Research article
25 Jul 2022
Research article
| 25 Jul 2022
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Adrian Ringenbach et al.
Related authors
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-70, https://doi.org/10.5194/esurf-2022-70, 2022
Preprint under review for ESurf
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human-sized in a steep mountain forest. This study focuses mainly on the effects of the rock shape and of lying deadwood. The results show that cubic shape rocks have a longer mean runout distance in forested areas than platy-shaped rocks with the same mass. The findings enrich common practices in modern rockfall hazard zoning assessments and urge strongly to incorporate rock shape effects.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-70, https://doi.org/10.5194/esurf-2022-70, 2022
Preprint under review for ESurf
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human-sized in a steep mountain forest. This study focuses mainly on the effects of the rock shape and of lying deadwood. The results show that cubic shape rocks have a longer mean runout distance in forested areas than platy-shaped rocks with the same mass. The findings enrich common practices in modern rockfall hazard zoning assessments and urge strongly to incorporate rock shape effects.
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022, https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Short summary
Rockfall simulations are often performed to make sure infrastructure is safe. For that purpose, rockfall trajectory data are needed to calibrate the simulation models. In this paper, an affordable, flexible, and efficient trajectory reconstruction method is proposed. The method is tested by reconstructing trajectories from a full-scale rockfall experiment involving 2670 kg rocks and a flexible barrier. The results highlight improvements in precision and accuracy of the proposed method.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
EGUsphere, https://doi.org/10.5194/egusphere-2022-468, https://doi.org/10.5194/egusphere-2022-468, 2022
Short summary
Short summary
Trees destruction is often used to back-calculate the air blast impact region and estimate the air blast power. Here we established a novel model to assess the air blast power using the tree destruction information. We find that the dynamic magnification effect makes the trees easier to be damaged by a landslide-induced air blast, but the large tree deformation would weaken the effect. Bending and overturning are two likely failure modes, which depend heavily on the properties of trees.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2022-425, https://doi.org/10.5194/egusphere-2022-425, 2022
Short summary
Short summary
Recent forest decline requires understanding forest response to multi-seasonal meteorology. We investigate meteorology over 3 years preceding events of low forest greenness in Europe in 2000–2020 in a highly systematic and quantitative way. We identify time periods when meteorological variables and weather systems are significantly anomalous or persistent. Our interdisciplinary results present progress in understanding how changing meteorology will impact forest performance in this century.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-112, https://doi.org/10.5194/nhess-2022-112, 2022
Preprint under review for NHESS
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large scale avalanche modeling method with a state of the art probilistic risk tool. Over 40'000 individual avalanches were simulated and a building dataset with over 13'000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-65, https://doi.org/10.5194/tc-2022-65, 2022
Revised manuscript under review for TC
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from piloted airplane to large (> 100 km2), very detailed and accurate snow depth maps around Davos (CH). In addition, we use these maps to describe the existed snow depth distribution and other special features.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Silvan Leinss, Raphael Wicki, Sämi Holenstein, Simone Baffelli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 20, 1783–1803, https://doi.org/10.5194/nhess-20-1783-2020, https://doi.org/10.5194/nhess-20-1783-2020, 2020
Short summary
Short summary
To assess snow avalanche mapping with radar satellites in Switzerland, we compare 2 m resolution TerraSAR-X images, 10 m resolution Sentinel-1 images, and optical 1.5 m resolution SPOT-6 images. We found that radar satellites provide a valuable option to map at least larger avalanches, though avalanches are mapped only partially. By combining multiple orbits and polarizations from S1, we achieved mapping results of quality almost comparable to single high-resolution TerraSAR-X images.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Jürg Schweizer, Christoph Mitterer, Frank Techel, Andreas Stoffel, and Benjamin Reuter
The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, https://doi.org/10.5194/tc-14-737-2020, 2020
Short summary
Short summary
Snow avalanches represent a major natural hazard in seasonally snow-covered mountain regions around the world. To avoid periods and locations of high hazard, avalanche warnings are issued by public authorities. In these bulletins, the hazard is characterized by a danger level. Since the danger levels are not well defined, we analyzed a large data set of avalanches to improve the description. Our findings show discrepancies in present usage of the danger scale and show ways to improve the scale.
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary
Short summary
We manually map 18 737 avalanche outlines based on SPOT6 optical satellite imagery acquired in January 2018. This is the most complete and accurate avalanche documentation of a large avalanche period covering a big part of the Swiss Alps. This unique dataset can be applied for the validation of other remote-sensing-based avalanche-mapping procedures and for updating avalanche databases to improve hazard maps.
