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Abstract. Wildfires change the hydrologic and geomorphic
response of watersheds, which has been associated with cas-
cades of additional hazards and management challenges.
Among these post-wildfire events are shallow landslides
and debris flows. This study evaluates post-wildfire mass
movement trigger characteristics by comparing the precipi-
tation preceding events at both burned and unburned loca-
tions. Landslide events are selected from the NASA Global
Landslide Catalog (GLC). Since this catalog contains events
from multiple regions worldwide, it allows a greater degree
of inter-region comparison than many more localized cata-
logs. Fire and precipitation histories for each site are estab-
lished using Moderate Resolution Imagine Spectroradiome-
ter (MODIS) Burned Area and Climate Hazards group In-
fraRed Precipitation with Station data (CHIRPS) precipita-
tion data, respectively. Analysis of normalized 7 d accumu-
lated precipitation for sites across all regions shows that,
globally, mass movements at burned sites are preceded by
less precipitation than mass movements without antecedent
burn events. This supports the hypothesis that fire increases
rainfall-driven mass movement hazards. An analysis of the
seasonality of mass movements at burned and unburned loca-
tions shows that mass-movement-triggering storms in burned
locations tend to exhibit different seasonality from rainfall-
triggered mass movements in areas undisturbed by recent
fire, with a variety of seasonal shifts ranging from approx-
imately 6 months in the Pacific Northwest of North America
to 1 week in the Himalayan region. Overall, this paper offers
an exploration of regional differences in the characteristics of
rainfall-triggered mass movements at burned and unburned

sites over a broad spatial scale and encompassing a variety
of climates and geographies.

1 Introduction

Mass movements are destructive when they occur near vul-
nerable areas, causing damage to buildings, utility lines, and
roadways (Highland and Bobrowsky, 2008). Landslide mit-
igation costs in the United States of America (USA) are ap-
proximately USD 2 billion annually, with worldwide costs
much higher (Schuster and Highland, 2001). There can also
be indirect impacts, such as aggradation of the streambed or
the formation of landslide dams (Glade and Crozier, 2005).
Worldwide, these natural disasters cause tens of thousands of
deaths each year (Froude and Petley, 2018). Though an ac-
curate assessment of mass movement hazards would aid mit-
igation efforts (Spiker and Gori, 2002), such an evaluation
presents a challenge in part because mass movements are
often triggered by a sequence of cascading natural hazards
(Klose, 2015a). For example, mass movements may interact
with other complex phenomena such as heavy rain, wildfires,
floods, earthquakes, melting permafrost, and glacial out-
bursts (Budimir et al., 2015; Harp et al., 2011; Kirschbaum
et al., 2020, 2012; Rupert et al., 2003).

Here, we focus on a particular sequence of cascading nat-
ural hazards known as the post-wildfire landslide. In these
events, wildfires are followed by intense precipitation, lead-
ing to mass movements such as shallow landslides or de-
bris flows. The impact of wildfires, which themselves oc-
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cur more frequently and severely as a consequence of higher
temperatures and increasingly widespread drought, can lead
to a variety of geo-hydrological hazards including increased
snowmelt, water contamination, increased erosion rates, and
decreased infiltration (AghaKouchak et al., 2020). Post-
wildfire landslides in particular occur when wildfires are fol-
lowed by intense precipitation, leading to mass movements
such as a sediment-laden floods, shallow landslides, or de-
bris flows. We use the term “mass movement” preferentially
over landslide in this study in order the encompass this va-
riety of phenomena, not all of which are landslides in the
strictest definition. Nonetheless, when describing prior liter-
ature in which “landslides” and “mass movements” are used
interchangeably, we defer to the terminology used by the au-
thors of the cited work.

The impact of wildfire on landslide hazards can vary on
the basis of static factors such as burn severity, vegetation,
and soil types (Cannon et al., 2010; Staley et al., 2018). Mass
movement hazards in general may also depend on dynamic
factors such as soil moisture, meteorology, and the length
of time since the most recent fire (Kirschbaum and Stanley,
2018; DeGraff et al., 2015; McGuire et al., 2021). There are
numerous local studies demonstrating a relationship between
wildfire occurrence or severity and the amount of precipi-
tation that triggers a mass movement (Cannon et al., 2008;
Gartner, 2005; Reneau et al., 2007; Riley et al., 2013). The
impact of wildfire on landslide hazards can also vary on the
basis of local factors such as vegetation and soil type (Can-
non et al., 2010; Staley et al., 2018). In general, the lack of
complete landslide inventories including a wide variety of
climates and ecoregions presents an obstacle to evaluating
the role of fire in rainfall-triggered landslides (Klose, 2015b).

This study seeks to test the hypothesis that wildfire con-
sistently increases mass movement susceptibility across six
global regions by detecting and characterizing differences in
mass-movement-triggering precipitation at both burned and
unburned sites. Though we cannot draw conclusions about
the susceptibility leading to any particular event, less pre-
cipitation among a group of post-wildfire mass movements
suggests that the threshold for triggering a mass movement
was lowered, i.e., susceptibility was greater. A second pur-
pose of this study is to explore the possibility that the rela-
tionship between wildfire history and the expected frequency
of landslide-triggering precipitation varies by region.

The NASA Global Landslide Catalog (GLC) provides a
large collection of rainfall-triggered landslides taking place
in a variety of climates such that, in combination with
spatially continuous observations of fire (500 m Moder-
ate Resolution Imaging Spectroradiometer (MODIS) Burned
Area by Giglio et al., 2018) and precipitation (5.5 km Cli-
mate Hazards group InfraRed Precipitation with Station data
(CHIRPS) by Funk et al., 2015) data, it is well suited for
comparing the diverse precursors under which post-wildfire
mass movements occur.

1.1 Mechanisms by which fire increases mass
movement hazards

While many factors contribute to mass movement hazards,
only a subset are altered by fire exposure (Highland and Bo-
browsky, 2008) and are therefore of interest to this analysis.
Fire changes hydrologic and geomorphic response through
several distinct physical mechanisms. First, the destruction
of vegetation contributes to the development of debris flows
and other mass movements in three ways:

– Sediment gathered behind vegetation trunks and stems
can, after a fire, be mobilized either by a rain storm or as
dry ravel, i.e., sediment that rolls down the slope with-
out precipitation (Cannon and Gartner, 2005).

– Vegetation destruction clears pathways for water and
sediment to flow downhill more quickly (Shakesby and
Doerr, 2006).

– Following a fire, canopy and litter storage – water
that becomes trapped in leaves and other detritus on
the ground – is greatly reduced, resulting in increased
runoff and sediment transport (Cannon and Gartner,
2005; Shakesby and Doerr, 2006).

Additionally, soil properties can be dramatically altered
post-fire, resulting in the following changes which can affect
the formation of mass movements:

– Burned soils can have reduced organic content as a
result of the combustion process, which causes them
to have reduced water-holding capacity (Neary et al.,
2005).

– Combustion of organic content also typically reduces
soil aggregate stability, promoting erosion (Shakesby
and Doerr, 2006).

– Some combinations of soil, vegetation type, and temper-
ature can decrease wettability or produce a hydrophobic
layer 1–5 cm beneath the soil, thereby dramatically in-
creasing runoff (Spittler, 1995). The implications of this
effect vary from place to place, since fire can also de-
stroy hydrophobic layers in the right conditions. In ad-
dition, these effects are not always uniform across the
burned area, and the effects of changed wettability can
last from days to years depending on the local condi-
tions (Shakesby and Doerr, 2006).

– A layer of post-fire ash caused by fire can also increase
soil storage potential depending upon the thickness and
hydraulic conductivity of the layer (Ebel et al., 2012).

