Articles | Volume 22, issue 10
https://doi.org/10.5194/nhess-22-3125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Lucas Pelascini
CORRESPONDING AUTHOR
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Philippe Steer
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Maxime Mouyen
Department of Space, Earth and Environment, Chalmers University of
Technology, 412 96 Gothenburg, Sweden
Laurent Longuevergne
Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, 35000 Rennes, France
Related authors
No articles found.
Coline Ariagno, Philippe Steer, Pierre Valla, and Benjamin Campforts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2088, https://doi.org/10.5194/egusphere-2025-2088, 2025
Short summary
Short summary
This study explored the impact of landslides on their topography using a landscape evolution model called ‘Hyland’, which enables long-term topographical analysis. Our finding reveal that landslides are concentrated at two specific elevations over time and predominantly affect the highest and steepest slopes, particularly along ridges and crests. This study is part of the large question about the origin of the erosion acceleration during the Quaternary.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Marion Fournereau, Laure Guerit, Philippe Steer, Jean-Jacques Kermarrec, Paul Leroy, Christophe Lanos, Hélène Hivert, Claire Astrié, and Dimitri Lague
EGUsphere, https://doi.org/10.5194/egusphere-2025-1541, https://doi.org/10.5194/egusphere-2025-1541, 2025
Short summary
Short summary
River bedrock erosion can occur by polishing and by the removal of entire blocks. We observe that when there is no to little fractures most erosion occurs by polishing whereas with more fractures, blocks can be removed at once leading to different patterns of erosion and riverbed morphology. Fractures affect barely mean erosion rate but change the location and occurrence of block removal. Our results highlight how river bedrock properties influence erosion processes and thus landscape evolution.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Boris Gailleton, Philippe Steer, Philippe Davy, Wolfgang Schwanghart, and Thomas Bernard
Earth Surf. Dynam., 12, 1295–1313, https://doi.org/10.5194/esurf-12-1295-2024, https://doi.org/10.5194/esurf-12-1295-2024, 2024
Short summary
Short summary
We use cutting-edge algorithms and conceptual simplifications to solve the equations that describe surface water flow. Using quantitative data on rainfall and elevation, GraphFlood calculates river width and depth and approximates erosive power, making it a suitable tool for large-scale hazard management and understanding the relationship between rivers and mountains.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Philippe Steer, Laure Guerit, Dimitri Lague, Alain Crave, and Aurélie Gourdon
Earth Surf. Dynam., 10, 1211–1232, https://doi.org/10.5194/esurf-10-1211-2022, https://doi.org/10.5194/esurf-10-1211-2022, 2022
Short summary
Short summary
The morphology and size of sediments influence erosion efficiency, sediment transport and the quality of aquatic ecosystem. In turn, the spatial evolution of sediment size provides information on the past dynamics of erosion and sediment transport. We have developed a new software which semi-automatically identifies and measures sediments based on 3D point clouds. This software is fast and efficient, offering a new avenue to measure the geometrical properties of large numbers of sediment grains.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Maxime Mouyen, Romain Plateaux, Alexander Kunz, Philippe Steer, and Laurent Longuevergne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-233, https://doi.org/10.5194/gmd-2021-233, 2021
Preprint withdrawn
Short summary
Short summary
LAPS is an easy to use Matlab code that allows simulating the transport of particles in the ocean without any programming requirement. The simulation is based on publicly available ocean current velocity fields and allows to output particles spatial distribution and trajectories at time intervals defined by the user. After explaining how LAPS is working, we show a few examples of applications for studying sediment transport or plastic littering. The code is available on Github.
Philippe Steer
Earth Surf. Dynam., 9, 1239–1250, https://doi.org/10.5194/esurf-9-1239-2021, https://doi.org/10.5194/esurf-9-1239-2021, 2021
Short summary
Short summary
How landscapes respond to tectonic and climatic changes is a major issue in Earth sciences. I have developed a new model that solves for landscape evolution in two dimensions using analytical solutions. Compared to numerical models, this new model is quicker and more accurate. It can compute in a single time step the topography at equilibrium of a landscape or be used to describe its evolution through time, e.g. during changes in tectonic or climatic conditions.