Andrin Caviezel, Sophia E. Demmel, Adrian Ringenbach, Yves Bühler, Guang Lu, Marc Christen, Claire E. Dinneen, Lucie A. Eberhard, Daniel von Rickenbach, and Perry Bartelt
Earth Surf. Dynam., 7, 199–210, https://doi.org/10.5194/esurf-7-199-2019, https://doi.org/10.5194/esurf-7-199-2019, 2019
Short summary
Short summary
In rockfall hazard assessment, knowledge about the precise flight path of assumed boulders is vital for its accuracy. We present the full reconstruction of artificially induced rockfall events. The extracted information such as exact velocities, jump heights and lengths provide detailed insights into how rotating rocks interact with the ground. The information serves as future calibration of rockfall modelling tools with the goal of even more realistic modelling predictions.
Yves Bühler, Daniel von Rickenbach, Andreas Stoffel, Stefan Margreth, Lukas Stoffel, and Marc Christen
Nat. Hazards Earth Syst. Sci., 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, https://doi.org/10.5194/nhess-18-3235-2018, 2018
Short summary
Short summary
Coping with avalanche hazard has a long tradition in alpine countries. Hazard mapping has proven to be one of the most effective methods. In this paper we develop a new approach to automatically delineate avalanche release areas and connect them to state-of-the-art numerical avalanche simulations. This enables computer-based hazard indication mapping over large areas such as entire countries. This is of particular interest where hazard maps do not yet exist, such as in developing countries.
Andrin Caviezel and Werner Gerber
Nat. Hazards Earth Syst. Sci., 18, 3145–3151, https://doi.org/10.5194/nhess-18-3145-2018, https://doi.org/10.5194/nhess-18-3145-2018, 2018
Short summary
Short summary
Anticipating the flight path of a bouncing object holds fascination for playing children and scientists alike. While the path of a ball can be judged easily, the erratic rebound behavior of complexly shaped forms are intriguing. Here, we focus on the timescales and rotation changes during real rock–ground impacts while traveling down a slope. Specialized sensors inside the rock track those changes and reveal contact times in the millisecond range defining the overall flight path behavior.
Perry Bartelt, Andrin Caviezel, Sandro Degonda, and Othmar Buser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-154, https://doi.org/10.5194/nhess-2018-154, 2018
Revised manuscript not accepted
Short summary
Short summary
A longstanding problem in avalanche science is to understand why slow moving avalanches exert large pressures on buildings. To understand this phenomenon we propose that avalanche interaction with a rigid structure must be divided into two separate regimes: a
flowregime and a
pile-upregime. In the flow regime, snow does not accumulate behind the obstacle. We show why the accumulation of avalanche snow behind a structure can lead to immense forces that must be considered in mitigation.
C. Mulsow, R. Kenner, Y. Bühler, A. Stoffel, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 739–744, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, 2018
Alejandro Casteller, Thomas Häfelfinger, Erika Cortés Donoso, Karen Podvin, Dominik Kulakowski, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 18, 1173–1186, https://doi.org/10.5194/nhess-18-1173-2018, https://doi.org/10.5194/nhess-18-1173-2018, 2018
Short summary
Short summary
Natural hazards such as snow avalanches, debris flows and volcanic activity represent a risk to mountain communities. This is particularly the case where documentary records about these processes are rare. As a result, decisions on risk management and land-use planning are based on other sources such tree-ring data and process models. Our study was conducted at Valle Las Trancas in Chile, where we evaluated the dynamics of avalanches and other natural hazards which threaten its population.
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018, https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Perry Bartelt, Peter Bebi, Thomas Feistl, Othmar Buser, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 18, 759–764, https://doi.org/10.5194/nhess-18-759-2018, https://doi.org/10.5194/nhess-18-759-2018, 2018
Short summary
Short summary
We study how short duration powder avalanche blasts break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees. Dynamic magnification factors should therefore be considered when back-calculating powder avalanche impact pressures.
Karolina Korzeniowska, Yves Bühler, Mauro Marty, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 17, 1823–1836, https://doi.org/10.5194/nhess-17-1823-2017, https://doi.org/10.5194/nhess-17-1823-2017, 2017
Short summary
Short summary
In this study, we have focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on aerial imagery using an object-based image analysis (OBIA) approach. We compared the results with manually mapped avalanche polygons, and obtained a user’s accuracy of > 0.9 and a Cohen’s kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km2, we estimated producer’s and user’s accuracies of 0.61 and 0.78, respectively.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016, https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
Yves Bühler, Marc S. Adams, Ruedi Bösch, and Andreas Stoffel
The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, https://doi.org/10.5194/tc-10-1075-2016, 2016
Short summary
Short summary
We map the distribution of snow depth at two alpine test sites with unmanned aerial system (UAS) data by applying structure-from-motion photogrammetry. In comparison with manual snow depth measurements, we find high accuracies of 7 to 15 cm for the snow depth values. We can prove that photogrammetric measurements on snow-covered terrain are possible. Underlaying vegetation such as bushes and grass leads to an underestimation of snow depth in the range of 10 to 50 cm.
