1683–1696, https://doi.org/10.1007/s12665-011-0990-3, 2012. a
Klose, M. (Ed.): Introduction, in: Landslide Databases as Tools for Integrated Assessment of Landslide Risk, Springer Theses, Springer International Publishing, Cham, 1–24, https://doi.org/10.1007/978-3-319-20403-1_1, 2015a. a
Klose, M. (Ed.): Methodology, in: Landslide Databases as Tools for Integrated Assessment of Landslide Risk, Springer Theses, Springer International Publishing, Cham, 59–105, https://doi.org/10.1007/978-3-319-20403-1_4, 2015b. a
Krkač, M., Špoljarić, D., Bernat, S., and Arbanas, S. M.: Method for prediction of landslide movements based on random forests, Landslides, 14, 947–960, 2017. a
Lee, J.-O., Lee, D.-K., and Song, Y.-I.: Analysis of the potential landslide hazard after wildfire considering compound disaster effect, Journal of the Korean Society of Environmental Restoration Technology, 22, 33–45, 2019. a
Lee, S.: Application and Verification of Fuzzy Algebraic Operators to Landslide Susceptibility Mapping, Environ. Geol., 52, 615–623, https://doi.org/10.1007/s00254-006-0491-y, 2007. a
Lee, S. and Pradhan, B.: Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models, Landslides, 4, 33–41, https://doi.org/10.1007/s10346-006-0047-y, 2007. a
Liu, Y., Goodrick, S., and Heilman, W.: Wildland Fire Emissions, Carbon, and Climate: Wildfire–Climate Interactions, Forest Ecol. Manag., 317, 80–96, https://doi.org/10.1016/j.foreco.2013.02.020, 2014. a
Lu, P., Casagli, N., Catani, F., and Tofani, V.: Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for Detection of Extremely Slow-Moving Landslides, Int. J. Remote Sens., 33, 466–489, https://doi.org/10.1080/01431161.2010.536185, 2012. a
Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V., and Vinod Kumar, K.: Landslide Hazard and Risk Assessment Using Semi-Automatically Created Landslide Inventories, Geomorphology, 184, 139–150, https://doi.org/10.1016/j.geomorph.2012.12.001, 2013. a
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K.: cluster: Cluster Analysis Basics and Extensions, R package version 2.1.3, For new features, see the “Changelog” file (in the package source) [code], https://CRAN.R-project.org/package=cluster (last access: 2 March 2023), 2022. a
McGuire, L. A., Rengers, F. K., Oakley, N., Kean, J. W., Staley, D. M., Tang, H., de Orla-Barile, M., and Youberg, A. M.: Time Since Burning and Rainfall Characteristics Impact Post-Fire Debris-Flow Initiation and Magnitude, Environ. Eng. Geosci., 27, 43–56, 2021. a
McKinney, W.: Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, edited by: van der Walt, S. and Millman, J., Vol. 445, 51–56 pp., AQR Capital Management, LLC [code], https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Meena, S. R. and Tavakkoli Piralilou, S.: Comparison of Earthquake-Triggered Landslide Inventories: A Case Study of the 2015 Gorkha Earthquake, Nepal, Geosciences, 9, 437, https://doi.org/10.3390/geosciences9100437, 2019. a
Mezaal, M. R., Pradhan, B., Sameen, M. I., Mohd Shafri, H. Z., and Yusoff, Z. M.: Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data, Applied Sciences, 7, 730, https://doi.org/10.3390/app7070730, 2017. a
Monsieurs, E., Dewitte, O., and Demoulin, A.: A susceptibility-based rainfall threshold approach for landslide occurrence, Nat. Hazards Earth Syst. Sci., 19, 775–789, https://doi.org/10.5194/nhess-19-775-2019, 2019. a
Neary, D. G., Ryan, K. C., and DeBano, L. F.: Wildland Fire in Ecosystems: Effects of Fire on Soils and Water, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ft. Collins, CO, Tech. Rep. RMRS-GTR-42-V4, https://doi.org/10.2737/RMRS-GTR-42-V4, 2005. a
Nefeslioglu, H. A., Sezer, E., Gokceoglu, C., Bozkir, A. S., and Duman, T. Y.: Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey, Math. Probl. Eng., 2010, 901095, https://doi.org/10.1155/2010/901095, 2010. a
Neuwirth, E.: RColorBrewer: ColorBrewer Palettes, R package version 1.1-2 [code], https://CRAN.R-project.org/package=RColorBrewer (last access: 2 March 2023), 2014. a
Nyman, P., Sheridan, G. J., Smith, H. G., and Lane, P. N. J.: Evidence of Debris Flow Occurrence after Wildfire in Upland Catchments of South-East Australia, Geomorphology, 125, 383–401, https://doi.org/10.1016/j.geomorph.2010.10.016, 2011. a, b
Ohlmacher, G. C. and Davis, J. C.: Using Multiple Logistic Regression and GIS Technology to Predict Landslide Hazard in Northeast Kansas, USA, Eng. Geol., 69, 331–343, https://doi.org/10.1016/S0013-7952(03)00069-3, 2003. a