Thomas G. Bernard, Dimitri Lague, and Philippe Steer
Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, https://doi.org/10.5194/esurf-9-1013-2021, 2021
Short summary
Short summary
Both landslide mapping and volume estimation accuracies are crucial to quantify landscape evolution and manage such a natural hazard. We developed a method to robustly detect landslides and measure their volume from repeat 3D point cloud lidar data. This method detects more landslides than classical 2D inventories and resolves known issues of indirect volume measurement. Our results also suggest that the number of small landslides classically detected from 2D imagery is underestimated.
Thomas Croissant, Robert G. Hilton, Gen K. Li, Jamie Howarth, Jin Wang, Erin L. Harvey, Philippe Steer, and Alexander L. Densmore
Earth Surf. Dynam., 9, 823–844, https://doi.org/10.5194/esurf-9-823-2021, https://doi.org/10.5194/esurf-9-823-2021, 2021
Short summary
Short summary
In mountain ranges, earthquake-derived landslides mobilize large amounts of organic carbon (OC) by eroding soil from hillslopes. We propose a model to explore the role of different parameters in the post-seismic redistribution of soil OC controlled by fluvial export and heterotrophic respiration. Applied to the Southern Alps, our results suggest that efficient OC fluvial export during the first decade after an earthquake promotes carbon sequestration.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Maxime Bernard, Philippe Steer, Kerry Gallagher, and David Lundbek Egholm
Earth Surf. Dynam., 8, 931–953, https://doi.org/10.5194/esurf-8-931-2020, https://doi.org/10.5194/esurf-8-931-2020, 2020
Short summary
Short summary
Detrital thermochronometric age distributions of frontal moraines have the potential to retrieve ice erosion patterns. However, modelling erosion and sediment transport by the Tiedemann Glacier ice shows that ice velocity, the source of sediment, and ice flow patterns affect age distribution shape by delaying sediment transfer. Local sampling of frontal moraine can represent only a limited part of the catchment area and thus lead to a biased estimation of the spatial distribution of erosion.
Cited articles
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and
location of shallow rainfall-induced landslides using a model for transient,
unsaturated infiltration, J. Geophys. Res.-Earth, 115, F03013, https://doi.org/10.1029/2009JF001321, 2010.
Bernard, T. G., Lague, D., and Steer, P.: Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data, Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, 2021.
Berti, M. and Simoni, A.: Observation and analysis of near-surface pore-pressure measurements in clay-shales slopes, Hydrol. Process., 26,
2187–2205, https://doi.org/10.1002/hyp.7981, 2012.
Budhu, M. and Gobin, R.: Slope instability from ground-water seepage, J.
Hydraul. Eng., 122, 415–417, https://doi.org/10.1061/(ASCE)0733-9429(1996)122:7(415), 1996.
Calcaterra, D. and Parise, M.: Weathering as a predisposing factor to slope
movements: An introduction, Geol. Soc. Eng. Geol. Spec. Publ., 23, 1–4,
https://doi.org/10.1144/EGSP23.1, 2010.
Carslaw, H. S. and Jaeger, J. C. (Eds.): Conduction of heat in solids, in: 2nd Edn., Oxford University Press, 1959.
Chen, S., Chou, H., Chen, S., Wu, C., and Lin, B.: Characteristics of
rainfall-induced landslides in Miocene formations: A case study of the Shenmu watershed, Central Taiwan, Eng. Geol., 169, 133–146, https://doi.org/10.1016/j.enggeo.2013.11.020, 2014.
Cheng, K. S., Wei, C., and Chang, S. C.: Locating landslides using multi-temporal satellite images, Adv. Space Res., 33, 296–301,
https://doi.org/10.1016/S0273-1177(03)00471-X, 2004.
Chien-Yuan, C., Tien-Chien, C., Fan-Chieh, Y., and Sheng-Chi, L.: Analysis of time-varying rainfall infiltration induced landslide, Environ. Geol., 48,
466–479, https://doi.org/10.1007/s00254-005-1289-z, 2005.