One consequence of wildfire-driven changes to soil and
vegetation for rainfall-triggered mass movements is that the
predominant mechanism shifts from infiltration-driven to
runoff-driven (Cannon and Gartner, 2005). Infiltration-driven
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mass movements are typically shallow slope failures initi-
ated by longer storms that saturate the shallow subsurface.
By contrast, runoff-driven mass movements are often de-
bris flows caused by high-volume storms that mobilize sed-
iment on the surface without the need for much infiltration.
A mass movement can often be identified as one type or an-
other primarily by observing whether it had a point origin, as
with infiltration-driven mass movements, or a distributed ori-
gin, as with runoff-driven mass movements. For infiltration-
driven mass movements, the antecedent soil moisture condi-
tions are more important for evaluating mass movement haz-
ards, since soil saturation is fundamental to the mechanism of
slope failure. However, post-wildfire mass movements tend
to be less driven by infiltration, since the hydrophobic and
more erodible sediment layer creates an ideal condition for
runoff-driven mass movements. (Cannon et al., 2008; Santi
and Rengers, 2020; Parise and Cannon, 2012).

1.2 Evidence for increased mass movement hazards
with increased burn severity

Wildfire has been empirically linked to increased frequency
and volume of debris flows in several regions of the west-
ern USA (Cannon and Gartner, 2005). A key piece of ev-
idence for this connection comes from a series of studies
based on repeated post-storm observations of burned water-
sheds in southern California and the Intermountain West re-
gions of the USA as part of the development of the US Geo-
logical Survey (USGS) operational post-wildfire mass move-
ment hazard predictions (Cannon et al., 2010; Gartner et al.,
2009, 2014; Rupert et al., 2003; Staley et al., 2016). These
five studies model the probability of mass movements fol-
lowing fire using logistic regressions to demonstrate that both
burn severity (Staley et al., 2016) and burn extent within
a watershed (Cannon et al., 2010) are associated with in-
creased debris flow likelihood. Notably, burn severity and ex-
tent are both increased by drought and other low antecedent
soil moisture (Westerling and Swetnam, 2003), and thus we
expect to find more post-wildfire debris flows in dry cli-
mates. Gartner et al. (2014) found that the increase in debris
flow probability in a watershed due to wildfire is greatest
immediately after wildfire but can last a total of 2–5 years.
Other studies suggest that the overall mass movement haz-
ard evolves over time in a more complex manner, with debris
flow hazards increasing for the year after the fire followed
by an increase in the frequency of shallow landslides as tree
roots decay in subsequent years (Rengers et al., 2020; Benda
and Dunne, 1997). Increased likelihood of post-wildfire de-
bris flows has also been associated with the erodibility of
fine sediment in the soil, soil organic matter percentage,
soil clay percentage, underlying lithology (e.g., sedimentary
or granitic rock), watershed area, and watershed relief ratio
(Gartner et al., 2009; Rupert et al., 2003; Pelletier and Orem,
2014).

The widely recognized relationship between mass move-
ments and burn severity suggests that mass movement sus-
ceptibility increases after wildfires in the western USA, al-
though none of the above studies include observations of
unburned sites as a control. Instead, the databases used in
Cannon et al. (2010), Gartner et al. (2009, 2014), Rupert et
al. (2003), and Staley et al. (2016) include multiple observa-
tions of the presence or absence of a debris flow at each site,
making them suitable for a regression analysis based on burn
severity but not for comparing burned and unburned loca-
tions. In addition, while these post-wildfire mass movement
observations contain precise dates and locations and extend
across a remarkable spatial range when compared to most
other mass movement hazard models, they still are limited
to 119 sites or fewer (Gartner et al., 2014). This limited spa-
tial extent leaves open the question of whether the fire–flood
patterns of the western USA are unique or whether similar
hazards are just as ubiquitous but under-reported in other re-
gions. A global study by Riley et al. (2013) comparing post-
wildfire and non-fire-related debris flows found that the vol-
umes of the post-wildfire debris flows tended to be smaller.
This finding suggests that the increase in debris flow hazard
and frequency after wildfires occurs in a variety of environ-
ments.

1.3 Sources and methods for mass movement data
collection

It is resource-prohibitive to conduct a continuous system-
atic search for mass movements either in the field or with
satellite observations. As a result, many of the most accurate
and complete methods for systematically identifying mass
movements can presently only be used over limited spa-
tial and temporal domains. For example, Lee and Pradhan
(2007) identified landslides from aerial photograph interpre-
tation and a field survey over the ∼ 800 km2 Selangor area
in Malaysia, and Nefeslioglu et al. (2010) used an inventory
based on aerial photographs taken in 1955–1956 to analyze
landslide susceptibility over a ∼ 175 km2 area near Istanbul,
Turkey. An alternative to manual identification either in the
field or using photographs is automatic or semi-automatic
landslide detection using image processing on aerial imagery,
lidar surveys, or synthetic aperture radar (SAR). These au-
tomated methods are typically applied over similarly small
domains due to challenges with obtaining imagery and com-
piling training datasets. For example, Martha et al. (2013)
used aerial imagery over ∼ 120 km2 in the Himalayas, while
Mezaal et al. (2017) used lidar over the 26.7 km2 Cameron
Highlands of Malaysia. SAR interferometry can be used for
identification of pre-landslide motion, as was done by Lu et
al. (2012) over the ∼ 1500 km2 Arno basin in Italy. In addi-
tion, several SAR techniques have been employed to iden-
tify post-landslide scars, including SAR amplitude mapping
of landslides triggered by the Gorkha, Nepal, earthquake in
2015 over a 14 500 km2 area (Meena and Tavakkoli Piralilou,
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2019) and coherence mapping of interferometric SAR the
same earthquake-triggered landslides (Burrows et al., 2019)
and the wildfire-triggered landslides over ∼ 60 km2 of the
area burned by the 2017 Thomas Fire in California (Donnel-
lan et al., 2018). While automated mass movement detection
as deployed in the above studies is continually undergoing
promising advances, at the time of this analysis it had not
yet been used to compile an inventory over a broad enough
spatial domain to facilitate inter-regional comparisons. Such
records collected in an uncoordinated effort over small do-
mains are unsuitable for regional inter-comparisons such as
we have undertaken here because these records do not con-
tain standardized information for every region, are often un-
published (van Westen et al., 2006), and are unlikely to have
a daily temporal resolution that would allow comparison with
the precipitation record (Kirschbaum et al., 2010).

For this study, we chose to use the GLC (Kirschbaum
et al., 2010). As with the few other regional and global
databases available, the broad domain of the GLC comes
coupled with issues of location error and spatial bias. For
each landslide location, the GLC contains an estimate of the
area in which the landslide occurred, labeled the “location
accuracy”. For consistency, we refer to this parameter using
the same name. The sources of GLC data are second-hand
observations made by the news media or governmental or-
ganizations such as departments of transportation and some
available scientific reports (Kirschbaum et al., 2010). The ab-
sence of a systematic search for mass movements across the
entire database domain results in a substantial spatial bias
towards populated areas where mass movements happen to
be noticeable. News reports also suffer relatively high loca-
tion uncertainty (as much as 50 km) depending on how spe-
cific the source article is about the location (Kirschbaum et
al., 2010). Finally, though the GLC does contain some in-
formation about the mass movement mechanisms that would
allow mass movements to be classified, for example, as de-
bris flows or shallow landslides, the majority of the events in
the GLC are labeled as a non-specific landslide type, which
could refer to any type of mass movement. Despite limita-
tions in accuracy and completeness, the GLC was chosen for
this study primarily because, as of this writing, it offers the
largest spatial and temporal range of any catalog. The GLC
contains a sample of mass movements from across the globe
(n= 11377, of which 5313 met study requirements – see
Sect. 2.1), and a substantial proportion of mass movements
were identified in this study as having occurred in recently
burned areas (n= 489; 9.2 %).