Parise, M. and Cannon, S. H.: Wildfire impacts on the processes that generate debris flows in burned watersheds, Nat. Hazards, 61, 217–227, 2012. a
Pelletier, J. D. and Orem, C. A.: How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-LiDAR change detection, Earth
Surf. Proc. Land., 39, 1822–1832, 2014. a
R Core Team: _R: A Language and Environment for Statistical Computing_.R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/ (last access: 2 March 2023), 2021. a
Reneau, S. L., Katzman, D., Kuyumjian, G. A., Lavine, A., and Malmon, D. V.: Sediment Delivery after a Wildfire, Geology, 35, 151–154, https://doi.org/10.1130/G23288A.1, 2007. a
Rengers, F. K., McGuire, L. A., Oakley, N. S., Kean, J. W., Staley, D. M., and Tang, H.: Landslides after Wildfire: Initiation, Magnitude, and Mobility, Landslides, 17, 2631–2641, https://doi.org/10.1007/s10346-020-01506-3, 2020. a, b
Santi, P. M. and Rengers, F. K.: Wildfire and Landscape Change, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, https://doi.org/10.1016/B978-0-12-818234-5.00017-1, 2020. a
Schuster, R. and Highland, L.: Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere, Open-File Report, U.S. Geological Survey, 2001–276, https://doi.org/10.3133/ofr01276, 2001. a
Shakesby, R. A. and Doerr, S. H.: Wildfire as a Hydrological and Geomorphological Agent, Earth-Sci. Rev., 74, 269–307, https://doi.org/10.1016/j.earscirev.2005.10.006, 2006. a, b, c, d
Spiker, E. C. and Gori, P. L.: National Landslide Hazards Mitigation Strategy – A Framework for Loss Reduction, U.S. Geological Survey, Circular 1244, https://pubs.usgs.gov/circ/c1244/ (last access: 2 March 2023), 2002. a
Spittler, T.: Fire and Debris Flow Potential of Winter Storms, in: Brushfires in California Wildlands: Ecology and Resource Management, International Association of Wildland Fire, Fairfield, Washington, 113–120, 1995. a
Staley, D., Negri, J., Kean, J., Tillery, A., and Youberg, A.: Updated Logistic Regression Equations for the Calculation of Post-Fire Debris-Flow Likelihood in the Western United States, Open-File Report, U. S. Geological Survey, 2016–1106, https://doi.org/10.3133/ofr20161106, 2016. a, b, c
Staley, D. M., Tillery, A. C., Kean, J. W., McGuire, L. A., Pauling, H. E., Rengers, F. K., and Smith, J. B.: Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data, Int. J. Wildland Fire, 27, 595–608, 2018. a, b
Stanley, T. A., Kirschbaum, D. B., Sobieszczyk, S., Jasinski, M. F., Borak, J. S., and Slaughter, S. L.: Building a landslide hazard indicator with machine learning and land surface models, Environ. Modell. Softw., 129, 104692, https://doi.org/10.1016/j.envsoft.2020.104692, 2020. a
Struyf, A., Hubert, M., and Rousseeuw, P.: Clustering in an Object-Oriented Environment, J. Stat. Softw., 1, 1–30, https://doi.org/10.18637/jss.v001.i04, 1997. a
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and Wilson, B. E.: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1, ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/2129, 2022. a
Van Den Eeckhaut, M. and Hervás, J.: State of the Art of National Landslide Databases in Europe and Their Potential for Assessing Landslide Susceptibility, Hazard and Risk, Geomorphology, 139–140, 545–558, https://doi.org/10.1016/j.geomorph.2011.12.006, 2012. a
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, Scotts Valley, CA: CreateSpace, ISBN 978-1-4414-1269-0, 242 pp., 2009. a
van Westen, C. J., van Asch, T. W. J., and Soeters, R.: Landslide Hazard and Risk Zonation – Why Is It Still so Difficult?, B. Eng. Geol. Environ., 65, 167–184, https://doi.org/10.1007/s10064-005-0023-0, 2006. a
Westerling, A. L. and Swetnam, T. W.: Interannual to decadal drought and wildfire in the western United States, EOS T. Am. Geophys. Un., 84, 545–555, 2003. a
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019. a
Wilke, C., Fox, S. J., Bates, T., Manalo, K., Lang, B., Barrett, M., Stoiber, M., Philipp, A., Denney, B., Hesselberth, J., wsteenhu, van der Bijl, W., Grenié, M., Selker, R., Uhlitz, F., and zaczap: wilkelab/cowplot, 1.1.1 (1.1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.4411966, 2021. a
Zeileis, A. and Grothendieck, G.: zoo: S3 Infrastructure for Regular and Irregular Time Series, J. Stat. Softw., 14, 1–27, https://doi.org/10.18637/jss.v014.i06, 2005. a
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Landslides have often been observed in the aftermath of wildfires. This study explores regional...
Altmetrics
Final-revised paper
Preprint