Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of compound flood event on coastal critical infrastructures considering current and future climate
Mariam Khanam
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Giulia Sofia
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Marika Koukoula
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Rehenuma Lazin
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Efthymios I. Nikolopoulos
Mechanical and Civil Engineering, Florida Institute of Technology,
Melbourne, FL 32901, USA
Xinyi Shen
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Emmanouil N. Anagnostou
CORRESPONDING AUTHOR
Civil and Environmental Engineering, University of Connecticut,
Storrs, CT 06269, USA
Related authors
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-120, https://doi.org/10.5194/nhess-2023-120, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study comprehends and predicts the socioeconomic effects of floods in the High Mountain Asia (HMA) region. We proposed a machine-learning strategy for mapping flood damages. We predicted the Lifeyears Index (LYI), which quantifies the financial cost and loss of life caused by floods, using variables including climate, geomorphology, and population. The study's overall goal is to offer useful information on flood susceptibility and subsequent risk mapping in the HMA region.
Francesco Marra, Nadav Peleg, Elena Cristiano, Efthymios I. Nikolopoulos, Federica Remondi, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 25, 2565–2570, https://doi.org/10.5194/nhess-25-2565-2025, https://doi.org/10.5194/nhess-25-2565-2025, 2025
Short summary
Short summary
Climate change is escalating the risks related to hydro-meteorological extremes. This preface introduces a special issue originating from a European Geosciences Union (EGU) session. It highlights the challenges posed by these extremes, ranging from hazard assessment to mitigation strategies, and covers both water excess events like floods, landslides, and coastal hazards and water deficit events such as droughts and fire weather. The collection aims to advance understanding, improve resilience, and inform policy-making.
Qi Zhuang, Marika Koukoula, Shuguang Liu, Zhengzheng Zhou, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1002, https://doi.org/10.5194/egusphere-2025-1002, 2025
Short summary
Short summary
Understanding how projected urbanization and climate change affect typhoons, which may cause the most destructive natural catastrophes, is crucial. Based on numerical simulations of five landfalling typhoons in Shanghai, China, our results highlight that warming sea surface temperatures significantly shift typhoon tracks with intensified structures (increased size, intensity, and affected time) on the big scale. At the meantime, urbanization further enhances local rainfall intensity.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
EGUsphere, https://doi.org/10.5194/egusphere-2024-1626, https://doi.org/10.5194/egusphere-2024-1626, 2024
Short summary
Short summary
This study compared global satellite and one reanalysis precipitation dataset to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Kang He, Xinyi Shen, and Emmanouil N. Anagnostou
Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024, https://doi.org/10.5194/essd-16-3061-2024, 2024
Short summary
Short summary
Forest fire risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a global forest burn severity (GFBS) database that provides burn severity spectral indices (dNBR and RdNBR) at a 30 m spatial resolution. This database could be more reliable than prior sources of information for future studies of forest burn severity on the global scale in a computationally cost-effective way.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-120, https://doi.org/10.5194/nhess-2023-120, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study comprehends and predicts the socioeconomic effects of floods in the High Mountain Asia (HMA) region. We proposed a machine-learning strategy for mapping flood damages. We predicted the Lifeyears Index (LYI), which quantifies the financial cost and loss of life caused by floods, using variables including climate, geomorphology, and population. The study's overall goal is to offer useful information on flood susceptibility and subsequent risk mapping in the HMA region.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo
Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, https://doi.org/10.5194/essd-13-3239-2021, 2021
Short summary
Short summary
In order to improve the accuracy of China's regional agricultural drought monitoring and climate change research, we produced a long-term series of soil moisture products by constructing a time and depth correction model for three soil moisture products with the help of ground observation data. The spatial resolution is improved by building a spatial weight decomposition model, and validation indicates that the new product can meet application needs.
Bing Zhao, Kebiao Mao, Yulin Cai, Jiancheng Shi, Zhaoliang Li, Zhihao Qin, Xiangjin Meng, Xinyi Shen, and Zhonghua Guo
Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, https://doi.org/10.5194/essd-12-2555-2020, 2020
Short summary
Short summary
Land surface temperature is a key variable for climate and ecological environment research. We reconstructed a land surface temperature dataset (2003–2017) to take advantage of the ground observation site through building a reconstruction model which overcomes the effects of cloud. The reconstructed dataset exhibited significant improvements and can be used for the spatiotemporal evaluation of land surface temperature and for high-temperature and drought-monitoring studies.