1.4 Towards a global picture of mass movement
susceptibility

This study seeks to test the hypothesis that wildfires in-
crease landslide susceptibility by evaluating antecedent pre-
cipitation at both burned and unburned mass movement lo-
cations. Some existing local and regional studies (Cannon et

al., 2010; Rupert et al., 2003) have assessed the impact of
wildfire on mass movement susceptibility, but they have not
included unburned locations in their analyses. Other studies
have also featured the GLC data and a global spatial extent,
with a focus on validating large-scale mass movement haz-
ard models (Kirschbaum and Stanley, 2018). This analysis
is unique compared to other regional and global studies in
that it combines the broad scope of the GLC data with an
exploration of the role of wildfire in mass movement suscep-
tibility. This study is also distinct from others that focus on
the role of wildfire on mass movement sites (Gartner et al.,
2009) in that here burned sites are contrasted with unburned
sites instead of previous observations of the same location.
Finally, in contrast to post-wildfire mass movement studies
focused on a specific regions like the western USA (Can-
non and DeGraff, 2009), southern California (Gartner et al.,
2014), western Canada (Jordan, 2015), South Korea (Lee et
al., 2019), or southeast Australia (Nyman et al., 2011), this
study combines the GLC with globally observed fire and pre-
cipitation data to offer unique insights into the role of fire in
mass movement susceptibility in diverse regions across the
globe.

2 Methods

We first describe the mass movement data (Sect. 2.1), the
study regions (Sect. 2.2), and fire data (Sect. 2.3). Mass
movements were included only if precipitation data and at
least 3 years of antecedent fire data were available. The mass
movements occurred between 2007 and 2019, with corre-
sponding precipitation and fire data extending as far as 2004–
2019 so as to capture antecedent conditions. The precipi-
tation data (Sect. 2.4) leading up to the date of each mass
movement were compared using three approaches. First, the
7 d running total precipitation depth percentile for the 30 d
surrounding the day of the year and across the total 38-year
record (see Sect. 2.4) was used as a proxy for mass move-
ment susceptibility. We assume here that greater suscepti-
bility results in a lower precipitation threshold to trigger a
landslide. An observation, therefore, of lower precipitation
percentile values triggering mass movements across a sam-
ple of sites suggests that susceptibility is generally higher in
that group. This principle is illustrated in the susceptibility-
based rainfall threshold model developed by Monsieurs et al.
(2019), in which the predicted threshold of antecedent rain-
fall resulting in a landslide is adjusted according to suscep-
tibility factors. This percentile value was compared between
burned and unburned sites within each region and for all in-
cluded mass movements (see Sect. 2.5). Next, 7 d precipita-
tion percentiles were compared with bootstrapped samples
from burned and unburned sites separately (see Sect. 2.6) to
confirm the findings from the depth percentile analysis and
also to draw out differences in storm timing between burned
and unburned groups. Finally, the precipitation frequency in
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the burned and unburned groups in the months and years sur-
rounding each mass movement (see Sect. 2.7) was examined
to identify shifts in the seasonality of mass movements at
burned sites relative to the unburned group. These season-
ality results were augmented with kernel density estimates
of mass movement occurrence by day of year at burned and
unburned sites for each region.

2.1 Mass movement data

A sample (n= 5313) of rainfall-triggered mass movements
was obtained from the GLC. Mass movement locations are
shown in Fig. 1, along with a summary of fire and pre-
cipitation information obtained for those locations from the
sources listed in Table 1 (see Sect. 2.3 and 2.4). The GLC
provides a large collection of events taking place in a variety
of climates such that, in combination with spatially continu-
ous observations of fire (500 m Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Burned Area by Giglio et
al., 2018) and precipitation 5.5 km Climate Hazards group
InfraRed Precipitation with Station data (CHIRPS) by Funk
et al., 2015) data, it is well suited for comparing the diverse
precursors under which post-wildfire mass movements occur.

In order to reduce errors resulting from including a vari-
ety of types of rainfall-triggered mass movements within the
same dataset, the selected mass movements were limited to
those labeled in the GLC with a “landslide trigger” value of
“rain”, “downpour”, “flooding”, or “continuous rain”. Mass
movements with a second trigger such as an earthquake were
eliminated. Snowmelt-driven mass movements were also not
included because the impact of precipitation can be delayed
in those cases. An analysis of the snow record in California–
Nevada revealed only a single event with enough antecedent
snow to suggest it could have been mislabeled. Only records
with location uncertainty of 10 km or less were included,
since the mass movements with lower location accuracy pre-
sented problems for wildfire classification. Finally, only mass
movements between 50◦ S and 50◦ N latitude were included,
and the events occurring before the year 2000 were omit-
ted so as to ensure coverage by both fire and precipitation
datasets (see Table 1).

The GLC contains a variety of types of rainfall-triggered
mass movements with different physical mechanisms, in-
cluding debris flows, shallow landslides, and rockfalls. The
majority of included mass movements (65 %), however, are
categorized simply as landslide, which, according to the
dataset authors, can mean any type of mass movement. Since
most of the mass movements are of an unknown type, we
did not exclude data on the basis of category. Of the spe-
cific types of mass movements, most are labeled mudslides
(25 %), with the next largest category being rockfalls at 4 %.
This uncertainty as to landslide mechanism is currently a
necessary trade-off for large spatial scales. This limitation
highlights the need for large-scale catalogs for specific types

of mass movements, such as debris flows or shallow land-
slides.

2.2 Study regions

To compare the differences in mass movement triggers in dif-
ferent climates, we divided the mass movements into regions
(see Fig. 1a and b). Regions were determined using the AG-
glomerative NESting (AGNES; Struyf et al., 1997) hierar-
chical clustering algorithm (Kaufman and Rousseeuw, 2009)
considering the latitude and longitude of the mass move-
ments, and clusters were subsequently combined, split, or
eliminated on the basis of equalizing sample sizes as de-
scribed below. Though the regions are still large enough
to encompass considerable variability in climate, the spatial
clustering helps to ensure that the variability across regions –
particularly in latitude – is larger than the variability within
them.

First, the cluster tree was truncated at 30 clusters, after
which all the clusters with fewer than 100 data points or less
than 5 % burned sites were eliminated. Notably, two com-
monly studied regions for mass movements – Europe and
Australia (e.g., Van Den Eeckhaut and Hervás, 2012; Ny-
man et al., 2011) – were eliminated at this stage due to a
lack of verifiable post-wildfire mass movements available in
the GLC. Cases where two nearby regions both had lower
numbers of mass movements, for example, Central Amer-
ica and the Caribbean–Venezuela, were joined manually. Fi-
nally, the largest region, encompassing the western USA and
Canada, was split into three sub-regions based on an addi-
tional identical clustering process over this sub-domain. The
final regions are shown in Fig. 1a. The Pacific Northwest of
North America was included even though the percentage of
burned sites is lower than the threshold, but at 4.4 % it was
nearly double the highest percentage among the eliminated
regions (2.25 % in the eastern USA). Some mass movements
were not included in any of the final regions. These events
were not, however, eliminated from any analysis of all mass
movements.

2.3 Fire data

For each mass movement, a circle centered at the mass move-
ment location and with a radius of the location accuracy was
computed, and each 500 m pixel within the circle was ex-
tracted from the MODIS Burned Area dataset (Giglio et al.,
2018). Fire affects the landscape over a large range of tempo-
ral scales in different settings. Previous studies suggest that
the post-wildfire increase in mass movement susceptibility
peaks within the first 6 months but that a second time pe-
riod of increased susceptibility can appear after 3 years or
even longer as a result of root decay (DeGraff et al., 2015;
Gartner et al., 2014). Landslides were classified as burned
if any part of the area where the mass movement occurred
was burned at some point within the 3 years prior to the
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Figure 1. Landslide locations (n= 5313, 2006–2017), showing region coding (see Sect. 2.2) in panels (a) and (b), with location accuracy for
burned and unburned groups in the regional insets; burned/unburned classification at the time of the mass movement in panels (c) and (d),
with regional insets showing kernel density portrayal of the fraction of burned area for the mass movement locations from the 3 years
preceding the mass movement; and the precipitation percentile on the day of the mass movement in panels (e) and (f), with regional insets of
kernel density estimates (violin plots) of the climatological (1981–2020) seasonal precipitation magnitude (mm) including a reference line
indicating the median seasonal average across all sites globally. Country boundaries were obtained from the maps R package (Deckmyn et
al., 2018).
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Table 1. Description of datasets used in the analysis.

