Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
Maxim Samarin
Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland
Katrin Meusburger
Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Christine Alewell
Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
Related authors
No articles found.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-509, https://doi.org/10.5194/essd-2024-509, 2024
Preprint under review for ESSD
Short summary
Short summary
Fallout radionuclides such as 137Cs and 239+240Pu are considered as critical tools in various environmental research. Here, we compiled reference soil data on these fallout radionuclides from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine-learning algorithm.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Maral Khodadadi, Christine Alewell, Mohammad Mirzaei, Ehssan Ehssan-Malahat, Farrokh Asadzadeh, Peter Strauss, and Katrin Meusburger
SOIL Discuss., https://doi.org/10.5194/soil-2021-2, https://doi.org/10.5194/soil-2021-2, 2021
Revised manuscript not accepted
Short summary
Short summary
Forest soils store carbon and therefore play an important role in mitigating climate change impacts. Yet again, deforestation for farming and grazing purposes has grown rapidly over the last decades. Thus, its impacts on soil erosion and soil quality should be understood in order to adopt sustainable management measures. The results of this study indicated that deforestation can prompt soil loss by multiple orders of magnitude and deteriorate the soil quality in both topsoil and subsoil.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Lena Wohlgemuth, Stefan Osterwalder, Carl Joseph, Ansgar Kahmen, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 17, 6441–6456, https://doi.org/10.5194/bg-17-6441-2020, https://doi.org/10.5194/bg-17-6441-2020, 2020
Short summary
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Pranav Hirave, Guido L. B. Wiesenberg, Axel Birkholz, and Christine Alewell
Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, https://doi.org/10.5194/bg-17-2169-2020, 2020
Short summary
Short summary
Sediment input into water bodies is a prominent threat to freshwater ecosystems. We tested the stability of tracers employed in freshwater sediment tracing based on compound-specific isotope analysis during early degradation in soil. While bulk δ13C values showed no stability, δ13C values of plant-derived fatty acids and n-alkanes were stably transferred to the soil without soil particle size dependency after an early degradation in organic horizons, thus indicating their suitability as tracers.
Marlène Lavrieux, Axel Birkholz, Katrin Meusburger, Guido L. B. Wiesenberg, Adrian Gilli, Christian Stamm, and Christine Alewell
Biogeosciences, 16, 2131–2146, https://doi.org/10.5194/bg-16-2131-2019, https://doi.org/10.5194/bg-16-2131-2019, 2019
Short summary
Short summary
A fingerprinting approach using compound-specific stable isotopes was applied to a lake sediment core to reconstruct erosion processes over the past 150 years in a Swiss catchment. Even though the reconstruction of land use and eutrophication history was successful, the observation of comparatively low δ13C values of plant-derived fatty acids in the sediment suggests their alteration within the lake. Thus, their use as a tool for source attribution in sediment cores needs further investigation.
Claudia Mignani, Jessie M. Creamean, Lukas Zimmermann, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, https://doi.org/10.5194/acp-19-877-2019, 2019
Short summary
Short summary
A snow crystal can be generated from an ice nucleating particle or from an ice splinter. In this study we made use of the fact that snow crystals with a particular shape (dendrites) grow within a narrow temperature range (−12 to −17 °C) and can be analysed individually for the presence of an ice nucleating particle. Our direct approach revealed that only one in eight crystals contained such a particle and was of primary origin. The other crystals must have grown from ice splinters.
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
Emiliano Stopelli, Franz Conen, Caroline Guilbaud, Jakob Zopfi, Christine Alewell, and Cindy E. Morris
Biogeosciences, 14, 1189–1196, https://doi.org/10.5194/bg-14-1189-2017, https://doi.org/10.5194/bg-14-1189-2017, 2017
Short summary
Short summary
Based on the analysis of precipitation collected at high altitude, this study provides a relevant advancement in the assessment of the major factors responsible for the abundance and variability of airborne bacterial cells and Pseudomonas syringae in relation to ice nucleators. This is of prime importance to obtain a better understanding of the impact of ice-nucleation-active organisms on the development of precipitation and to determine the dispersal potential of airborne microorganisms.