Collins, B. D. and Znidarcic, D.: Stability analyses of rainfall induced
landslides, J. Geotech. Geoenviron. Eng., 130, 362–372,
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362), 2004.
Dai, A. and Wang, J.: Diurnal and semidiurnal tides in global surface
pressure fields, J. Atmos. Sci., 56, 3874–3891,
https://doi.org/10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2, 1999.
Esposito, G., Marchesini, I., Cesare Mondini, A., Reichenbach, P., Rossi, M., and Sterlacchini, S.: A spaceborne SAR-based procedure to support the detection of landslides, Nat. Hazards Earth Syst. Sci., 20, 2379–2395,
https://doi.org/10.5194/nhess-20-2379-2020, 2020.
Finnegan, N. J., Perkins, J. P., Nereson, A. L., and Handwerger, A. L.:
Unsaturated flow processes and the onset of seasonal deformation in slow-moving landslides, J. Geophys. Res.-Earth, 126, e2020JF005758, https://doi.org/10.1029/2020JF005758, 2021.
Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A., and Ojha, T.: Rainfall thresholds for landsliding in the Himalayas of Nepal, Geomorphology, 63, 131–143, https://doi.org/10.1016/j.geomorph.2004.03.011, 2004.
Ghiassian, H. and Ghareh, S.: Stability of sandy slopes under seepage
conditions, Landslides, 5, 397–406, https://doi.org/10.1007/s10346-008-0132-5, 2008.
Goren, L. and Aharonov, E.: Long runout landslides: The role of frictional
heating and hydraulic diffusivity, Geophys. Res. Lett., 34, 1–7,
https://doi.org/10.1029/2006GL028895, 2007.
Griffith, W.: Sea-Level Pressure and Gusts Within a Typhoon Circulation, Am.
Meteorol. Soc., 106, 954–960, 1978.
Hack, R., Alkema, D., Kruse, G. A. M., Leenders, N., and Luzi, L.: Influence
of earthquakes on the stability of slopes, Eng. Geol., 91, 4–15,
https://doi.org/10.1016/j.enggeo.2006.12.016, 2007.
Handwerger, A. L., Roering, J. J., and Schmidt, D. A.: Controls on the
seasonal deformation of slow-moving landslides, Earth Planet. Sc. Lett.,
377–378, 239–247, https://doi.org/10.1016/j.epsl.2013.06.047, 2013.
Haneberg, W. C.: Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits to rainfall, J. Geol., 99, 886–892, https://doi.org/10.1086/629560, 1991.
Hencher, S. R. and Lee, S. G.: Landslide mechanisms in Hong Kong, Geol. Soc.
Eng. Geol. Spec. Publ., 23, 77–103, https://doi.org/10.1144/EGSP23.6, 2010.
Hu, X., Bürgmann, R., Lu, Z., Handwerger, A. L., Wang, T., and Miao, R.:
Mobility, Thickness, and Hydraulic Diffusivity of the Slow-Moving Monroe Landslide in California Revealed by L-Band Satellite Radar Interferometry, J. Geophys. Res.-Solid, 124, 7504–7518, https://doi.org/10.1029/2019JB017560, 2019.
Hung, C., Lin, G. W., Kuo, H. L., Zhang, J. M., Chen, C. W., and Chen, H.:
Impact of an Extreme Typhoon Event on Subsequent Sediment Discharges and
Rainfall-Driven Landslides in Affected Mountainous Regions of Taiwan, Hindawi, https://doi.org/10.1155/2018/8126518, 2018.
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000.
Jiménez-Martínez, J., Longuevergne, L., Le Borgne, T., Davy, P.,
Russian, A., and Bour, O.: Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis, Water Resour. Res., 49, 3007–3023, https://doi.org/10.1002/wrcr.20260, 2013.
Keefer, D. K.: The importance of earthquake-induced landslides to long-term
slope erosion and slope-failure hazards in seismically active regions, Geomorphology, 10, 265–284, https://doi.org/10.1016/0169-555X(94)90021-3, 1994.