Data source Description Spatial extent Spatial resolution Temporal Temporal
range resolution

NASA Global Compilation of landslides Global, with Landslide location 1988–2015, Daily for
Landslide drawn from news articles variable accuracy varies from most data most data
Catalog (GLC; and scientific reports coverage exact to 50 km range. 2007–2015 points
Kirschbaum et in different The coarsest location
al., 2010) countries accuracy used

was 10 km.

Climate Hazards group Station-corrected gridded 50◦ S to 50◦ N 0.05◦ (∼ 5.5 km) 1981–2020 Daily
InfraRed Precipitation precipitation data derived
with Stations from cloud temperature
data (CHIRPS) observed using infrared
(Funk et al., 2015) satellite observations

MODIS Burned Dates on which a pixel was burned, Global 500 m 2000–2020 Daily
Area (Giglio derived from NASA’s MODIS Terra
et al., and Aqua satellites. The product
2018) uses a reprocessing algorithm

that combines changes in the
burn-sensitive vegetation index
and active fire locations.

Daymet precipitation An alternative precipitation North America 1 km 1980–2020 Daily
and snow water dataset based on station data
equivalent (Thornton and topographic information
et al., 2014)

event to capture both waves of increased susceptibility with-
out over-identifying mass movements areas where fires occur
every few years. The fraction of pixels that were burned over
the 3-year antecedent period was then computed, and mass
movements were classified as burned if there was any over-
lap between burned areas and the mass movement circle. As
a result of this analysis, 489 mass movements (9.2 %) were
categorized as potential post-wildfire events.

While this method of identifying post-wildfire mass move-
ments ensured that all post-wildfire mass movements were
classified as burned, the low spatial accuracy of many of
the mass movement locations leaves open the possibility that
some mass movements occurred near a recent fire but not
within the fire perimeter. Due to uncertainty in the exact lo-
cation of many of the mass movement locations, both false-
positive and false-negative errors in burn history classifica-
tion are possible. Some mass movements classified as burned
may have occurred near a recent fire but not within the fire
perimeter, or conversely some mass movements classified as
unburned may in fact have been located inside a fire perime-
ter but near the edge. However, by classifying mass move-
ments as burned if any part of the potential location was
burned limits the potential for false-negative errors while in-
creasing the possibility of false-positive errors. For this rea-
son we refer to mass movements as “burned” instead of post-
wildfire in this analysis. Also important to note is that false-

positive burned classification is a function of both the burned
fraction and the conditional probability of mass movement
occurrence given that a fire has occurred. False positives are
therefore less likely for mass movements with better location
accuracy, which made up a larger proportion of mass move-
ments in the regions within the USA and Canada than other
regions. Figure 1 shows the distributions of burned fractions
for each region. Note that in Central America and Southeast
Asia, very few sites have above a 10 % burned fraction (see
Fig. 1c and d inset plots). This could be due to those regions
having lower mass movement location accuracy, resulting in
a higher likelihood of false-positive post-wildfire mass move-
ments.

To explore the effects of variability in location accuracy
and mass movement type within the GLC, validation anal-
yses were performed to quantify the extent of errors due
to these factors. Firstly, the percentages of burned sites in
each region were computed for each location accuracy. Sub-
sequently, the results of the Mann–Whitney hypothesis tests
comparing pre-landslide precipitation percentiles were du-
plicated, splitting the data into the high- and low-accuracy
groups (≤ 1 and > 1 km, respectively). The number of days
with statistically significant differences in the precipitation
percentile in the 14 d prior to the mass movement and 7 d
are computed in each group. Finally, a similar analysis com-
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pared debris flows (labeled as “debris flow” or “mudslide” in
the GLC) and other types of mass movements.

2.4 Precipitation data

Time series of precipitation at the mass movement sites were
obtained from the CHIRPS precipitation dataset (Funk et
al., 2015). CHIRPS is a gauge-corrected global precipita-
tion database derived from satellite-based cloud temperature
measurements. The CHIRPS dataset was chosen because of
its global coverage and relatively long climatological record
(1981–present). Though the ∼ 5.5 km resolution of CHIRPS
may present challenges in capturing high-intensity storms
that sometimes trigger landslides (Hong et al., 2007), Gupta
et al. (2020) found that CHIRPS performed well in detecting
extreme precipitation across India. Furthermore, this resolu-
tion matches the 5 km resolution of the plurality of records
in the GLC. Precipitation was averaged for each mass move-
ment location within the radius of the provided location
accuracy. Additional pre-processing steps described below
were performed to distinguish anomalously high precipita-
tion events from potential seasonal shifts and climatic differ-
ences across sites.

Mass movements can be triggered by intense and short
storms, by long storms of lower intensity, or by events some-
where in between. A 7 d running average of antecedent pre-
cipitation was computed to enable direct comparison of the
mass movements triggered by storms for a range of dura-
tions. While including an estimate of the soil moisture was
outside the scope of this study, 7 d antecedent rainfall indices
consisting of a weighted average of precipitation over the 7 d
time period have been used by other modeling studies as a
surrogate for soil moisture in a combined indicator of land-
slide susceptibility (James and Roulet, 2009; Kirschbaum
and Stanley, 2018). Furthermore, 7 d sums of precipitation
have been found to perform better than other durations in
threshold models of landslide occurrence (Krkač et al., 2017;
Garcia-Urquia and Axelsson, 2015). Figure 1e and f show
these 7 d cumulative-precipitation percentiles, as well as the
climatological seasonal average precipitation, revealing that
the western USA is dominated by dry summers, while the
lower-latitude regions exhibit wetter summers and in some
cases monsoons.

Upon computing the CHIRPS precipitation measurements
for each event, we noted that some of the categorized rainfall-
triggered mass movements in fact had no recorded an-
tecedent precipitation in the 7 d window. We screened these
mass movements from the analysis. Figure 2 shows a quality
control sub-analysis for the California–Nevada area to inves-
tigate the need for data screening on the basis of inconsis-
tencies between the reports of rainfall-triggered mass move-
ments and the precipitation record. This region was chosen
for the quality control analysis because of its high density
of precipitation data and variety of climate conditions, use-
ful for identifying erroneous mass movement precipitation.

Figure 2. The 7 d precipitation percentiles for Daymet vs. CHIRPS
products computed for the 6 d before and 1 d following recorded
California–Nevada mass movements. Blue and black points show
the screened and included mass movements, respectively, whereas
cumulative precipitation from the rest of the available record is
shown in grey.

We found 14 % (73 of 533) of the mass movements in this
region had no triggering precipitation event recorded in the
CHIRPS data. Since the GLC contains only rainfall-triggered
mass movements, the lack of precipitation in these cases was
likely a result of errors in either the precipitation data or the
mass movement data.

A comparison with the Daymet precipitation dataset over
the same domain revealed that the two precipitation datasets
frequently did not agree on these zero-precipitation mass
movement events, suggesting that the problem largely orig-
inated from the precipitation data themselves. Daymet is
higher in resolution than CHIRPS (1 km vs. 5.5 km) and is
based on precipitation gauge measurements. The extent of
Daymet is limited to North America and thus is only used for
validation in the California area. Furthermore, the concentra-
tion of data points on the x and y axes of Fig. 2 suggests that
disagreements on precipitation occurrence are distinct from
disagreements on the non-zero amounts of precipitation and
potentially a separate source of error. To limit the effect of
these inconsistent data points on the results, all mass move-
ments worldwide with no measured precipitation in the 6 d
before and 1 d after the event were removed from the global
study (367 of 5680 or 6.5 % removed for a final n of 5313).

Precipitation data were further processed to facilitate the
comparison of mass-movement-triggering events across a va-
riety of seasons and climates. In an initial analysis of the
precipitation data, we were unable to distinguish between
normal seasonal increases in precipitation and specific mass-
movement-triggering precipitation. In order to isolate trig-
gering storms, it was necessary to normalize for both lo-
cation and time of year. We accomplished this by com-
puting a 30 d rolling percentile of the 7 d running precip-
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itation values based on 38 years of historical precipitation
climatology from 1981–2019 for each location. Percentiles
have been used to compare landslide-triggering precipitation
across larger, e.g., country-sized, regions (Kirschbaum et al.,
2020; Araújo et al., 2022) in order to control for differences
in the climate or precipitation data source. For this study, the
percentile produced a uniform distribution of precipitation
ranging from 0 to 1, controlling for geographic and seasonal
differences. As a result, anomalous precipitation events are
highlighted, facilitating the comparison of mass movement
triggers across locations and seasons.