Simon Schmidt, Christine Alewell, Panos Panagos, and Katrin Meusburger
Hydrol. Earth Syst. Sci., 20, 4359–4373, https://doi.org/10.5194/hess-20-4359-2016, https://doi.org/10.5194/hess-20-4359-2016, 2016
Short summary
Short summary
We present novel research on the seasonal dynamics of the impact of rainfall (R-factor) on the mobilization of topsoil as soil erosion by water for Switzerland. A modeling approach was chosen that enables the dynamical mapping of the R-factor. Based on the maps and modeling results, we could investigate the spatial and temporal distribution of that factor, which is high for Switzerland. With these results, agronomists can introduce selective erosion control measures.
Emiliano Stopelli, Franz Conen, Cindy E. Morris, Erik Herrmann, Stephan Henne, Martin Steinbacher, and Christine Alewell
Atmos. Chem. Phys., 16, 8341–8351, https://doi.org/10.5194/acp-16-8341-2016, https://doi.org/10.5194/acp-16-8341-2016, 2016
Short summary
Short summary
Knowing the variability of ice nucleating particles (INPs) helps determining their role in the formation of precipitation. Here we describe and predict the concentrations of INPs active at −8 °C in precipitation samples collected at Jungfraujoch (CH, 3580 m a.s.l.). A high abundance of these INPs can be expected whenever a coincidence of high wind speed and first precipitation from an air mass occurs. This expands the set of conditions where such INPs could affect the onset of precipitation.
Christine Alewell, Axel Birkholz, Katrin Meusburger, Yael Schindler Wildhaber, and Lionel Mabit
Biogeosciences, 13, 1587–1596, https://doi.org/10.5194/bg-13-1587-2016, https://doi.org/10.5194/bg-13-1587-2016, 2016
Short summary
Short summary
Origin of suspended sediments in rivers is of crucial importance for optimization of catchment management. Sediment source attribution to a lowland river in central Switzerland with compound specific stable isotopes analysis (CSIA) indicated that 65 % of the suspended sediments originated from agricultural land during base flow, while forest was the dominant source during high flow. We achieved significant differences in CSIA signature from land uses dominated by C3 plant cultivation.
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015, https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Short summary
Biogeochemical soil parameters are studied to detect peatland degradation along a land use gradient (intensive, extensive, near-natural). Stable carbon isotopes, radiocarbon ages and ash content confirm peat growth in the near-natural bog but also indicate previous degradation. When the bog is managed extensively or intensively as grassland, all parameters indicate degradation and substantial C loss of the order of 18.8 to 42.9 kg C m-2.
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, A. Walter, and C. Alewell
Hydrol. Earth Syst. Sci., 18, 3763–3775, https://doi.org/10.5194/hess-18-3763-2014, https://doi.org/10.5194/hess-18-3763-2014, 2014
S. Stanchi, M. Freppaz, E. Ceaglio, M. Maggioni, K. Meusburger, C. Alewell, and E. Zanini
Nat. Hazards Earth Syst. Sci., 14, 1761–1771, https://doi.org/10.5194/nhess-14-1761-2014, https://doi.org/10.5194/nhess-14-1761-2014, 2014
J. P. Krüger, J. Leifeld, and C. Alewell
Biogeosciences, 11, 3369–3380, https://doi.org/10.5194/bg-11-3369-2014, https://doi.org/10.5194/bg-11-3369-2014, 2014
E. Stopelli, F. Conen, L. Zimmermann, C. Alewell, and C. E. Morris
Atmos. Meas. Tech., 7, 129–134, https://doi.org/10.5194/amt-7-129-2014, https://doi.org/10.5194/amt-7-129-2014, 2014
K. Meusburger, L. Mabit, J.-H. Park, T. Sandor, and C. Alewell
Biogeosciences, 10, 5627–5638, https://doi.org/10.5194/bg-10-5627-2013, https://doi.org/10.5194/bg-10-5627-2013, 2013
K. Meusburger, G. Leitinger, L. Mabit, M. H. Mueller, and C. Alewell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9505-2013, https://doi.org/10.5194/hessd-10-9505-2013, 2013
Preprint withdrawn
M. H. Mueller, R. Weingartner, and C. Alewell
Hydrol. Earth Syst. Sci., 17, 1661–1679, https://doi.org/10.5194/hess-17-1661-2013, https://doi.org/10.5194/hess-17-1661-2013, 2013
Related subject area
Landslides and Debris Flows Hazards
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Predicting deep-seated landslide displacement on Taiwan's Lushan through the integration of convolutional neural networks and the Age of Exploration-Inspired Optimizer
Limit analysis of earthquake-induced landslides considering two strength envelopes
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Size scaling of large landslides from incomplete inventories
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Unravelling Landslide Failure Mechanisms with Seismic Signal Analysis for Enhanced Pre-Survey Understanding
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Predicting the thickness of shallow landslides in Switzerland using machine learning
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Exploratory analysis of the annual risk to life from debris flows
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
A data-driven evaluation of post-fire landslide susceptibility
