Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3125-2022
https://doi.org/10.5194/nhess-22-3125-2022
Research article
 | 
05 Oct 2022
Research article |  | 05 Oct 2022

Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons

Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne

Related authors

HydroModPy: A Python toolbox for deploying catchment-scale shallow groundwater models
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962,https://doi.org/10.5194/egusphere-2024-3962, 2025
Short summary
GraphFlood 1.0: an efficient algorithm to approximate 2D hydrodynamics for landscape evolution models
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024,https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023,https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Size, shape and orientation matter: fast and semi-automatic measurement of grain geometries from 3D point clouds
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022,https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci., 25, 709–726, https://doi.org/10.5194/nhess-25-709-2025,https://doi.org/10.5194/nhess-25-709-2025, 2025
Short summary
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary

Cited articles

Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res.-Earth, 115, F03013, https://doi.org/10.1029/2009JF001321, 2010. 
Bernard, T. G., Lague, D., and Steer, P.: Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data, Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, 2021. 
Berti, M. and Simoni, A.: Observation and analysis of near-surface pore-pressure measurements in clay-shales slopes, Hydrol. Process., 26, 2187–2205, https://doi.org/10.1002/hyp.7981, 2012. 
Budhu, M. and Gobin, R.: Slope instability from ground-water seepage, J. Hydraul. Eng., 122, 415–417, https://doi.org/10.1061/(ASCE)0733-9429(1996)122:7(415), 1996. 
Calcaterra, D. and Parise, M.: Weathering as a predisposing factor to slope movements: An introduction, Geol. Soc. Eng. Geol. Spec. Publ., 23, 1–4, https://doi.org/10.1144/EGSP23.1, 2010. 
Download
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Share
Altmetrics
Final-revised paper
Preprint