T. Feistl, P. Bebi, M. Christen, S. Margreth, L. Diefenbach, and P. Bartelt
Nat. Hazards Earth Syst. Sci., 15, 1275–1288, https://doi.org/10.5194/nhess-15-1275-2015, https://doi.org/10.5194/nhess-15-1275-2015, 2015
Short summary
Short summary
Snow avalanches break, uproot and overturn trees, causing damage to forests. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find that powder clouds with velocities over 20m/s break tree stems and that quasi-static pressures of wet snow avalanches are much higher than dynamic pressure.
C. Vera Valero, Y. Bühler, and P. Bartelt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-2883-2015, https://doi.org/10.5194/nhessd-3-2883-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Wet snow avalanches can initiate from large fracture slabs or small point releases. Point
release wet snow avalanches can reach dangerous proportions when they initiate on steep and long avalanche paths and entrain warm moist snow. In this paper we investigate the dynamics of point release wet snow avalanches by applying a numerical model to simulate documented case studies on high altitude slopes in the Chilean Andes. The model simulated correctly flow height, velocity and avalanche run out.
Y. Bühler, M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler
The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, https://doi.org/10.5194/tc-9-229-2015, 2015
Short summary
Short summary
We are able to map snow depth over large areas ( > 100km2) using airborne digital photogrammetry. Digital photogrammetry is more economical than airborne Laser Scanning but slightly less accurate. Comparisons to independent snow depth measurements reveal an accuracy of about 30cm. Spatial continuous mapping of snow depth is a major step forward compared to point measurements usually applied today. Limitations are steep slopes (> 50°) and areas covered by trees and scrubs.
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
M. Teich, J.-T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Grêt-Regamey
Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, https://doi.org/10.5194/nhess-14-2233-2014, 2014
A. Aydin, Y. Bühler, M. Christen, and I. Gürer
Nat. Hazards Earth Syst. Sci., 14, 1145–1154, https://doi.org/10.5194/nhess-14-1145-2014, https://doi.org/10.5194/nhess-14-1145-2014, 2014
Y. Bühler, S. Kumar, J. Veitinger, M. Christen, A. Stoffel, and Snehmani
Nat. Hazards Earth Syst. Sci., 13, 1321–1335, https://doi.org/10.5194/nhess-13-1321-2013, https://doi.org/10.5194/nhess-13-1321-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Predicting drought and subsidence risks in France
Review article: Potential of Nature-Based Solutions to Mitigate Hydro-Meteorological Risks in Sub-Saharan Africa
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
The determinants affecting the intention of urban residents to prepare for flood risk in China
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Invited perspectives: Challenges and step changes for natural hazard – perspectives from the German Committee for Disaster Reduction (DKKV)
Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
Rapid landslide risk zoning toward multi-slope units of the Neikuihui tribe for preliminary disaster management
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Effective uncertainty visualization for aftershock forecast maps
Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment
Empirical tsunami fragility modelling for hierarchical damage levels: An application to damage data of the 2009 South Pacific tsunami
Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change
Regional county-level housing inventory predictions and the effects on hurricane risk
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Invited Perspectives: “Small country, big challenges – Switzerland's hazard prevention research”
Invited perspectives: Challenges and future directions in improving bridge flood resilience
Bangladesh's vulnerability to cyclonic coastal flooding
A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Cost–benefit analysis of coastal flood defence measures in the North Adriatic Sea
About the return period of a catastrophe
Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru
A simulation–optimization framework for post-disaster allocation of mental health resources
Lessons learned about the importance of raising risk awareness in the Mediterranean region (north Morocco and west Sardinia, Italy)
Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps
Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden under COVID-19
Review article: Mapping the adaptation solution space – lessons from Jakarta
Risk perception of local stakeholders on natural hazards: implications for theory and practice
Brief communication: Effective earthquake early warning systems: appropriate messaging and public awareness roles
Flood–pedestrian simulator for modelling human response dynamics during flood-induced evacuation: Hillsborough stadium case study
Review article: Brief history of volcanic risk in the Neapolitan area (Campania, southern Italy): a critical review