Cited articles
Abii samra, N. and Henry, W.: Actions Before... and After a Flood, Power Energy Mag. IEEE, 9, 52–58, https://doi.org/10.1109/MPE.2010.939950, 2011.
Barnard, P. L., Erikson, L. H., Foxgrover, A. C., Hart, J. A. F., Limber,
P., O'Neill, A. C., and Jones, J. M.: Dynamic flood modeling
essential to assess the coastal impacts of climate change, Sci.
Rep.-UK, 9, 4309, https://doi.org/10.1038/s41598-019-40742-z, 2019.
Bates, P. D., Dawson, R. J., Hall, J. W., Horritt, M. S., Nicholls, R. J.,
Wicks, J., and Ali Mohamed Hassan, M. A.: Simplified two-dimensional
numerical modelling of coastal flooding and example applications, Coast.
Eng., 52, 793–810, https://doi.org/10.1016/j.coastaleng.2005.06.001, 2005.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M.,
Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K.,
Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S.,
Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J.,
Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R.,
Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski,
I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J.,
Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.:
Changing climate shifts timing of European floods, Science, 80, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M.,
Atkinson, J. H., and Roberts, H. J.: A High-Resolution Coupled
Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern
Louisiana and Mississippi. Part I: Model Development and Validation, Mon.
Weather Rev., 138, 345–377. https://doi.org/10.1175/2009MWR2906.1,
2010.
Cañizares, R. and Irish, J. L.: Simulation of storm-induced barrier
island morphodynamics and flooding, Coast. Eng., 55, 1089–1101,
https://doi.org/10.1016/J.COASTALENG.2008.04.006, 2008.
Cariolet, J.-M.: Use of high water marks and eyewitness accounts to
delineate flooded coastal areas: The case of Storm Johanna (10 March 2008)
in Brittany, France, Ocean Coast. Manag., 53, 679–690,
https://doi.org/10.1016/J.OCECOAMAN.2010.09.002, 2010.
Chang, S. E., McDaniels, T. L., Mikawoz, J., and Peterson, K.:
Infrastructure failure interdependencies in extreme events: power outage
consequences in the 1998 Ice Storm, Nat. Hazards, 41, 337–358,
https://doi.org/10.1007/s11069-006-9039-4, 2007.
Chou, M.-D. and Suarez, M. J.: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models, NASA Technical Memorandum 104606(3)85, available at: https://archive.org/details/nasa_techdoc_19950009331 (last access: 9 February 2021), 1994.
Cook, A. and Merwade, V.: Effect of topographic data, geometric configuration
and modeling approach on flood inundation mapping, J. Hydrol.,
377, 131–142, https://doi.org/10.1016/j.jhydrol.2009.08.015, 2009.
Crossett, K., Ache, B., Pacheco, P., and Haber, K.: National Coastal Population Report: Population Trends from 1970 to 2020, Silver Spring, MD, available at: https://coast.noaa.gov/digitalcoast/training/population-report.html (last access: 9 February 2021), 2013.
CtECO: 2012 Impervious Surface Download, available at:
http://www.cteco.uconn.edu/projects/ms4/impervious2012.htm (last access: 29 January 2021), 2012.
CtECO: Connecticut Elevation (Lidar) Data, available at: http://www.cteco.uconn.edu/data/lidar/index.htm (last access: 29 January 2021), 2016.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), U.S. Geological Survey Open-File Report 2011–1073, 26 p., 2011.