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025, https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci., 25, 119–146, https://doi.org/10.5194/nhess-25-119-2025, https://doi.org/10.5194/nhess-25-119-2025, 2025
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing 8 years of data from Taiwan's Lushan, improving early warning and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024, https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
Short summary
This paper proposes a 3D limit analysis for seismic stability of soil slopes to address the influence of earthquakes on slope stabilities with nonlinear and linear criteria. Comparison results illustrate that the use of a linear envelope leads to the non-negligible overestimation of steep-slope stability, and this overestimation will be significant with increasing earthquakes. Earthquakes have a smaller influence on slope slip surfaces with a nonlinear envelope than those with a linear envelope.
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024, https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) sequentially buried by debris flow and inundated by dam-burst flood. The threshold of the impact pressures in Zones (II) and (III) where vulnerability is equal to 1 is 84 kPa and 116 kPa, respectively. Heavy damage occurs at an impact pressure greater than 50 kPa, while slight damage occurs below 30 kPa.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024, https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy-rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-156, https://doi.org/10.5194/nhess-2024-156, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We proposed an interated method with the combination of a physical vulnerability matric and a machine learning model to estimate the potential physical damage and associated economic loss caused by future debris flows based on the collected historical data on the Qinghai-Tibet Plateau regions.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1267, https://doi.org/10.5194/egusphere-2024-1267, 2024
Short summary
Short summary
The study on the Cilan Landslide (CL) demonstrates the utilization of seismic analysis results as preliminary data for geologists during field surveys. Spectrograms revealed that the 1st event of CL consisted of 4 sliding failures, accompanied by a gradual reduction in landslide volume. The 2nd and 3rd events were minor topplings and rockfalls. Then combining the seismological-based knowledge and field survey results, the temporal-spatial variation of landslide evolution is proposed.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-76, https://doi.org/10.5194/nhess-2024-76, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We developed a machine learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables including metrics on terrain, geomorphology, vegetation height, and lithology and used data from two Swiss field inventories to calibrate and test the models. The best performing machine learning model consistently reduced the mean average error by least 17 % compared to previously existing models.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Jonathan P. Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
EGUsphere, https://doi.org/10.5194/egusphere-2024-873, https://doi.org/10.5194/egusphere-2024-873, 2024
Short summary
Short summary
Landslides are a global issue that results in deaths and economic losses annually. However, it is not clear how storm severity relates to landslide severity across large regions. Here we develop a method to estimate the footprint of landslide area and compare this to meteorologic estimates of storm severity. We find that total storm strength does not clearly relate to landslide area. Rather, landslide area depends on soil wetness and smaller storm structures that can produce intense rainfall.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024, https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Short summary
Rainfall intensity–duration (ID) thresholds can aid in the prediction of natural hazards. Large-scale sediment disasters like landslides, debris flows, and flash floods happen frequently in the Himalayas because of their propensity for intense precipitation events. We provide a new framework that combines the Weather Research and Forecasting (WRF) model with a regionally distributed numerical model for debris flows to analyse and predict intense rainfall-induced landslides in the Himalayas.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024, https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2695, https://doi.org/10.5194/egusphere-2023-2695, 2023
Short summary
Short summary
Debris flows occur infrequently, with average recurrence intervals (ARIs) ranging from decades to millennia. Consequently, they pose an underappreciated hazard. We describe how to make a preliminary identification of debris flow-susceptible catchments, estimate threshold ARIs for debris flows which pose an unacceptable risk to life, and identify the "window of non-recognition" where debris flows are infrequent enough that their hazard is unrecognised, yet frequent enough to pose a risk to life.