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022, https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary
Short summary
Predicting consequences of drought episodes is complex, all the more when focusing on subsidence. We use 20 years of insurer data to derive a model to predict both the intensity and the severity of such events, using geophysical and climatic information located in space and time.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
EGUsphere, https://doi.org/10.5194/egusphere-2022-604, https://doi.org/10.5194/egusphere-2022-604, 2022
Short summary
Short summary
Lately, nature-based solutions are becoming popular for mitigating hydro-meteorological risks such as floods, especially in Europe. However, its uptake in Sub-Saharan Africa is unclear. We therefore undertook this review and found that there is at least one reported nature-based solution used to mitigate flood, heatwave or drought risk in 71 % of urban areas of Sub-Saharan Africa. Even so, these nature-based solutions are being implemented where risks are but not where risks are most severe.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-183, https://doi.org/10.5194/nhess-2022-183, 2022
Preprint under review for NHESS
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Tiantian Wang, Yunmeng Lu, Tiezhong Liu, Yujiang Zhang, Xiaohan Yan, and Yi Liu
Nat. Hazards Earth Syst. Sci., 22, 2185–2199, https://doi.org/10.5194/nhess-22-2185-2022, https://doi.org/10.5194/nhess-22-2185-2022, 2022
Short summary
Short summary
To identify the main determinants influencing urban residents' intention to prepare for flood risk in China, we developed an integrated theoretical framework based on protection motivation theory (PMT) and validated it with structural equation modeling. The results showed that both threat perception and coping appraisal were effective in increasing residents' intention to prepare. In addition, individual heterogeneity and social context also had an impact on preparedness intentions.
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022, https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Short summary
This paper focuses on the issue of population information about natural hazards and disaster risk. It builds on the analysis of the unique seismo-volcanic crisis on the island of Mayotte, France, that started in May 2018 and lasted several years. We document the gradual response of the actors in charge of scientific monitoring and risk management. We then make recommendations for improving risk communication strategies in Mayotte and also in contexts where comparable geo-crises may happen.
Benni Thiebes, Ronja Winkhardt-Enz, Reimund Schwarze, and Stefan Pickl
Nat. Hazards Earth Syst. Sci., 22, 1969–1972, https://doi.org/10.5194/nhess-22-1969-2022, https://doi.org/10.5194/nhess-22-1969-2022, 2022
Short summary
Short summary
The worldwide challenge of the present as well as the future is to navigate the global community to a sustainable and secure future. Humanity is increasingly facing multiple risks under more challenging conditions. The continuation of climate change and the ever more frequent occurrence of extreme, multi-hazard, and cascading events are interacting with increasingly complex and interconnected societies.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Chih-Chung Chung and Zih-Yi Li
Nat. Hazards Earth Syst. Sci., 22, 1777–1794, https://doi.org/10.5194/nhess-22-1777-2022, https://doi.org/10.5194/nhess-22-1777-2022, 2022
Short summary
Short summary
The Neikuihui tribe in northern Taiwan faces landslides during rainfall events. Since the government needs to respond with disaster management for the most at-risk tribes, this study develops rapid risk zoning, which involves the susceptibility, activity, exposure, and vulnerability of each slope unit of the area. Results reveal that one of the slope units of the Neikuihui tribal area has a higher risk and did suffer a landslide during the typhoon in 2016.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Max Schneider, Michelle McDowell, Peter Guttorp, E. Ashley Steel, and Nadine Fleischhut
Nat. Hazards Earth Syst. Sci., 22, 1499–1518, https://doi.org/10.5194/nhess-22-1499-2022, https://doi.org/10.5194/nhess-22-1499-2022, 2022
Short summary
Short summary
Aftershock forecasts are desired for risk response, but public communications often omit their uncertainty. We evaluate three uncertainty visualization designs for aftershock forecast maps. In an online experiment, participants complete map-reading and judgment tasks relevant across natural hazards. While all designs reveal which areas are likely to have many or no aftershocks, one design can also convey that areas with high uncertainty can have more aftershocks than forecasted.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
EGUsphere, https://doi.org/10.5194/egusphere-2022-206, https://doi.org/10.5194/egusphere-2022-206, 2022
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation, and fragility model selection.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Caroline J. Williams, Rachel A. Davidson, Linda K. Nozick, Joseph E. Trainor, Meghan Millea, and Jamie L. Kruse