2.5 Precipitation percentile experiment

This experiment compares the 7 d precipitation percentile in
the burned and unburned groups in the time leading up to
a mass movement. The percentile indicates the degree to
which mass-movement-triggering storms were exceptionally
large and also serves as a proxy for relative mass move-
ment susceptibility. A one-sided Mann–Whitney hypothe-
sis test was used to ascertain whether the precipitation per-
centiles of burned sites were less than the precipitation per-
centiles of unburned sites. Deviations between the burned
and unburned groups defined by a p value of less than 0.05
on the Mann–Whitney test indicate statistically significant
differences in the mass movement susceptibility of the two
groups. The null hypothesis of the Mann–Whitney test was
that the distribution of precipitation percentiles of the burned
sites is generally greater than or equal to the distribution
of precipitation percentiles of the unburned sites (Helsel et
al., 2020). Percentiles are by definition uniformly distributed
rather than normally distributed, making the Mann–Whitney
test, since it does not require normal distribution, the most
appropriate hypothesis test for these data. However, since
zero-precipitation periods are excluded, this method can-
not account for differences in the frequency of precipitation
across different climates, but rather it reflects differences in
the magnitude of 7 d precipitation totals.

2.6 Bootstrapped sample experiment

In order to evaluate how anomalous the precipitation events
preceding burned and unburned landslides were compared
to “typical” local climate conditions at the mass movement
locations, we compared them to bootstrapped samples from
other years to obtain a clearer signal. A total of 100 samples
were taken from the 38-year precipitation records to match
the locations and day of year (DOY) of the observed mass
movements, but they were from randomly selected years (n
is the smallest number above 100 that ensured each site was
included in the same number of samples). Sampling was re-
peated for burned and unburned groups within each region
as well as for all the mass movements in the study. These
samples are representative of precipitation for a particular
number of days before the mass movement and serve as a

control dataset with which to compare the pre-landslide pre-
cipitation. Next, the observed event-year precipitation across
all sites in the group was tested against each bootstrap sam-
ple using a Mann–Whitney test, with the null hypothesis that
the sample median precipitation percentile was less than or
equal to the median of the precipitation percentiles from that
day of the year in the entire record from 1981–2020. This
produced a distribution of p values that represent the likeli-
hood that the precipitation leading up to the mass movements
varied from the control baseline.

This sampling method, though more complex, helps to re-
duce noise in the hypothesis test results due to different sam-
ple sizes in different regions. It also provides more informa-
tion on the general mass movement susceptibility of each
region rather than only the relative susceptibility of burned
and unburned sites. Finally, it includes measurements of zero
precipitation, which were eliminated from the direct com-
parison because of long-term climatic differences in precip-
itation frequency between burned and unburned sites in all
regions.

2.7 Mass movement seasonality experiment

The probability of landslide occurrence in a given tem-
porospatial domain varies throughout the year (Stanley et al.,
2020); we refer to this annual pattern for a given domain as
mass movement seasonality. We hypothesize that wildfire al-
ters mass movement seasonality. To test this hypothesis, we
estimated precipitation frequency at the mass movement sites
over time by computing the fraction of sites in the burned and
unburned groups that had precipitation on any given day. As
with the percentiles and the bootstrap p values, frequency es-
timates were computed relative to the mass movement event
rather than by calendar date, resulting in time coordinates
measured in “years before the event”. Precipitation frequency
was estimated for 2 years before and after the mass move-
ment in order to highlight changes in the magnitude and
phase of the precipitation pattern. We found that in most re-
gions there was a long-term difference in the mean annual
precipitation frequency, likely because fires occur more of-
ten in areas with drier climates (Liu et al., 2014) and drought
(Balling et al., 1992; Gudmundsson et al., 2014). These per-
sistent differences between burned and unburned sites were
removed by standardizing the mean precipitation frequency
for both the burned and the unburned groups, that is to say
subtracting the mean and frequency and dividing by the stan-
dard deviation. Finally, we took a 90 d running average to
reduce noise in the data and thereby make it easier to visu-
ally identify any long-term shifts in mass movement occur-
rence. These frequency estimates are not normalized by sea-
son, which means that unlike the previous two metrics, they
can be used to compare the degree of shift in the seasonality
of mass movements at burned vs. unburned sites relative to
annual precipitation cycles.
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Additional seasonality analysis was performed to provide
insight into the times of year that mass movements occur at
burned vs. unburned sites. Kernel density estimates of mass
movement occurrence throughout the year were compared
between the burned and unburned groups. This seasonality
analysis would highlight a shift from fall to spring, but, in
contrast with the frequency analysis, it does not indicate the
precipitation conditions under which mass movements typ-
ically occur. Together, the frequency and seasonality anal-
yses can show both the seasonal shift and any changes in
mass movement occurrence relative to annual precipitation
patterns.

3 Results

3.1 Precipitation percentile experiment

The distributions of precipitation event percentiles for all the
included mass movements are shown in Fig. 3. The precip-
itation percentile increases for all groups as the date of the
landslide approaches, confirming that these rainfall-triggered
landslides are generally preceded by an increase in total pre-
cipitation depth. Notably, when considering all mass move-
ments together (Fig. 3), the precipitation events that trig-
gered landslides at burned sites were significantly smaller
than those that triggered mass movements at unburned loca-
tions (Mann–Whitney test, 95 % confidence). At first glance,
this difference supports the overarching hypothesis that wild-
fire does in fact increase mass movement susceptibility, since
mass movements in the period after a fire can be triggered by
less precipitation than might normally be required to cause
mass movement. However, an examination of each region
separately reveals that the difference in precipitation per-
centiles between burned and unburned sites is present in
some regions but not in others (see Fig. 3). The California
area (Fig. 3b) has a particularly strong signal, whereas trop-
ical regions do not show any significant decrease between
precipitation at burned and unburned sites or display the re-
verse effect of higher precipitation percentiles for unburned
locations compared to burned locations. In total, these initial
results suggest that post-wildfire landslides are isolated to ar-
eas, such as California, where such cascading hazards have
been repeatedly observed.

Figure 4 shows p values for Mann–Whitney hypothesis
tests comparing precipitation percentiles for burned and un-
burned groups for high-location-accuracy and low-location-
accuracy groups of mass movements. High accuracy indi-
cates less than 1 km. Several regions, such as California
(Fig. 4b), show substantial differences between the high-
accuracy and low-accuracy p values. Sample sizes of burned
locations among the exact locations are low, ranging from 2
to 34 in each region, with overall only 3.7 % of high-accuracy
mass movements classified as burned (below the threshold
used to exclude regions from this study). The low percent-

age of burned sites may partially account for high p val-
ues among the high-accuracy group. An additional impor-
tant consideration is the likelihood of a greater number of
false-positive burned sites among the low-accuracy group.
Notably, the percentage of identified burned sites using this
method increases with the location accuracy radius – glob-
ally 12.5 % of low-accuracy mass movements were identified
as burned in contrast with only 3.7 % of high-accuracy mass
movements.

Figure 5 shows the p values of Mann–Whitney hypothe-
sis tests, similarly to those performed for Fig. 3. The results
in Fig. 5 are split into categories by mass movement type,
with debris flow and mudslide types labeled as debris flows
and all other types labeled as other. With the exception of
the Pacific Northwest (Fig. 5d), the mass movement type has
limited impact on the number of days with significant differ-
ences (p < 0.05) in precipitation in the 14 d prior to the mass
movement in regions with any such significant differences.
For example, in California (Fig. 5b), 9 d has a statistically
significant difference for both groups. In the Intermountain
West 8 d has a statistically significant difference for debris
flows while similarly 6 d has a statistically significant differ-
ence for other types of mass movements.