Kim, D., Im, S., Ho, S., Hong, Y., and Cha, K.: Predicting the Rainfall-Triggered Landslides in a Forested Mountain Region Using TRIGRS
Model, J. Mt. Sci., 7, 83–91, https://doi.org/10.1007/s11629-010-1072-9, 2010.
Knudby, C. and Carrera, J.: On the use of apparent hydraulic diffusivity as an indicator of connectivity, J. Hydrol., 329, 377–389,
https://doi.org/10.1016/j.jhydrol.2006.02.026, 2006.
Kuo, Y. S., Tsai, Y. J., Chen, Y. S., Shieh, C. L., Miyamoto, K., and Itoh,
T.: Movement of deep-seated rainfall-induced landslide at Hsiaolin Village
during Typhoon Morakot, Landslides, 10, 191–202, https://doi.org/10.1007/s10346-012-0315-y, 2013.
Lin, C. H. and Lin, M. L.: Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan
using the discrete element method, Eng. Geol., 197, 172–187,
https://doi.org/10.1016/j.enggeo.2015.08.022, 2015.
Lin, C. W., Chang, W. S., Liu, S. H., Tsai, T. T., Lee, S. P., Tsang, Y. C.,
Shieh, C. L., and Tseng, C. M.: Landslides triggered by the 7 August 2009
Typhoon Morakot in southern Taiwan, Eng. Geol., 123, 3–12,
https://doi.org/10.1016/j.enggeo.2011.06.007, 2011.
Lin, T. S. and Cheng, F. Y.: Impact of soil moisture initialization and soil
texture on simulated land-atmosphere interaction in Taiwan, J. Hydrometeorol., 17, 1337–1355, https://doi.org/10.1175/JHM-D-15-0024.1, 2016.
Lindzen, R. S. and Chapman, S.: Atmospheric tides, Space Sci. Rev., 10,
3–188, https://doi.org/10.1017/CBO9781107415324.004, 1969.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslides, earthquakes, and erosion, Earth Planet. Sc. Lett., 229, 45–59,
https://doi.org/10.1016/j.epsl.2004.10.018, 2004.
Marçais, J., de Dreuzy, J. R., and Erhel, J.: Dynamic coupling of
subsurface and seepage flows solved within a regularized partition formulation, Adv. Water Resour., 109, 94–105, https://doi.org/10.1016/j.advwatres.2017.09.008, 2017.
Martha, T. R., Roy, P., Govindharaj, K. B., Kumar, K. V., Diwakar, P. G.,
and Dadhwal, V. K.: Landslides triggered by the June 2013 extreme rainfall
event in parts of Uttarakhand state, India, Landslides, 12, 135–146, https://doi.org/10.1007/s10346-014-0540-7, 2015.
Meunier, P., Hovius, N., and Haines, A. J.: Regional patterns of earthquake-triggered landslides and their relation to ground motion, Geophys. Res. Lett., 34, L20408, https://doi.org/10.1029/2007GL031337, 2007.
Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the
location of earthquake induced landslides, Earth Planet. Sc. Lett., 275,
221–232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
Mihai, F. C. and Grozavu, A. (Eds.): Landslides Triggered by Typhoon Morakot in Taiwan, in: Environmental Risks, IntechOpen, 13–41, https://doi.org/10.5772/intechopen.72155, 2018.
Muntohar, A. S. and Liao, H. J.: Rainfall infiltration: Infinite slope model
for landslides triggering by rainstorm, Nat. Hazards, 54, 967–984,
https://doi.org/10.1007/s11069-010-9518-5, 2010.
Nichol, J. and Wong, M. S.: Detection and interpretation of landslides using
satellite images, Land Degrad. Dev., 16, 243–255, https://doi.org/10.1002/ldr.648, 2005.
Pacheco, F. A. L.: Hydraulic diffusivity and macrodispersivity calculations
embedded in a geographic information system, Hydrolog. Sci. J., 58, 930–944,
https://doi.org/10.1080/02626667.2013.784847, 2013.
Pelascini, L.: AtmoRainEffects, Zenodoo [code], https://doi.org/10.5281/zenodo.5654768, 2021.