Nat. Hazards Earth Syst. Sci., 22, 1055–1072, https://doi.org/10.5194/nhess-22-1055-2022, https://doi.org/10.5194/nhess-22-1055-2022, 2022
Short summary
Short summary
A neural network model based on publicly available data was developed to forecast the number of housing units for each of 1000 counties in the southeastern United States in each of the next 20 years. The estimated number of housing units is almost always (97 % of the time) less than 1 percentage point different than the observed number, which are predictive errors acceptable for most practical purposes. The housing unit projections can help quantify changes in future expected hurricane impacts.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Dorothea Wabbels and Gian Reto Bezzola
Nat. Hazards Earth Syst. Sci., 22, 927–930, https://doi.org/10.5194/nhess-22-927-2022, https://doi.org/10.5194/nhess-22-927-2022, 2022
Short summary
Short summary
Due to its geography and climate, densely populated Switzerland is often affected by water-related hazards such as surface runoff, floods, debris flows, landslides, rockfalls and avalanches. Almost every part of Switzerland is exposed to natural hazards, and anyone can be affected.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
Mathias Raschke
Nat. Hazards Earth Syst. Sci., 22, 245–263, https://doi.org/10.5194/nhess-22-245-2022, https://doi.org/10.5194/nhess-22-245-2022, 2022
Short summary
Short summary
We develop the combined return period to stochastically measure hazard and catastrophe events. This is used to estimate a risk curve by stochastic scaling of historical events and averaging corresponding risk parameters in combination with a vulnerability model. We apply the method to extratropical cyclones over Germany and estimate the risk for insured losses. The results are strongly influenced by assumptions about spatial dependence.
Luis Moya, Fernando Garcia, Carlos Gonzales, Miguel Diaz, Carlos Zavala, Miguel Estrada, Fumio Yamazaki, Shunichi Koshimura, Erick Mas, and Bruno Adriano
Nat. Hazards Earth Syst. Sci., 22, 65–70, https://doi.org/10.5194/nhess-22-65-2022, https://doi.org/10.5194/nhess-22-65-2022, 2022
Short summary
Short summary
Informal occupation of unused lands for settlements is a critical issue in Peru. In most cases, such areas are unsafe against natural hazards. We performed a time-series analysis of Sentinel-1 images at recent informal settlements in Lima. The result suggests that a low-cost and sustainable monitoring system of informal settlements can be implemented.
Stephen Cunningham, Steven Schuldt, Christopher Chini, and Justin Delorit
Nat. Hazards Earth Syst. Sci., 21, 3843–3862, https://doi.org/10.5194/nhess-21-3843-2021, https://doi.org/10.5194/nhess-21-3843-2021, 2021
Short summary
Short summary
The severity of disaster-induced mental health illness outcomes varies based on factors such as socioeconomic standing, age, and degree of exposure. This research proposes a resource allocation framework allowing decision-makers the capability to assess the capacity and scalability of early, intermediate, and long-term mental health treatment and recovery. Ultimately, this framework can inform policy and operational decisions based on community needs and constrained resources post-disaster.
Ante Ivčević, Hubert Mazurek, Lionel Siame, Raquel Bertoldo, Vania Statzu, Kamal Agharroud, Isabel Estrela Rego, Nibedita Mukherjee, and Olivier Bellier
Nat. Hazards Earth Syst. Sci., 21, 3749–3765, https://doi.org/10.5194/nhess-21-3749-2021, https://doi.org/10.5194/nhess-21-3749-2021, 2021
Short summary
Short summary
The results from two Mediterranean case studies, in north Morocco and west Sardinia, confirm the importance of interdisciplinarity and risk awareness sessions for risk management. The policy literature and interviews held with the administration, associations and scientists indicate that although recognised, the importance of risk awareness sessions is not necessarily put into practice. As a consequence, this could lead to a failure of risk management policy.
Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto
Nat. Hazards Earth Syst. Sci., 21, 3519–3537, https://doi.org/10.5194/nhess-21-3519-2021, https://doi.org/10.5194/nhess-21-3519-2021, 2021
Short summary
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Mia Wannewitz and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 21, 3285–3322, https://doi.org/10.5194/nhess-21-3285-2021, https://doi.org/10.5194/nhess-21-3285-2021, 2021
Short summary
Short summary
Focusing on Jakarta as a city with high flood risk and adaptation pressure, this study presents findings from a systematic literature review of adaptation options and the adaptation solution space to counter the city’s flood problem. Results indicate that the perceived solution space is skewed towards protection against flooding, while soft and hybrid adaptation options are less considered. This significantly influences flood risk management, including its effectiveness and sustainability.