Dawson, R. J., Thompson, D., Johns, D., Wood, R., Darch, G., Chapman, L., Hughes, P. N., Watson, G. V. R., Paulson, K., Bell, S., Gosling, S. N., Powrie, W., and Hall, J. W.: A systems framework for national assessment of climate risks to infrastructure, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376, https://doi.org/10.1098/rsta.2017.0298, 2018.
de Bruijn, K. M., Maran, C., Zygnerski, M., Jurado, J., Burzel, A., Jeuken, C., and Obeysekera, J.: Flood Resilience of Critical Infrastructure: Approach and Method Applied to Fort Lauderdale, Florida, Water, 11, https://doi.org/10.3390/w11030517, 2019.
de Bruijn, K., Buurman, J., Mens, M., Dahm, R., and Klijn, F.: Resilience in
practice: Five principles to enable societies to cope with extreme weather
events, Environ. Sci. Policy, 70, 21–30, https://doi.org/10.1016/j.envsci.2017.02.001,
2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L.,
Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and
Feyen, L.: Increased human and economic losses from river flooding with
anthropogenic warming, Nat. Clim. Change, 8, 781–786,
https://doi.org/10.1038/s41558-018-0257-z, 2018.
FAO: The digitized soil map of the world, World Soil Resource Rep. 67, FAO, Rome, 1991.
Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO): Soil Map of the World (1:5 000 000), vol. 1 legend, UNESCO, Paris, France, 1974.
Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO): Soil Map of the World (1:5 000 000), vol. 1–10, UNESCO, Paris, France, 1971–1981.
FEMA, CT DEEP: Coastal Hazards Map Viewer Information, available
at: https://cteco.uconn.edu/viewer/index.html?viewer=coastalhazards (last access: 29 January 2021), 2013.
FEMA: Reducing Flood Effects in Critical Facilities. HSFE60-13-0002, 0003 / April 2013, available at: http://core-es.com/wp-content/uploads/FEMA-RA2-Reducing-Flood-Effects-in-Critical-Facilities.pdf (last access 29 January 2021), 2013.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type
Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MCD12Q1.006, 2015.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 34–38, https://doi.org/10.1029/2002GL015311, 2002.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, https://doi.org/10.1038/nclimate1979, 2013.
Hamman, J. J., Hamlet, A. F., Lee, S.-Y., Fuller, R., and Grossman, E. E.:
Combined Effects of Projected Sea Level Rise, Storm Surge, and Peak River
Flows on Water Levels in the Skagit Floodplain, Northwest Sci., 90,
57–78, https://doi.org/10.3955/046.090.0106, 2016.
Hardesty, S., Shen, X., Nikolopoulos, E., and Anagnostou, E.: A Numerical
Framework for Evaluating Flood Inundation Hazard under Different Dam
Operation Scenarios–A Case Study in Naugatuck River, Water-Sui., 10, 1798,
https://doi.org/10.3390/w10121798, 2018.
Higgins, W., Shi, W., Yarosh, E., and Joyce, R.: Improved
United States precipitation quality control system and analysis, NCEP/Climate Prediction Center ATLAS No. 7, 40 pp., 2000.
Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., and
Pfister, L.: Water Level Estimation and Reduction of Hydraulic Model
Calibration Uncertainties Using Satellite SAR Images of Floods, IEEE
T. Geosci. Remote S., 47, 431–441, https://doi.org/10.1109/TGRS.2008.2008718, 2009.
Jordi, A., Georgas, N., Blumberg, A., Yin, L., Chen, Z., Wang, Y., Schulte,
J., Ramaswamy, V., Runnels, D., and Saleh, F.: A next-generation coastal
ocean operational system, B. Am. Meteorol. Soc., 100, 41–53,
https://doi.org/10.1175/BAMS-D-17-0309.1, 2019.
Karagiannis, G. M., Chondrogiannis, S., Krausmann, E., and Turksezer, Z. I.: Power grid
recovery after natural hazard impact, EUR 28844 EN, https://doi.org/10.2760/87402, European Commission, Luxembourg, 2017.
Koenig, T. A., Bruce, J. L., O’Connor, J., McGee, B. D., Holmes Jr., R. R., Hollins, R., Forbes, B. T., Kohn, M. S., Schellekens, M., Martin, Z. W., and Peppler, M. C.: Identifying and preserving high-water mark data, U.S. Geological Survey, Reston, VA., https://doi.org/10.3133/tm3A24, 2016.