3.2 Comparison of bootstrapped samples and
pre-landslide precipitation

Figure 6 highlights the increase in precipitation in the days
before a mass movement relative to historical amounts for
that location and time of year, i.e., relative to climatology,
offering a robust assessment of the mass movement precipi-
tation departure. The Mann–Whitney p values comparing the
precipitation record on each day to each of the ∼ 100 sam-
ples are shown in Fig. 6a–g. Mass movement events have
been split into burned and unburned groups (shown in or-
ange and purple, respectively) for six regions and for all mass
movements in the study. Bootstrapped samples were drawn
from the same DOY and locations as the mass movements
but from a randomly selected year. In panels a–g, boxplots of
p values represent the degree to which the mass-movement-
triggering precipitation differed from climatological precip-
itation, with lower p values indicating a more significant
difference between the two precipitation distributions. The
Mann–Whitney tests were directional, so only differences
where the precipitation is greater than would be expected re-
sult in low p values. Examples of the kernel density estimates
of each bootstrap sample as compared to the precipitation on
the day of the mass movement are shown in Fig. 6h–u to bet-
ter illustrate the comparisons made by the hypothesis tests in
panels a–g. Each orange or purple curve was tested against
the black curve to obtain the boxplots of p values at 0 d be-
fore the mass movement. A clear difference between burned
and unburned sites is shown for the same regions as in Fig. 3
but with the addition of Southeast Asia. Beyond the emer-
gence of a signal in Southeast Asia, additional differences
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Figure 3. The 7 d precipitation percentile in the lead-up to mass movements for all mass movements in panel (a) and for the six individual
regions labeled (b)–(g), whether classified as part of one of the regions or not. The day of the mass movement is indicated with a vertical
grey column. Days where a significant difference was found between the burned and unburned groups are indicated in darker colors (Mann–
Whitney hypothesis test, p > 0.05).

between regions in the timing of precipitation in the period
leading up to the mass movement are visible in Fig. 6a–g that
were not clear in the precipitation percentile analysis.

Different storm timing is apparent among the regions and
between the burned and unburned sites of the same region.
Firstly, in California and Southeast Asia (Fig. 6b and g), we
see a similar pattern where relative precipitation at unburned

sites is consistently higher than at burned sites. Nonethe-
less, for both burned and unburned sites, the rise in precip-
itation takes place over a similar amount of time (approx-
imately 5 d). Curiously, unlike in California, the bootstrap
analysis reveals a long-term difference between burned sites
and unburned sites in the Mann–Whitney p value for South-
east Asia despite location-specific normalization, suggest-
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Figure 4. p values for Mann–Whitney hypothesis tests comparing
precipitation percentiles at burned and unburned sites. The thick
black line shows the p values for all mass movements, while green
and orange lines show high (1 km or less) and low (greater than
1 km) location accuracies. A horizontal dashed black line shows the
p = 0.05 significance threshold, while a vertical black line indicates
the day of the event.

ing that the mass movements at unburned locations might
be primarily triggered in years that are wetter than usual
on a monthly or seasonal scale. In the Pacific Northwest
(Fig. 6d), the precipitation at the burned sites does not be-
come significantly larger than climatology until the day of
the mass movement. The Mann–Whitney p values for the
burned group remain well above 0.05 just days before the

Figure 5. p values of Mann–Whitney tests comparing mass-
movement-triggering precipitation percentiles at burned and un-
burned sites. The black line shows results for all mass movements,
while debris flows and other mass movements are shown in green
and orange, respectively. A horizontal dashed black line shows a
95% confidence level for the hypothesis test, and a vertical black
line indicates the day of the mass movements.

mass movement as the p value for the unburned group be-
gins to fall. Under the assumption that shorter storms are
associated with runoff-driven mass movements while longer
storms that allow more time for the soil column to saturate
are associated with infiltration-driven mass movements, this
difference in storm timing could reflect that in the Pacific
Northwest the burned mass movement locations are largely
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Figure 6. p values of Mann–Whitney hypothesis tests comparing mass-movement-triggering precipitation relative to 100 bootstrapped
samples (n≈ 100 for each sample) drawn from a 38-year precipitation record from the mass movement locations. The y axes are shown with
a probit transform to expand the section of the axis where p values are below 0.05 (significant at 95 % confidence, shown as a dashed black
line). The y axis has also been inverted so that larger differences in precipitation (lower p values) are higher on the y axis for consistency with
the percentile plots in Fig. 3. In panels (h)–(u), an example of the kernel density estimate (kde) for day-of-landslide precipitation in black
separated by burned and unburned groups is compared with kde’s of all bootstrapped samples in orange (burned group) or purple (unburned
group).

runoff-driven, while mass movements at unburned locations
are infiltration-driven (Cannon and Gartner, 2005). In the In-
termountain West (Fig. 6c) antecedent precipitation for the
burned group is generally characterized by a dry spell go-
ing back 30 d or more. In this region, 30 to 20 d before the
mass movement p values for burned sites are consistently
above 0.9, suggesting a high likelihood (> 90 %) that there
was less precipitation than usual during that time. During the
same period, the p values at unburned sites remain close to
0.05.

3.3 Landslide and fire seasonality experiment

Figure 7 shows the seasonality of fires and mass movements
at each site, in addition to the length of time that elapses be-
tween the fire and the mass movement. Landslides in several
regions, especially California and the Himalayas, tend to oc-
cur at the same time of year. This time of year, for the regions
where it exists, will be referred to as “landslide season”. Sim-
ilarly, nearly all of the regions have a fire season, which is
most clearly visible in the black rug at the top of each panel
in Fig. 7. Figure 7a shows that fires occur nearly year-round
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when considering all regions together, but the other panels in
Fig. 7 show that within any particular region, fires occur only
during a distinct time of year. However, the delay between
fire and the mass movement is not consistently equal to the
length of time between the fire season and the following mass
movement season. The mass movements are distributed such
that 53 % occur within a 1 year after the fire. Since both mass
movements and fires have seasonal patterns, the typical de-
lay between fire and the mass movement for each region ap-
pears to be primarily related to the relationship between fire
season and mass movement season. For example, California
has a long fire season and a shorter landslide season, and
so when fires occur at the end of winter, immediately after
the mass movement season, there is typically a longer delay
before the mass movement than when fires occur immedi-
ately before the mass movement season. By contrast, in the
Himalayas the delay between fire and landslide is relatively
uniform due to a shorter fire season that does not overlap with
the mass movement season. In general, the mass movements
occur during the period of greatest rainfall, such as the winter
in California and the summer in the Himalayas (see Fig. 1 for
regional precipitation climatology). The seasonal pattern of
post-wildfire mass movements is to some degree determined
by an interaction between fire seasonality and precipitation
seasonality.

Figure 8 shows the p values of Mann–Whitney tests com-
paring precipitation percentiles of groups of mass move-
ments with different timing relative to wildfire with precipita-
tion percentiles of mass movements at unburned sites. Land-
slides at burned sites were divided into two groups: mass
movement within 1 year of a wildfire and mass movement
between 1 and 3 years after a wildfire. In California and the
Pacific Northwest of the USA (Fig. 8b and d), the p values
are similar among the two timing groups. By contrast, in the
Intermountain West of the USA (Fig. 8c), the lower precipi-
tation percentiles at burned sites are only statistically signif-
icant at the time of the mass movement for events occurring
1–3 years after a wildfire. However, precipitation is signifi-
cantly lower in the “less than 1 year” group in the 7 to 3 d be-
fore the mass movement. In Central America, the Himalayas,
and Southeast Asia (Fig. 8e, f, and g), differences between
burned and unburned sites are not statistically significant for
either group.