Reid, M. E.: A pore-pressure diffusion model for estimating landslide-inducing rainfall, J. Geol., 102, 709–717, https://doi.org/10.1086/629714, 1994.
Rossi, M., Perucciacci, S., Brunetti, M. T., Marchesini, I., Luciani, S.,
Ardizzone, F., Balducci, V., Santangelo, M., Bartoloni, D., Gariano, S. L.,
Palladino, M., Vessia, G., Viero, A., Antronico, L., Borselli, L., Deganutti, A. M., Iovine, G., Luino, F., Parise, M., Polemio, M., and Guzzetti, F.: SANF: National warning system for rainfall-induced landslides in Italy
Landslides Eng. Slopes, 2, 1895–1899, 2012.
Schulz, W. H., Kean, J. W., and Wang, G.: Landslide movement in southwest
Colorado triggered by atmospheric tides, Nat. Geosci., 2, 863–866,
https://doi.org/10.1038/ngeo659, 2009.
Shih, D. C. F. and Lin, G. F.: Application of spectral analysis to determine
hydraulic diffusivity of a sandy aquifer (Pingtung County, Taiwan), Hydrol.
Process., 18, 1655–1669, https://doi.org/10.1002/hyp.1411, 2004.
Singhroy, V. and Molch, K.: Characterizing and monitoring rockslides from SAR techniques, Adv. Space Res., 33, 290–295, https://doi.org/10.1016/S0273-1177(03)00470-8, 2004.
Steer, P., Jeandet, L., Cubas, N., Marc, O., Meunier, P., Simoes, M., Cattin, R., Shyu, J. B. H., Mouyen, M., Liang, W. T., Theunissen, T., Chiang, S. H., and Hovius, N.: Earthquake statistics changed by typhoon-driven erosion, Sci. Rep., 10, 1–11, https://doi.org/10.1038/s41598-020-67865-y, 2020.
Townley, L. R.: The response of aquifers to periodic forcing, Adv. Water
Resour., 18, 125–146, https://doi.org/10.1016/0309-1708(95)00008-7, 1995.
Troch, P., Van Loon, E., and Hilberts, A.: Analytical solutions to a
hillslope-storage kinematic wave equation for subsurface flow, Adv. Water
Resour., 25, 637–649, https://doi.org/10.1016/S0309-1708(02)00017-9, 2002.
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon,
S. W., Paniconi, C., Pauwels, V. R. N., Rupp, D. E., Selker, J. S., Teuling,
A. J., Uijlenhoet, R., and Verhoest, N. E. C.: The importance of hydraulic
groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert
and Jean-Yves Parlange, Water Resour. Res., 49, 5099–5116,
https://doi.org/10.1002/wrcr.20407, 2013.
Tsai, T. L. and Yang, J. C.: Modeling of rainfall-triggered shallow
landslide, Environ. Geol., 50, 525–534, https://doi.org/10.1007/s00254-006-0229-x, 2006.
Tsou, C. Y., Feng, Z. Y., and Chigira, M.: Catastrophic landslide induced by
Typhoon Morakot, Shiaolin, Taiwan, Geomorphology, 127, 166–178, https://doi.org/10.1016/j.geomorph.2010.12.013, 2011.
Vassallo, R., Grimaldi, G. M., and Di Maio, C.: Pore water pressures induced
by historical rain series in a clayey landslide: 3D modeling, Landslides, 12, 731–744, https://doi.org/10.1007/s10346-014-0508-7, 2015.
West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang, C. T., Lin, K. C., Galy, A., Sparkes, R. B., and Hovius, N.: Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm, Limnol. Oceanogr., 56, 77–85, https://doi.org/10.4319/lo.2011.56.1.0077, 2011.
Xu, Y., Kim, J., George, D. L., and Lu, Z.: Characterizing seasonally
rainfall-driven movement of a translational landslide using SAR imagery and
SMAP soil moisture, Remote Sens., 11, 2347–2364, https://doi.org/10.3390/rs11202347, 2019.
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Landslides represent a major natural hazard and are often triggered by typhoons. We present a...
Altmetrics
Final-revised paper
Preprint