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
Meng Zhang, Xue Qiao, Barnabas C. Seyler, Baofeng Di, Yuan Wang, and Ya Tang
Nat. Hazards Earth Syst. Sci., 21, 3243–3250, https://doi.org/10.5194/nhess-21-3243-2021, https://doi.org/10.5194/nhess-21-3243-2021, 2021
Short summary
Short summary
Earthquake early warning systems (EEWSs) can help reduce losses, but their effectiveness depends on adequate public perception and understanding of EEWSs. This study examined the performance of the EEWS in China's Sichuan Province during the 2019 Changning earthquake. We found a big gap existed between the EEWS's message, the public's perception of it, and their response. The study highlights the importance of gauging EEWS alert effectiveness and public participation for long-term resiliency.
Mohammad Shirvani and Georges Kesserwani
Nat. Hazards Earth Syst. Sci., 21, 3175–3198, https://doi.org/10.5194/nhess-21-3175-2021, https://doi.org/10.5194/nhess-21-3175-2021, 2021
Short summary
Short summary
Flooding in and around urban hubs can stress people. Immediate evacuation is a usual countermeasure taken at the onset of a flooding event. The flood–pedestrian simulator simulates evacuation of people prior to and during a flood event. It provides information on the spatio-temporal responses of individuals, evacuation time, and possible safe destinations. This study demonstrates the simulator when considering more realistic human body and age characteristics and responses to floodwater.
Stefano Carlino
Nat. Hazards Earth Syst. Sci., 21, 3097–3112, https://doi.org/10.5194/nhess-21-3097-2021, https://doi.org/10.5194/nhess-21-3097-2021, 2021
Short summary
Short summary
This paper reports a brief history of volcanic risk in the Neapolitan district, where the presence of three active volcanoes (Vesuvius, Campi Flegrei caldera and Ischia island) exposes this highly urbanized area to hazard of potential eruptions. I am trying to obtain new food for thought for the scientific community working to mitigate the volcanic risk of this area, revisiting about 40 years of debates around volcanic risk in Naples.
Cited articles
Bourrier, F., Dorren, L. K. A., and Berger, F.: Full scale field tests on
rockfall impacting trees felled transverse to the slope, in: Conference
proceedings/12th Congress Interpraevent, edited by: Koboltschnig, G. and
Huebl, J., International Research Society INTERPRAEVENT, Klagenfurt, 643–650, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2012_2_643.pdf, (last access: 14 July 2022), 2012. a, b, c, d, e, f
Caviezel, A., Schaffner, M., Cavigelli, L., Niklaus, P., Buhler, Y., Bartelt,
P., Magno, M., and Benini, L.: Design and Evaluation of a Low-Power Sensor
Device for Induced Rockfall Experiments, IEEE T. Instrum. Meas., 67, 767–779, https://doi.org/10.1109/TIM.2017.2770799, 2018. a
Caviezel, A., Demmel, S. E., Ringenbach, A., Bühler, Y., Lu, G., Christen, M., Dinneen, C. E., Eberhard, L. A., von Rickenbach, D., and Bartelt, P.: Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes, Earth Surf. Dynam., 7, 199–210, https://doi.org/10.5194/esurf-7-199-2019, 2019a. a
Caviezel, A., Lu, G., Demmel, S. E., Ringenbach, A., Bühler, Y., Christen, M., and Bartelt, P.: RAMMS::ROCKFALL – a modern 3-dimensional simulation tool calibrated on real world data, in: 53rd US rock mechanics/geomechanics symposium, vol. 19-223, edited by: American Rock Mechanics Association, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:22147, (last access: 14 July 2022), 2019b. a
Caviezel, A., Ringenbach, A., Demmel, S. E., Dinneen, C. E., Krebs, N.,
Bühler, Y., Christen, M., Meyrat, G., Stoffel, A., Hafner, E., Eberhard,
L. A., von Rickenbach, D., Simmler, K., Mayer, P., Niklaus, P. S., Birchler,
T., Aebi, T., Cavigelli, L., Schaffner, M., Rickli, S., Schnetzler, C.,
Magno, M., Benini, L., and Bartelt, P.: The relevance of rock shape over
mass – implications for rockfall hazard assessments, Nat. Commun., 12, 15,