Figure 9 shows differences in seasonality between burned
and unburned mass movement seasonality on the right and
the results of the precipitation frequency analysis on the left.
The kernel density estimates on the right show changes in the
seasons (e.g., fall or winter) in which landslides at burned and
unburned sites occurred. By contrast, the analysis on the left
shows when landslides in each group tended to occur rela-
tive to the times of year with greater precipitation frequency.
While all regions except for Central America (Fig. 9l) display
some kind of shift in seasonality between burned and un-
burned mass movements in the right-hand panels of Fig. 9h–
n, the magnitudes and directions of these shifts vary by re-

gion. Interestingly, the regions with clear shifts in seasonal-
ity have shifts of different directions, i.e., earlier or later in
the year, and magnitudes, i.e., a few weeks to half a year.
In Southeast Asia (Fig. 9n), mass movements at burned sites
happen in the summer rather than the winter for unburned
sites, a 6-month shift. In contrast, in the Intermountain West
(Fig. 9j), burned mass movements appear to happen in the
spring, while unburned mass movements occur in the winter,
a 3-month shift to later in the year. In California (Fig. 9i), by
contrast, burned landslides are shifted earlier in the year and
by only a few weeks, with both burned and unburned mass
movements occurring primarily in the fall and early winter.
Finally, in the Pacific Northwest (Fig. 9k), it appears that
some of the burned mass movements occur in the usual mass
movement season of fall and early winter, while another peak
lies 6 months away at the beginning of summer.

The precipitation frequency in Fig. 9a–g highlights dif-
ferences in when mass movements tend to occur relative to
the wetter parts of the annual precipitation cycle between
burned and unburned groups. A curve for burned sites that
is shifted slightly to the right of the corresponding curve for
unburned sites, as is the case for the burned group precipi-
tation frequency in the California region (Fig. 9b), indicates
that burned landslides occurred earlier in the rainy season.
In California (Fig. 9b) burned mass movements are clearly
shifted to a period earlier in the year with more frequent pre-
cipitation, i.e., earlier in the wet season, although the shift is
larger in California. This provides evidence confirming our
hypothesis that wildfire increases mass movement suscepti-
bility in these regions, since it suggests that a smaller precip-
itation trigger that might be found earlier in a wetter part of
the year is required to trigger a mass movement after a fire.
The Intermountain West (Fig. 9c) also has a pronounced sea-
sonal shift, but in this case the shift is much larger, so much
so that the burned mass movements in this region appear to
occur as a result of a large storm in the middle of a dry part of
the year. Other regions (Pacific Northwest in panel d, South-
east Asia in panel g, and Central America in panel e) show
differences in the magnitude of the annual cycle in precipi-
tation frequency but no shift in seasonality. These magnitude
changes are not consistent in their direction or degree across
regions. In Southeast Asia, where Fig. 9n shows a shift in
seasonality but panel g does not show a shift relative to the
wetter parts of the year, these results suggest that there could
be a spatial or climatic bias towards the locations of burned
landslides that is causing the seasonal difference.

4 Discussion

The results of this study suggest that while post-wildfire
mass movements are associated with shifts in the magni-
tude, timing, and seasonality of storms relative to other mass
movements, these effects are not consistent across regions.
Globally, there are clear differences in the percentiles of
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Figure 7. DOY of mass movements, DOY of fires, and the length of time in between fire and mass movement by region. Each horizontal line
represents one event, arranged on the y axis in order of the length of the delay between wildfire and mass movement. Black dots on the right
show the day of the year the mass movement occurred, and horizontal lines represent the duration of time elapsed in between the fire and the
mass movement. Lines are colored by the season of the fire and are ordered by the day of the fire relative to the mass movement. The black
lines, or rug, at the top of each panel as well as the colored rug on the left duplicate the day of year of the fires to highlight seasonal patterns.

mass-movement-triggering storms (see Fig. 3), with mass
movements in burned areas often triggered by compara-
tively smaller storms. At first glance, this supports the hy-
pothesis that fires increase mass movement susceptibility,
since a smaller precipitation trigger is sufficient to cause a
mass movement. However, this trend is largely driven by the
California region and to a lesser extent the Intermountain
West and Pacific Northwest of North America. In Central
America–the Caribbean, Southeast Asia, and the Himalayan

regions, there is an increase in rainfall relative to climatol-
ogy leading up to the mass movement, but there is no signif-
icant difference between relative precipitation depths based
on fire history. The original percentile analysis includes only
wet days; the bootstrap analysis takes into account both wet
and dry days.

Differences in the mass-movement-triggering storms rel-
ative to their precipitation climatology shown by the boot-
strap analysis (Fig. 6) confirm the results of the original per-
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Figure 8. p values for Mann–Whitney hypothesis tests comparing
precipitation percentiles at burned and unburned sites. The thick
black line shows the p values for all mass movements, while orange
and green lines show mass movements occurring within 1 year of a
wildfire and between 1 and 3 years of a wildfire, respectively. A hor-
izontal dashed black line shows the p = 0.05 significance threshold,
while a vertical black line indicates the day of the mass movement.

centile analysis, with two notable exceptions. In Southeast
Asia, the bootstrap analysis indicates that the burned sites
had smaller precipitation triggers relative to climatology de-
spite no significant difference in the first analysis between the
wet-day precipitation percentiles. This discrepancy suggests
that there may be a precipitation frequency bias between
burned and unburned sites in this region. In addition, burned

locations in the Pacific Northwest appear to be associated
with rainfall that began closer to when the landslide occurred
(Fig. 6d). This raises the possibility that mass movements
at burned sites in this region are caused more often than in
unburned locations by runoff instead of infiltration. More in-
formation is needed, for example about the antecedent soil
moisture at these locations. This result is consistent with pre-
vious research suggesting that post-wildfire debris flows are
predominantly triggered by runoff-driven erosion as a result
of shorter and more intense storms in the western USA (76 %
Cannon and Gartner, 2005); however in that case we would
have expected to see a similar pattern in the California and
Intermountain West regions.

Many of the mass movements at burned locations in the In-
termountain West (Fig. 6c) appear to be particularly suscep-
tible to shorter-duration storms that occur after a dry spell
stretching from 30 to 20 d before the mass movement and
possibly even further back in time. A similar pattern of low-
frequency precipitation followed by a sharp spike can be seen
in the burned locations in Fig. 9c. One possible explanation is
that dry, recently burned soil is particularly erosive in those
areas. An example of drought conditions contributing to a
landslide is described by Handwerger et al. (2019). These
differences are also due in part to the different regional cli-
mates, with the California and Pacific Northwest regions hav-
ing more clearly defined longer-duration rainy seasons, rela-
tive to the more variable and sporadic precipitation seasonal-
ity of the Intermountain West.

Different combinations of the fire season and mass move-
ment season and any overlap between the two may be an im-
portant driving factor in the degree to which fires increase
mass movement susceptibility. For example, in places where
the wet season begins towards the end or immediately af-
ter the fire season, such as the Intermountain West, Califor-
nia, and the Himalayas, the landscape has no time to recover
from the fire before the mass movement season begins, and
therefore burned locations may be much more susceptible
(see Fig. 7b, c, and f). On the other hand, in regions like
the Pacific Northwest, Central America, and Southeast Asia
(Fig. 7d, e, and g), where the mass movement season is not
as well defined, it is more likely that the landscape could at
least partially recover before a triggering storm occurs.

Some of the regions that did not display a significant dif-
ference in percentile nonetheless showed a shift in the timing
of burned mass movements relative to their respective annual
pattern of precipitation (see Fig. 9h–n). The various types
of shifts in landslide seasonality are likely reflective of the
different effect of fires. A shift of the mass movement sea-
son to slightly earlier in the year, such as was noticeable in
California and the Himalayas (see Fig. 9i and m), supports
the hypothesis that wildfire increases mass movement sus-
ceptibility because it suggests that fewer or smaller precip-
itation events earlier in the season are sufficient to trigger a
mass movement. The Intermountain West (Fig. 9j) also has a
pronounced seasonal shift, but in this case the shift is much
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Figure 9. Precipitation frequency anomaly relative to the long-term mean aligned by the mass movement date. (a, g) Frequency is shown both
daily and smoothed with a 90 d moving average to highlight shifts. Daily precipitation frequency is represented as thin lines in orange and
purple (burned and unburned groups), while the 90 d average is a thicker line. The long-term mean has been removed from all the frequency
curves. Landslides are in burned and unburned groups for each region separately and for all mass movements. (h–n) The kernel density
estimate of mass movements by the time of year is shown for both the burned and the unburned groups in a radial plot.

larger and in the opposite direction: burned mass movements
appear to occur an entire season later than unburned mass
movements, falling in the driest part of the year instead of the
wettest. This corresponds to the evidence from the bootstrap
analysis suggesting that dried-out soil or slow vegetation re-
growth may be an important part of the post-wildfire mass
movement mechanism in this region. Vegetation regrowth as
a main control of mass movement susceptibility is supported

by a study of mass movement occurrence in the San Gabriel
Mountains of the USA by Rengers et al. (2020), in which the
authors found that hillslopes with slower vegetation regrowth
were more likely to have mass movements.