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Cited articles
Alewell, C., Schaub, M., and Conen, F.: A method to detect soil carbon
degradation during soil erosion, Biogeosciences, 6, 2541–2547,
https://doi.org/10.5194/bg-6-2541-2009, 2009. a
Alewell, C., Ringeval, B.,
Ballabio, C., Robinson, D. A., Panagos, P., and Borrelli, P.: Global
phosphorus shortage will be aggravated by soil erosion, Nat. Commun., 11, 4546, https://doi.org/10.1038/s41467-020-18326-7,
2020. a
Amato, G., Eisank, C.,
Castro-Camilo, D., and Lombardo, L.: Accounting for covariate distributions in
slope-unit-based landslide susceptibility models. A case study in the alpine
environment, Eng. Geol., 260, 105237, https://doi.org/10.1016/j.enggeo.2019.105237, 2019. a
Barbb, E.: Innovative approaches to landslide hazard and risk mapping, in:
Proc. of the IV International Symposiumon Landslides, Toronto, 16–21 September, 307–323,
1984. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology, Hydrol. Sci. B., 24, 43–69, 1979. a
Breheny, P. and Huang, J.: Group descent algorithms for nonconvex penalized
linear and logistic regression models with grouped predictors, Stat. Comput., 25, 173–187, 2015. a
Brier, G. W.: Verification of Forecasts Expressed in terms of Probability,
Mon. Weather Rev., 78, 1–3, 1950. a
Camilo, D. C., Lombardo, L., Mai, P. M., Dou, J., and Huser, R.: Handling high
predictor dimensionality in slope-unit-based landslide susceptibility models
through LASSO-penalized Generalized Linear Model, Environ. Modell. Softw., 97, 145–156, 2017. a
Ceaglio, E., Mitterer, C., Maggioni, M., Ferraris, S., Segor, V., and Freppaz, M.: The role of soil volumetric liquid water content during snow gliding
processes, Cold Reg. Sci. Technol., 136, 17–29, 2017. a
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., and
Ma, J.: A comparative study of logistic model tree, random forest, and
classification and regression tree models for spatial prediction of landslide
susceptibility, Catena, 151, 147–160, 2017. a
Cignetti, M., Godone, D., and Giordan, D.: Shallow landslide susceptibility,
rupinaro catchment, liguria (Northwestern Italy), J. Maps, 15,
333–345, 2019. a
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G.,
Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.: Collinearity: A review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46, 2013. a
Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating the
performance of landslide susceptibility models, Eng. Geol., 111,
62–72, 2010. a
Fromm, R., Baumgärtner, S., Leitinger, G., Tasser, E., and Höller, P.: Determining the drivers for snow gliding, Nat. Hazards Earth Syst. Sci., 18, 1891–1903, https://doi.org/10.5194/nhess-18-1891-2018, 2018. a
FSO: Land use in Switzerland, Results of the Swiss land use statistics,
Federal Statistics Office, Neuchâtel, 24 pp., 2013. a
Gao, H., Fam, P. S., Tay, L. T., and Low, H. C.: Logistic regression
techniques based on different sample sizes in landslide susceptibility
assessment: Which performs better?, Compusoft, 9, 3624–3628, 2020. a
Geitner, C., Mayr, A., Rutzinger, M., Tobias, M., Tonin, R., Zerbe, S.,
Wellstein, C., Markart, G., and Kohl, B.: Shallow erosion on grassland
slopes in the European Alps – Geomorphological classification,
spatio-temporal analysis, and understanding snow and vegetation impacts,
Geomorphology, 373, 107446, https://doi.org/10.1016/j.geomorph.2020.107446, 2021. a, b, c, d, e, f
Gómez, H. and Kavzoglu, T.: Assessment of shallow landslide
susceptibility using artificial neural networks in Jabonosa River Basin,
Venezuela, Eng. Geol., 78, 11–27, 2005. a