Kwasinski, W. W. Weaver, P. L. Chapman, and P. T. Krein: “Telecommunications
Power Plant Damage Assessment for Hurricane Katrina – Site Survey and
Follow-Up Results”, IEEE Syst J., 3, 277–287, 2009.
Lackmann, G. M.: Hurricane Sandy before 1900, and after 2100, B. Am. Meteorol. Soc., 96, 547–560, https://doi.org/10.1175/BAMS-D-14-00123.1, 2015.
Leonard, M., Westra, S., Phatak, A., Lambert, M., Van Den Hurk, B., Mcinnes,
K., and Stafford-Smith, M.: A compound event framework for
understanding extreme impacts, WIRES Clim. Change, 5, 113–128,
https://doi.org/10.1002/wcc.252, 2014.
Lin, N., Kopp, R. E., Horton, B. P., and Donnelly, J. P.: Hurricane Sandy's
flood frequency increasing from year 1800 to 2100, P. Natl. Acad. Sci. USA, 113, 12071–12075, https://doi.org/10.1073/pnas.1604386113, 2016.
Marsooli, R., Lin, N., Emanuel, K., and Feng, K.: Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns, Nat. Commun., 10, https://doi.org/10.1038/s41467-019-11755-z, 2019.
McEvoy, D., Ahmed, I., and Mullett, J.: The impact of the 2009 heat wave on
Melbourne's critical infrastructure, Local Environ., 17, 783–796, https://doi.org/10.1080/13549839.2012.678320, 2012.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.
F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multimodel dataset:
A new era in climatic change research, B. Am. Meteorol. Soc., 88,
1383–1394, https://doi.org/10.1175/BAMS-88-9-1383, 2007.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated–k model for the longwave, J. Geophys. Res., 102, 16663–16682.
https://doi.org/10.1029/97JD00237, 1997.
Moftakhari, H. R., Salvadori, G., Agha Kouchak, A., Sanders, B. F., and
Matthew, R. A.: Compounding effects of sea level rise and fluvial flooding,
P. Natl. Acad. Sci. USA, 114, 9785–9790. https://doi.org/10.1073/pnas.1620325114, 2017.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.: A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
O'Donnell, J.: Sea Level Rise Connecticut Final Report, available at: https://circa.uconn.edu/wp-content/uploads/sites/1618/2019/02/SeaLevelRiseConnecticut-Final-Report.pdf (last access: 10 January 2020), 2017.
Pant, R., Thacker, S., Hall, J. W., Alderson, D., and Barr, S.: Critical
infrastructure impact assessment due to flood exposure, J. Flood Risk
Manag., 11, 22–33, https://doi.org/10.1111/jfr3.12288, 2018.
Pasquier, U., He, Y., Hooton, S., Goulden, M., and Hiscock, K. M.: An
integrated 1D–2D hydraulic modelling approach to assess the sensitivity of
a coastal region to compound flooding hazard under climate change, Nat.
Hazards, 98, 915–937, https://doi.org/10.1007/s11069-018-3462-1, 2019.
Pearson, J., Punzo, G., Mayfield, M., Brighty, G., Parsons, A., Collins, P.,
Jeavons, S., and Tagg, A.: Flood resilience: consolidating knowledge between
and within critical infrastructure sectors, Environ. Syst. Decis., 38,
318–329, https://doi.org/10.1007/s10669-018-9709-2, 2018.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J.,
Gill, D. O., Coen, J. L., and Gochis, D. J.: The Weather Research and
Forecasting Model: Overview, system efforts, and future directions, B.
Am. Meteorol. Soc., 98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Quinn, N., Bates, P. D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith,
J., and Heffernan, J.: The Spatial Dependence of Flood Hazard and Risk in the
United States, Water Resour. Res., 55, 1890–1911,
https://doi.org/10.1029/2018WR024205, 2019.
Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P.,
Pappenberger, F., and Pfister, L.: High-Resolution 3-D Flood Information
From Radar Imagery for Flood Hazard Management, IEEE T. Geosci. Remote S., 45, 1715–1725, https://doi.org/10.1109/TGRS.2006.888103, 2007a.