A similar trend to the Intermountain West in terms of sea-
sonal shift is visible for some, but not all, of the mass move-
ments in the Pacific Northwest (Fig. 9k), suggesting perhaps
that some of mass movements in that region would have been
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better categorized as part of the Intermountain West region.
In Southeast Asia (Fig. 9n) there also appears to be a sea-
sonal shift similar to that of the Intermountain West, but it
is not matched by a shift relative to the annual precipitation
frequency pattern (Fig. 9g). This suggests that the season-
ality “shift” in Southeast Asia is due to spatial bias in fire
occurrence. Further study of variation in climate across this
region is needed. Finally, Central America (Fig. 9l) has very
similar precipitation frequency in burned and unburned loca-
tions. Since there is little difference between the precipita-
tion frequency or magnitude (see Figs. 3e, 9e) in this area,
it is possible that there are many misidentified false-positive
post-wildfire mass movements in Central America, perhaps
due to the generally low location accuracy in that region. It is
also possible wildfire does not have as much of an effect on
mass movement susceptibility in that region.

The timing of mass movements relative to wildfire may
also influence the magnitude of triggering storms. While
in some regions, such as California and the Pacific North-
west, timing does not have a major impact on precipitation
percentile differences, the Intermountain West of the USA
displays two distinct behaviors depending on the timing of
mass movements relative to wildfire. In the year immedi-
ately after a fire, the precipitation percentile is lower than
for mass movements at unburned locations in the 7 to 3 d be-
fore the mass movement, before rising to match precipitation
percentiles at unburned locations (see Fig. 8c). This pattern
matches the result from Fig. 9c in which post-wildfire mass
movements in this region appear to manifest as a large storm
preceded by a period of infrequent precipitation. In contrast,
timing appears to make little difference to the precipitation
percentile in other regions.

Low mass movement location accuracy and a lower num-
ber of burned mass movements may have also contributed to
the lack of conclusive results in the Pacific Northwest, South-
east Asia, and Central America. The regions outside the USA
and Canada tended to have less accurate mass movement lo-
cations, and less accurate locations were also more likely to
be marked as burned. Furthermore, less accurate locations
were also more likely to be marked as burned, with a 3-fold
increase in the percentage of mass movements identified as
burned between high- and low-accuracy groups. This is be-
cause larger mass movement radii were more likely to con-
tain burned area by chance alone and hence become false-
positive post-wildfire mass movements, i.e., landslides that
occurred nearby but not coincident to a burned area. This idea
is supported by the lower cumulative burned fractions within
the regions outside the USA and Canada (see Fig. 1c and d).
Though mass movement accuracy in the GLC is an approx-
imate measure, introducing the possibility of false-negative
unburned sites, false-positive post-wildfire mass movements
nonetheless represent a major potential source of error in this
analysis. These uncertainties introduce the possibility that
some of the differences in triggering precipitation percentiles
between burned and unburned sites may be related to unique

qualities of fire-prone areas rather than fire itself. Future stud-
ies using visible and other satellite imagery to pinpoint mass
movement locations and dates could help clarify the post-
wildfire posterior landslide probability by essentially elimi-
nating the location error. Furthermore, there is a body of re-
search that uses geographical information system (GIS) data
such as slope or underlying lithography in combination with
a statistical model like a classification tree or logistic regres-
sion to assess mass movement hazards (e.g., Felicísimo et
al., 2013; Lee, 2007; Ohlmacher and Davis, 2003), including
some focused on post-wildfire mass movements (Cannon et
al., 2010). The introduction of such control datasets of con-
firmed unburned landslide locations would also allow the use
of additional variables like the slope, land use, and aridity in-
dex to be incorporated into a model as part of an assessment
of which properties of sites have the greatest influence on
changes in mass movement susceptibility at burned sites.

5 Conclusions

Clear differences were shown between rainfall-triggered
mass movements at unburned and unburned locations in the
magnitude of precipitation triggers, the seasonality of mass
movements, and the timing of triggering storms. These find-
ings suggest that wildfires increase susceptibility to mass
movements, especially in regions of the western USA. How-
ever, they also suggest that post-wildfire mass movements
are not a spatially uniform phenomenon. Both the mecha-
nisms by which burned mass movements are triggered and
the degree to which wildfire increases susceptibility vary by
region.

The precipitation percentile immediately before a mass
movement was found to be smaller at burned locations for
all regions combined, as well as for the California, Inter-
mountain West, and Pacific Northwest regions but not for the
others. This result suggests greater mass movement suscep-
tibility in those three regions following a wildfire. In Cali-
fornia and the Pacific Northwest, mass-movement-triggering
storms tended to be shorter at burned locations, suggesting
that these mass movements are more often runoff-driven than
are mass movements at unburned locations. In contrast, in the
Intermountain West burned mass movement locations appear
to be characterized by a dry spell of at least 20 d followed
by a sharp uptick in precipitation, suggesting that burned
and dry soil may be the most vulnerable to extreme erosion
in that region. Finally, shifts in landslide seasonality were
noted in every region except Central America, although the
characteristics of these shifts were not consistent among re-
gions. In some regions such as California and the Himalayas,
landslides at burned locations occurred earlier in the wet
season, suggesting greater susceptibility to mass movements
caused by fire. In other regions such as the Intermountain
West and Southeast Asia, mass movement seasonality was
shifted by 3 or 6 months, suggesting that the conditions re-
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sulting in mass movements differ in more fundamental ways
at burned sites. For example, in the Intermountain West we
posit that a portion of post-wildfire mass movements may
be caused by isolated intense thunderstorms on dry soil pro-
ducing the observed pattern of mass-movement-triggering
storms in burned locations preceded by at least several weeks
with limited precipitation. Among the unburned sites, by
contrast, a pattern of mass movements occurring during the
wettest part of the year suggests that saturation of the soil is
a more important precursor.

Developing a better understanding of the ways in which
mass movement hazards vary around the world is impor-
tant for mitigation efforts as well as for predicting how mass
movement hazards will respond to a changing climate. Data
acquisition is a major barrier to this type of global analysis
of mass movement statistics. Both precipitation and burn sta-
tus are major sources of uncertainty in this analysis due to
imprecise mass movement locations. This work offers new
insights into the role of wildfire in mass movement sus-
ceptibility, representing a first step towards broader under-
standing of regional triggering mechanisms. Future efforts
should incorporate additional high-accuracy mass movement
locations (e.g., ∼ 500 m) that are more representatively dis-
tributed around the globe to further advance understanding
into mass movement responses across climates and regions.

Code availability. The software code used in this analysis is
available at https://doi.org/10.5281/zenodo.7653683 (Culler et al.,
2023a). Analysis was performed using the Python programming
language (Van Rossum and Drake, 2009) and R statistical soft-
ware (R Core Team, 2021). In addition, the following external
Python libraries were used: xarray (Hoyer and Hamman, 2017,
https://doi.org/10.5334/jors.148) and pandas (McKinney, 2010,
https://doi.org/10.25080/Majora-92bf1922-00a). The following R
packages were used: maps (Becker and Wilks, 2021), lubridate
(Grolemund and Wickham, 2011), purrr (Henry and Wickham,
2020), cluster (Maechler et al., 2022), RColorBrewer (Neuwirth,
2014), tidyverse (Wickham et al., 2019), cowplot (Wilke et al.,
2021), and zoo (Zeileis and Grothendieck, 2005).
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