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, 2nd edn., John Wiley and Sons, Inc., New York, 2000. a
Karger, D., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R., Zimmermann, N., Linder, H., and Kessler, M.: Data from: Climatologies at
high resolution for the earth's land surface areas, Dryad [data set], https://doi.org/10.5061/dryad.kd1d4,
2018. a, b, c
Kavzoglu, T., Sahin, E. K., and Colkesen, I.: Landslide susceptibility mapping
using GIS-based multi-criteria decision analysis, support vector machines,
and logistic regression, Landslides, 11, 425–439, 2014. a
Lee, D. H., Kim, Y. T., and Lee, S. R.: Shallow landslide susceptibility
models based on artificial neural networks considering the factor selection
method and various non-linear activation functions, Remote Sens.-Basel, 12,
1194, https://doi.org/10.3390/rs12071194,
2020. a, b, c
Leitinger, G., Meusburger, K., Rüdisser, J., Tasser, E., Walde, J., and
Höller, P.: Spatial evaluation of snow gliding in the Alps, Catena,
165, 567–575, 2018. a
Lepeška, T.: Dynamics of development and variability of surface
degradation in the subalpine and alpine zones (an example from the
Velká Fatra Mts., Slovakia), Open Geosci., 8, 771–786, 2016. a
Löbmann, M. T., Tonin, R., Wellstein, C., and Zerbe, S.: Determination
of the surface-mat effect of grassland slopes as a measure for shallow slope
stability, Catena, 187, 104397, https://doi.org/10.1016/j.catena.2019.104397, 2020. a
Lombardo, L. and Tanyas, H.: From scenario-based seismic hazard to
scenario-based landslide hazard: fast-forwarding to the future via
statistical simulations, Stoch. Env. Res. Risk
A., 1, https://doi.org/10.1007/s00477-021-02020-1, 2021. a
Meusburger, K. and Alewell, C.: Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland), Nat. Hazards Earth Syst. Sci., 8, 509–520, https://doi.org/10.5194/nhess-8-509-2008, 2008. a, b, c
Meusburger, K., Konz, N., Schaub, M., and Alewell, C.: Soil erosion modelled
with USLE and PESERA using QuickBird derived vegetation parameters in an
alpine catchment, Int. J. Appl. Earth Obs., 12, 208–215, 2010. a
Meusburger, K., Leitinger, G., Mabit, L., Mueller, M. H., and Alewell, C.: Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland, Hydrol. Earth Syst. Sci. Discuss., 10, 9505–9531, https://doi.org/10.5194/hessd-10-9505-2013, 2013. a
Moser, M. and Hohensinn, F.: Geotechnical aspects of soil slips in Alpine
regions, Eng. Geol., 19, 185–211, 1983. a
Newesely, C., Tasser, E., Spadinger, P., and Cernusca, A.: Effects of land-use
changes on snow gliding processes in alpine ecosystems, Basic Appl. Ecol., 1, 61–67, 2000. a
Nhu, V. H., Shirzadi, A., Shahabi, H., Chen, W., Clague, J. J., Geertsema, M.,
Jaafari, A., Avand, M., Miraki, S., Asl, D. T., Pham, B. T., Ahmad, B. B.,
and Lee, S.: Shallow landslide susceptibility mapping by Random Forest base
classifier and its ensembles in a Semi-Arid region of Iran, Forests, 11, 421, https://doi.org/10.3390/f11040421, 2020a. a, b
Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., Jaafari, A., Chen, W., Miraki, S., Dou, J., Luu, C., Górski, K.,
Pham, B. T., Nguyen, H. D., and Ahmad, B. B.: Shallow landslide
susceptibility mapping: A comparison between logistic model tree, logistic
regression, naïve bayes tree, artificial neural network, and support
vector machine algorithms, Int. J. Environ. Res. Pub. He., 17, 2749,
https://doi.org/10.3390/ijerph17082749, 2020b. a, b, c, d, e
O'Mara, F. P.: The role of grasslands in food security and climate change, Ann. Bot.-London, 110, 1263–1270, 2012. a
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the
quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014. a