https://doi.org/10.1038/s41467-021-25794-y, 2021a. a, b
Caviezel, A., Ringenbach A., Bühler, Y., Stoffel, A., Simmler, K., Kistler, M., Degonda, S., Mader, D., Christen, M., Stihl, E., and Bartelt, P.: Experimental rockfall trilogy of Surava, EnviDat [code] and [data set], https://doi.org/10.16904/envidat.248, 2021b. a, b
Costa, M., Marchi, N., Bettella, F., Bolzon, P., Berger, F., and Lingua, E.:
Biological Legacies and Rockfall: The Protective Effect of a Windthrown
Forest, Forests, 12, 1141, https://doi.org/10.3390/f12091141, 2021. a, b
Dorren, L. K.: Rockyfor3D: Description of the complete 3D rockfall model, https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf, (last access: 14 July 2022), 2012. a
Dorren, L. K. A.: FINT – Find individual trees: User manual, https://www.ecorisq.org/docs/FINT_manual_EN.pdf, (last access: 14 July 2022), 2017. a
Dorren, L. K. A. and Berger, F.: Stem breakage of trees and energy dissipation during rockfall impacts, Tree Physiol., 26, 63–71,
https://doi.org/10.1093/treephys/26.1.63, 2005. a
Dupire, S., Bourrier, F., Monnet, J.-M., Bigot, S., Borgniet, L., Berger, F.,
and Curt, T.: Novel quantitative indicators to characterize the protective
effect of mountain forests against rockfall, Ecol. Indic., 67, 98–107,
https://doi.org/10.1016/j.ecolind.2016.02.023, 2016. a
ETAG 027: Guidline for European Technical Approval of Falling Rock
Protection Kits, https://www.eota.eu/en-GB/content/etags-used-as-ead/26/ (last access: 27 February 2018), 2013. a
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia, L.:
Storminess over the North Atlantic and northwestern Europe – A review, Q. J. Roy. Meteorol. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364, 2015. a
FOEN: Protection against Mass Movement Hazards: Guideline for the integrated
hazard management of landslides, rockfall and hillslope debris flows,
https://www.bafu.admin.ch/dam/bafu/en/dokumente/naturgefahren/uv-umwelt-vollzug/schutz_vor_massenbewegungsgefahren.pdf.download.pdf/protection_againstmassmovementhazards.pdf
(last access: 14 July 2022), 2016. a
Fuhr, M., Bourrier, F., and Cordonnier, T.: Protection against rockfall along a maturity gradient in mountain forests, Forest Ecol. Manage., 354, 224–231,
https://doi.org/10.1016/j.foreco.2015.06.012, 2015. a, b
Isenburg, M.: LAStools, https://rapidlasso.com/lastools/ (last access: 14 July 2022), 2021. a
Jain, P., Tye, M. R., Paimazumder, D., and Flannigan, M.: Downscaling fire
weather extremes from historical and projected climate models, Climatic Change, 163, 189–216, https://doi.org/10.1007/s10584-020-02865-5, 2020. a
Jönsson, A. M., Appelberg, G., Harding, S., and Bärring, L.:
Spatio-temporal impact of climate change on the activity and voltinism of the
spruce bark beetle, Ips typographus, Global Change Biol., 15, 486–499,
https://doi.org/10.1111/j.1365-2486.2008.01742.x, 2009. a
Killick, R., Fearnhead, P., and Eckley, I. A.: Optimal detection of
changepoints with a linear computational cost, J. Am. Stat. Accoc., 107,
1590–1598, https://doi.org/10.1080/01621459.2012.737745, 2012. a
Kulakowski, D., Seidl, R., Holeksa, J., Kuuluvainen, T., Nagel, T. A.,
Panayotov, M., Svoboda, M., Thorn, S., Vacchiano, G., Whitlock, C., Wohlgemuth, T., and Bebi, P.: A walk on the wild side: Disturbance dynamics
and the conservation and management of European mountain forest ecosystems,
Forest Ecol. Manage., 388, 120–131, https://doi.org/10.1016/j.foreco.2016.07.037, 2017. a
Lanfranconi, C., Sala, G., Frattini, P., Crosta, G. B., and Valagussa, A.:
Assessing the rockfall protection efficiency of forests at the regional
scale, Landslides, 17, 2703–2721, https://doi.org/10.1007/s10346-020-01458-8, 2020. a
Lu, G., Caviezel, A., Christen, M., Demmel, S. E., Ringenbach, A., Bühler, Y., Dinneen, C. E., Gerber, W., and Bartelt, P.: Modelling rockfall impact with scarring in compactable soils, Landslides, 16, 2353–2327, https://doi.org/10.1007/s10346-019-01238-z, 2019. a, b