Schumann, G., Matgen, P., Cutler, M. E. J., Black, A., Hoffmann, L., and
Pfister, L.: Comparison of remotely sensed water stages from LiDAR,
topographic contours and SRTM, ISPRS J. Photogramm., 63, 283–296. https://doi.org/10.1016/J.ISPRSJPRS.2007.09.004, 2008.
Schumann, G., Matgen, P., Hoffmann, L., Hostache, R., Pappenberger, F., and
Pfister, L.: Deriving distributed roughness values from satellite radar data
for flood inundation modelling, J. Hydrol., 344, 96–111,
https://doi.org/10.1016/J.JHYDROL.2007.06.024, 2007b.
Reed, D. A., Powell, M. D., and Westerman, J. M.: Energy Supply System Performance for Hurricane Katrina, J. Energy Eng., 136, 95–102, https://doi.org/10.1061/(ASCE)EY.1943-7897.0000028, 2010.
Shen, X. and Anagnostou, E. N.: A framework to improve hyper-resolution
hydrological simulation in snow-affected regions, J. Hydrol., 552,
1–12, https://doi.org/10.1016/j.jhydrol.2017.05.048, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR), University Corporation for Atmospheric Research, National Center for Atmospheric Research
Boulder, Colorado, USA, https://doi.org/10.5065/D68S4MVH, 2008.
Song-You, H., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: Measuring and testing dependence by correlation of distances, Ann. Stat., 35, 2769–2794,
https://doi.org/10.1214/009053607000000505, 2007.
Tewari, M. F., Chen, W., Wang, J., Dudhia, M. A., LeMone, K., Mitchell, M. E., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model, 20th conference on
weather analysis and forecasting/16th conference on numerical weather
prediction (formerly paper number 17.5), 11–15, available at: https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 9 February 2021), 2004.
Thompson, G., Paul, R. F., Roy, M. R., and William, D. H.: Explicit
Forecasts of Winter Precipitation Using an Improved Bulk Microphysics
Scheme. Part II: Implementation of a New Snow Parameterization, Mon. Weather
Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
United States Geological Survey (USGS): 1/9th Arc-second Digital Elevation Models
(DEMs) – USGS National Map 3DEP Downloadable Data Collection, United States
Geological Survey, available at: https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned (last access: February 2021), 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva,
S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of
extreme sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-04692-w, 2018.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.:
Increasing risk of compound flooding from storm surge and rainfall for major
US cities, Nat. Clim. Change, 5, 1093–1097,
https://doi.org/10.1038/nclimate2736, 2015.
Wang, H., Loftis, J., Liu, Z., Forrest, D., and Zhang, J.: The Storm Surge
and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy, J.
Mar. Sci. Eng., 2, 226–246, https://doi.org/10.3390/jmse2010226, 2014.
Warner, N. N. and Tissot, P. E.: Storm flooding sensitivity to sea level
rise for Galveston Bay, Texas, Ocean Eng., 44, 23–32,
https://doi.org/10.1016/J.OCEANENG.2012.01.011, 2012.
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2011JD016048, 2012.
Xian, S., Lin, N., and Hatzikyriakou, A.: Storm surge damage to residential
areas: a quantitative analysis for Hurricane Sandy in comparison with FEMA
flood map, Nat. Hazards, 79, 1867–1888, https://doi.org/10.1007/s11069-015-1937-x,
2015.
Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A.,
Hamann, R., Stuart-Hill, S., Myers, J., and Warburton, M.: Climate change
impacts and adaptation in South Africa, WIRES Clim. Change,
5, 605–620. https://doi.org/10.1002/wcc.295 , 2014.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., and Zhang, X.: Future climate risk from
compound events, Nat. Clim. Change, 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
Compound extremes correspond to events with multiple concurrent or consecutive drivers, leading to substantial impacts such as infrastructure failure. In many risk assessment and design applications, however, multihazard scenario events are ignored. In this paper, we present a general framework to investigate current and future climate compound-event flood impact on coastal critical infrastructures such as power grid substations.
Compound extremes correspond to events with multiple concurrent or consecutive drivers, leading...
Altmetrics
Final-revised paper
Preprint