Pimentel, D. and Burgess, M.: Soil Erosion Threatens Food Production,
Agriculture, 3, 443–463, 2013. a
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M.,
Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R.: Environmental and economic costs of soil erosion and conservation benefits,
Science, 267, 1117–1123, 1995. a
Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., and
Kawasaki, A.: Landslide susceptibility mapping of the Sera River Basin using
logistic regression model, Nat. Hazards, 85, 1323–1346, 2017. a
Rickli, C. and Graf, F.: Effects of forests on shallow landslides – case
studies in Switzerland, Forest Snow and Landscape Research, 82, 33–44, 2009. a
Ronneberger O., Fischer P., and Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, MICCAI 2015, Lecture Notes in Computer Science, edited by: Navab N., Hornegger J., Wells W., and Frangi A., vol. 9351, Springer, Cham, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b
Samarin, M.: bmda-unibas/ErosionSegmentation: Pre-release (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5656831, 2021. a, b
Schauer, T.: Die Blaikenbildung in den Alpen, Schriftenreihe des Bayerischen Landesamtes für Wasserwirtschaft, 1, 29, 1975. a
Steger, S., Brenning, A., Bell, R., Petschko, H., and Glade, T.: Exploring
discrepancies between quantitative validation results and the geomorphic
plausibility of statistical landslide susceptibility maps, Geomorphology,
262, 8–23, 2016. a
Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M.,
Obuchowski, N., Pencina, M. J., and Kattan, M. W.: Assessing the performance
of prediction models: A framework for traditional and novel measures,
Epidemiology, 21, 128–138, 2010. a
Stumpf, F., Schneider, M. K., Keller, A., Mayr, A., Rentschler, T., Meuli, R. G., Schaepman, M., and Liebisch, F.: Spatial monitoring of grassland
management using multi-temporal satellite imagery, Ecol. Indic.,
113, 106201, https://doi.org/10.1016/j.ecolind.2020.106201, 2020. a
Tanyaş, H., Kirschbaum, D., and Lombardo, L.: Capturing the footprints
of ground motion in the spatial distribution of rainfall-induced landslides,
B. Eng. Geol. Environ., 80, 4323–4345, 2021. a
Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., and Revhaug, I.: Spatial
prediction models for shallow landslide hazards: a comparative assessment of
the efficacy of support vector machines, artificial neural networks, kernel
logistic regression, and logistic model tree, Landslides, 13, 361–378,
2016. a, b
Von Ruette, J., Lehmann, P., and Or, D.: Rainfall-triggered shallow landslides
at catchment scale: Threshold mechanics-based modeling for abruptness and
localization, Water Resour. Res., 49, 6266–6285, 2013. a
Vorpahl, P., Elsenbeer, H., Märker, M., and Schröder, B.: How can
statistical models help to determine driving factors of landslides?,
Ecol. Model., 239, 27–39, 2012. a
Wilks, D.: Statistical Methods in the Atmospheric Sciences, 2nd edn., Academic Press,
London, 2006. a
Wilson, M. F., O'Connell, B., Brown, C., Guinan, J. C., and Grehan, A. J.: Multiscale terrain analysis of multibeam bathymetry data for habitat mapping
on the continental slope, Mar. Geod., 30, 3–35, https://doi.org/10.1080/01490410701295962, 2007. a
Zevenbergen, L. W. and C., T.: Quantitative analysis of land surface
topography, Earth Surf. Proc. Land., 12, 47–56, 1987. a
Zweifel, L., Meusburger, K., and Alewell, C.: Spatio-temporal pattern of soil
degradation in a Swiss Alpine grassland catchment, Remote Sens. Environ.,
235, 111441, https://doi.org/10.1016/j.rse.2019.111441, 2019. a, b, c
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow...
Altmetrics
Final-revised paper
Preprint