Lu, G., Ringenbach, A., Caviezel, A., Sanchez, M., Christen, M., and Bartelt,
P.: Mitigation effects of trees on rockfall hazards: does rock shape matter?,
Landslides, 50, 1689, https://doi.org/10.1007/s10346-020-01418-2, 2020. a, b, c
Lundström, T., Jonsson, M. J., Volkwein, A., and Stoffel, M.: Reactions and energy absorption of trees subject to rockfall: a detailed assessment using a new experimental method, Tree Physiol., 29, 345–359,
https://doi.org/10.1093/treephys/tpn030, 2009. a
Moos, C., Dorren, L. K. A., and Stoffel, M.: Quantifying the effect of forests on frequency and intensity of rockfalls, Nat. Hazards Earth Syst. Sci., 17, 291–304, https://doi.org/10.5194/nhess-17-291-2017, 2017. a
Mozny, M., Trnka, M., and Brázdil, R.: Climate change driven changes of
vegetation fires in the Czech Republic, Theor. Appl. Climatol., 143, 691–699, https://doi.org/10.1007/s00704-020-03443-6, 2021. a
Niklaus, P., Birchler, T., Aebi, T., Schaffner, M., Cavigelli, L., Caviezel,
A., Magno, M., and Benini, L.: StoneNode: A low-power sensor device for
induced rockfall experiments, in: 2017 IEEE Sensors Applications Symposium (SAS), 1–6, https://doi.org/10.1109/SAS.2017.7894081, 2017. a
Olmedo, I.: Felled trees as rockfall protection devices: Experimental and
numerical studies, Doctoral thesis, irstea, Lyon, https://doi.org/10.13140/RG.2.1.2179.8640, 2015. a
Olmedo, I., Bourrier, F., Bertrand, D., Toe, D., Berger, F., and Limam, A.:
Experimental analysis of the response of fresh wood stems subjected to
localized impact loading, Wood Sci. Technol., 49, 623–646,
https://doi.org/10.1007/s00226-015-0713-0, 2015. a, b
Olmedo, I., Bourrier, F., Bertrand, D., Berger, F., and Limam, A.: Dynamic
analysis of wooden rockfall protection structures subjected to impact loading
using a discrete element model, Eur. J. Environ. Civ. Eng., 24, 1430–1449, https://doi.org/10.1080/19648189.2018.1472042, 2020. a
Rammer, W., Brauner, M., Dorren, L. K. A., Berger, F., and Lexer, M. J.:
Evaluation of a 3-D rockfall module within a forest patch model, Nat. Hazards Earth Syst. Sci., 10, 699–711, https://doi.org/10.5194/nhess-10-699-2010, 2010. a
Schelp, C.: plot_confidence_ellipse.py: A function to plot the confidence
ellipse of the covariance of a 2D dataset, Uses matplotlib., GitHub [code],
https://gist.github.com/CarstenSchelp/b992645537660bda692f218b562d0712 (last access: 14 July 2022), 2018. a
Sneed, E. D. and Folk, R. L.: Pebbles in the lower Colorado River, Texas, study in particle morfogenesis, J. Geol., 66, 114–150, 1958. a
Sommerfeld, A., Rammer, W., Heurich, M., Hilmers, T., Müller, J., and
Seidl, R.: Do bark beetle outbreaks amplify or dampen future bark beetle
disturbances in Central Europe?, J. Ecol., 109, 737–749,
https://doi.org/10.1111/1365-2745.13502, 2021. a
Stoffel, M., Wehrli, A., Kühne, R., Dorren, L. K. A., Perret, S., and
Kienholz, H.: Assessing the protective effect of mountain forests against
rockfall using a 3D simulation model, Forest Ecol. Manage., 225, 113–122,
https://doi.org/10.1016/j.foreco.2005.12.030, 2006. a
Toe, D., Bourrier, F., Olmedo, I., Monnet, J.-M., and Berger, F.: Analysis of
the effect of trees on block propagation using a DEM model: implications for
rockfall modelling, Landslides, 14, 1603–1614, https://doi.org/10.1007/s10346-017-0799-6, 2017. a
Woltjer, M., Rammer, W., Brauner, M., Seidl, R., Mohren, G. M. J., and Lexer,
M. J.: Coupling a 3D patch model and a rockfall module to assess rockfall
protection in mountain forests, J. Environ. Manage., 87, 373–388,
https://doi.org/10.1016/j.jenvman.2007.01.031, 2008.
a
Wunder, J., Knüsel, S., Dorren, L., Schwarz, M., Bourrier, F., and
Conedera, M.: Götterbaum und Paulownie: die “neuen Wilden” im
Schweizer Wald?, Schweiz. Z. Forstwes., 169, 69–76,
https://doi.org/10.3188/szf.2018.0069, 2018. a
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is...
Altmetrics
Final-revised paper
Preprint